chiark / gitweb /
Native Windows printing support, using the infrastructure I put in
[sgt-puzzles.git] / devel.but
1 \cfg{text-indent}{0}
2 \cfg{text-width}{72}
3 \cfg{text-title-align}{left}
4 \cfg{text-chapter-align}{left}
5 \cfg{text-chapter-numeric}{true}
6 \cfg{text-chapter-suffix}{. }
7 \cfg{text-chapter-underline}{-}
8 \cfg{text-section-align}{0}{left}
9 \cfg{text-section-numeric}{0}{true}
10 \cfg{text-section-suffix}{0}{. }
11 \cfg{text-section-underline}{0}{-}
12 \cfg{text-section-align}{1}{left}
13 \cfg{text-section-numeric}{1}{true}
14 \cfg{text-section-suffix}{1}{. }
15 \cfg{text-section-underline}{1}{-}
16 \cfg{text-versionid}{0}
17
18 \cfg{html-contents-filename}{index.html}
19 \cfg{html-template-filename}{%k.html}
20 \cfg{html-index-filename}{docindex.html}
21 \cfg{html-leaf-level}{1}
22 \cfg{html-contents-depth-0}{1}
23 \cfg{html-contents-depth-1}{3}
24 \cfg{html-leaf-contains-contents}{true}
25
26 \define{dash} \u2013{-}
27
28 \title Developer documentation for Simon Tatham's puzzle collection
29
30 This is a guide to the internal structure of Simon Tatham's Portable
31 Puzzle Collection (henceforth referred to simply as \q{Puzzles}),
32 for use by anyone attempting to implement a new puzzle or port to a
33 new platform.
34
35 This guide is believed correct as of r6190. Hopefully it will be
36 updated along with the code in future, but if not, I've at least
37 left this version number in here so you can figure out what's
38 changed by tracking commit comments from there onwards.
39
40 \C{intro} Introduction
41
42 The Puzzles code base is divided into four parts: a set of
43 interchangeable front ends, a set of interchangeable back ends, a
44 universal \q{middle end} which acts as a buffer between the two, and
45 a bunch of miscellaneous utility functions. In the following
46 sections I give some general discussion of each of these parts.
47
48 \H{intro-frontend} Front end
49
50 The front end is the non-portable part of the code: it's the bit
51 that you replace completely when you port to a different platform.
52 So it's responsible for all system calls, all GUI interaction, and
53 anything else platform-specific.
54
55 The current front ends in the main code base are for Windows, GTK
56 and MacOS X; I also know of a third-party front end for PalmOS.
57
58 The front end contains \cw{main()} or the local platform's
59 equivalent. Top-level control over the application's execution flow
60 belongs to the front end (it isn't, for example, a set of functions
61 called by a universal \cw{main()} somewhere else).
62
63 The front end has complete freedom to design the GUI for any given
64 port of Puzzles. There is no centralised mechanism for maintaining
65 the menu layout, for example. This has a cost in consistency (when I
66 \e{do} want the same menu layout on more than one platform, I have
67 to edit two pieces of code in parallel every time I make a change),
68 but the advantage is that local GUI conventions can be conformed to
69 and local constraints adapted to. For example, MacOS X has strict
70 human interface guidelines which specify a different menu layout
71 from the one I've used on Windows and GTK; there's nothing stopping
72 the OS X front end from providing a menu layout consistent with
73 those guidelines.
74
75 Although the front end is mostly caller rather than the callee in
76 its interactions with other parts of the code, it is required to
77 implement a small API for other modules to call, mostly of drawing
78 functions for games to use when drawing their graphics. The drawing
79 API is documented in \k{drawing}; the other miscellaneous front end
80 API functions are documented in \k{frontend-api}.
81
82 \H{intro-backend} Back end
83
84 A \q{back end}, in this collection, is synonymous with a \q{puzzle}.
85 Each back end implements a different game.
86
87 At the top level, a back end is simply a data structure, containing
88 a few constants (flag words, preferred pixel size) and a large
89 number of function pointers. Back ends are almost invariably callee
90 rather than caller, which means there's a limitation on what a back
91 end can do on its own initiative.
92
93 The persistent state in a back end is divided into a number of data
94 structures, which are used for different purposes and therefore
95 likely to be switched around, changed without notice, and otherwise
96 updated by the rest of the code. It is important when designing a
97 back end to put the right pieces of data into the right structures,
98 or standard midend-provided features (such as Undo) may fail to
99 work.
100
101 The functions and variables provided in the back end data structure
102 are documented in \k{backend}.
103
104 \H{intro-midend} Middle end
105
106 Puzzles has a single and universal \q{middle end}. This code is
107 common to all platforms and all games; it sits in between the front
108 end and the back end and provides standard functionality everywhere.
109
110 People adding new back ends or new front ends should generally not
111 need to edit the middle end. On rare occasions there might be a
112 change that can be made to the middle end to permit a new game to do
113 something not currently anticipated by the middle end's present
114 design; however, this is terribly easy to get wrong and should
115 probably not be undertaken without consulting the primary maintainer
116 (me). Patch submissions containing unannounced mid-end changes will
117 be treated on their merits like any other patch; this is just a
118 friendly warning that mid-end changes will need quite a lot of
119 merits to make them acceptable.
120
121 Functionality provided by the mid-end includes:
122
123 \b Maintaining a list of game state structures and moving back and
124 forth along that list to provide Undo and Redo.
125
126 \b Handling timers (for move animations, flashes on completion, and
127 in some cases actually timing the game).
128
129 \b Handling the container format of game IDs: receiving them,
130 picking them apart into parameters, description and/or random seed,
131 and so on. The game back end need only handle the individual parts
132 of a game ID (encoded parameters and encoded game description);
133 everything else is handled centrally by the mid-end.
134
135 \b Handling standard keystrokes and menu commands, such as \q{New
136 Game}, \q{Restart Game} and \q{Quit}.
137
138 \b Pre-processing mouse events so that the game back ends can rely
139 on them arriving in a sensible order (no missing button-release
140 events, no sudden changes of which button is currently pressed,
141 etc).
142
143 \b Handling the dialog boxes which ask the user for a game ID.
144
145 \b Handling serialisation of entire games (for loading and saving a
146 half-finished game to a disk file, or for handling application
147 shutdown and restart on platforms such as PalmOS where state is
148 expected to be saved).
149
150 Thus, there's a lot of work done once by the mid-end so that
151 individual back ends don't have to worry about it. All the back end
152 has to do is cooperate in ensuring the mid-end can do its work
153 properly.
154
155 The API of functions provided by the mid-end to be called by the
156 front end is documented in \k{midend}.
157
158 \H{intro-utils} Miscellaneous utilities
159
160 In addition to these three major structural components, the Puzzles
161 code also contains a variety of utility modules usable by all of the
162 above components. There is a set of functions to provide
163 platform-independent random number generation; functions to make
164 memory allocation easier; functions which implement a balanced tree
165 structure to be used as necessary in complex algorithms; and a few
166 other miscellaneous functions. All of these are documented in
167 \k{utils}.
168
169 \H{intro-structure} Structure of this guide
170
171 There are a number of function call interfaces within Puzzles, and
172 this guide will discuss each one in a chapter of its own. After
173 that, there will be a section about how to design new games, with
174 some general design thoughts and tips.
175
176 \C{backend} Interface to the back end
177
178 This chapter gives a detailed discussion of the interface that each
179 back end must implement.
180
181 At the top level, each back end source file exports a single global
182 symbol, which is a \c{const struct game} containing a large number
183 of function pointers and a small amount of constant data. This
184 structure is called by different names depending on what kind of
185 platform the puzzle set is being compiled on:
186
187 \b On platforms such as Windows and GTK, which build a separate
188 binary for each puzzle, the game structure in every back end has the
189 same name, \cq{thegame}; the front end refers directly to this name,
190 so that compiling the same front end module against a different back
191 end module builds a different puzzle.
192
193 \b On platforms such as MacOS X and PalmOS, which build all the
194 puzzles into a single monolithic binary, the game structure in each
195 back end must have a different name, and there's a helper module
196 \c{list.c} which contains a complete list of those game structures.
197
198 On the latter type of platform, source files may assume that the
199 preprocessor symbol \c{COMBINED} has been defined. Thus, the usual
200 code to declare the game structure looks something like this:
201
202 \c #ifdef COMBINED
203 \c #define thegame net    /* or whatever this game is called */
204 \e                 iii    iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
205 \c #endif
206 \c 
207 \c const struct game thegame = {
208 \c     /* lots of structure initialisation in here */
209 \e     iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
210 \c };
211
212 Game back ends must also internally define a number of data
213 structures, for storing their various persistent state. This chapter
214 will first discuss the nature and use of those structures, and then
215 go on to give details of every element of the game structure.
216
217 \H{backend-structs} Data structures
218
219 Each game is required to define four separate data structures. This
220 section discusses each one and suggests what sorts of things need to
221 be put in it.
222
223 \S{backend-game-params} \c{game_params}
224
225 The \c{game_params} structure contains anything which affects the
226 automatic generation of new puzzles. So if puzzle generation is
227 parametrised in any way, those parameters need to be stored in
228 \c{game_params}.
229
230 Most puzzles currently in this collection are played on a grid of
231 squares, meaning that the most obvious parameter is the grid size.
232 Many puzzles have additional parameters; for example, Mines allows
233 you to control the number of mines in the grid independently of its
234 size, Net can be wrapping or non-wrapping, Solo has difficulty
235 levels and symmetry settings, and so on.
236
237 A simple rule for deciding whether a data item needs to go in
238 \c{game_params} is: would the user expect to be able to control this
239 data item from either the preset-game-types menu or the \q{Custom}
240 game type configuration? If so, it's part of \c{game_params}.
241
242 \c{game_params} structures are permitted to contain pointers to
243 subsidiary data if they need to. The back end is required to provide
244 functions to create and destroy \c{game_params}, and those functions
245 can allocate and free additional memory if necessary. (It has not
246 yet been necessary to do this in any puzzle so far, but the
247 capability is there just in case.)
248
249 \c{game_params} is also the only structure which the game's
250 \cw{compute_size()} function may refer to; this means that any
251 aspect of the game which affects the size of the window it needs to
252 be drawn in must be stored in \c{game_params}. In particular, this
253 imposes the fundamental limitation that random game generation may
254 not have a random effect on the window size: game generation
255 algorithms are constrained to work by starting from the grid size
256 rather than generating it as an emergent phenomenon. (Although this
257 is a restriction in theory, it has not yet seemed to be a problem.)
258
259 \S{backend-game-state} \c{game_state}
260
261 While the user is actually playing a puzzle, the \c{game_state}
262 structure stores all the data corresponding to the current state of
263 play.
264
265 The mid-end keeps \c{game_state}s in a list, and adds to the list
266 every time the player makes a move; the Undo and Redo functions step
267 back and forth through that list.
268
269 Therefore, a good means of deciding whether a data item needs to go
270 in \c{game_state} is: would a player expect that data item to be
271 restored on undo? If so, put it in \c{game_state}, and this will
272 automatically happen without you having to lift a finger. If not
273 \dash for example, the deaths counter in Mines is precisely
274 something that does \e{not} want to be reset to its previous state
275 on an undo \dash then you might have found a data item that needs to
276 go in \c{game_ui} instead.
277
278 During play, \c{game_state}s are often passed around without an
279 accompanying \c{game_params} structure. Therefore, any information
280 in \c{game_params} which is important during play (such as the grid
281 size) must be duplicated within the \c{game_state}. One simple
282 method of doing this is to have the \c{game_state} structure
283 \e{contain} a \c{game_params} structure as one of its members,
284 although this isn't obligatory if you prefer to do it another way.
285
286 \S{backend-game-drawstate} \c{game_drawstate}
287
288 \c{game_drawstate} carries persistent state relating to the current
289 graphical contents of the puzzle window. The same \c{game_drawstate}
290 is passed to every call to the game redraw function, so that it can
291 remember what it has already drawn and what needs redrawing.
292
293 A typical use for a \c{game_drawstate} is to have an array mirroring
294 the array of grid squares in the \c{game_state}; then every time the
295 redraw function was passed a \c{game_state}, it would loop over all
296 the squares, and physically redraw any whose description in the
297 \c{game_state} (i.e. what the square needs to look like when the
298 redraw is completed) did not match its description in the
299 \c{game_drawstate} (i.e. what the square currently looks like).
300
301 \c{game_drawstate} is occasionally completely torn down and
302 reconstructed by the mid-end, if the user somehow forces a full
303 redraw. Therefore, no data should be stored in \c{game_drawstate}
304 which is \e{not} related to the state of the puzzle window, because
305 it might be unexpectedly destroyed.
306
307 The back end provides functions to create and destroy
308 \c{game_drawstate}, which means it can contain pointers to
309 subsidiary allocated data if it needs to. A common thing to want to
310 allocate in a \c{game_drawstate} is a \c{blitter}; see
311 \k{drawing-blitter} for more on this subject.
312
313 \S{backend-game-ui} \c{game_ui}
314
315 \c{game_ui} contains whatever doesn't fit into the above three
316 structures!
317
318 A new \c{game_ui} is created when the user begins playing a new
319 instance of a puzzle (i.e. during \q{New Game} or after entering a
320 game ID etc). It persists until the user finishes playing that game
321 and begins another one (or closes the window); in particular,
322 \q{Restart Game} does \e{not} destroy the \c{game_ui}.
323
324 \c{game_ui} is useful for implementing user-interface state which is
325 not part of \c{game_state}. Common examples are keyboard control
326 (you wouldn't want to have to separately Undo through every cursor
327 motion) and mouse dragging. See \k{writing-keyboard-cursor} and
328 \k{writing-howto-dragging}, respectively, for more details.
329
330 Another use for \c{game_ui} is to store highly persistent data such
331 as the Mines death counter. This is conceptually rather different:
332 where the Net cursor position was \e{not important enough} to
333 preserve for the player to restore by Undo, the Mines death counter
334 is \e{too important} to permit the player to revert by Undo!
335
336 A final use for \c{game_ui} is to pass information to the redraw
337 function about recent changes to the game state. This is used in
338 Mines, for example, to indicate whether a requested \q{flash} should
339 be a white flash for victory or a red flash for defeat; see
340 \k{writing-flash-types}.
341
342 \H{backend-simple} Simple data in the back end
343
344 In this section I begin to discuss each individual element in the
345 back end structure. To begin with, here are some simple
346 self-contained data elements.
347
348 \S{backend-name} \c{name}
349
350 \c const char *name;
351
352 This is a simple ASCII string giving the name of the puzzle. This
353 name will be used in window titles, in game selection menus on
354 monolithic platforms, and anywhere else that the front end needs to
355 know the name of a game.
356
357 \S{backend-winhelp} \c{winhelp_topic}
358
359 \c const char *winhelp_topic;
360
361 This member is used on Windows only, to provide online help.
362 Although the Windows front end provides a separate binary for each
363 puzzle, it has a single monolithic help file; so when a user selects
364 \q{Help} from the menu, the program needs to open the help file and
365 jump to the chapter describing that particular puzzle.
366
367 Therefore, each chapter in \c{puzzles.but} is labelled with a
368 \e{help topic} name, similar to this:
369
370 \c \cfg{winhelp-topic}{games.net}
371
372 And then the corresponding game back end encodes the topic string
373 (here \cq{games.net}) in the \c{winhelp_topic} element of the game
374 structure.
375
376 \H{backend-params} Handling game parameter sets
377
378 In this section I present the various functions which handle the
379 \c{game_params} structure.
380
381 \S{backend-default-params} \cw{default_params()}
382
383 \c game_params *(*default_params)(void);
384
385 This function allocates a new \c{game_params} structure, fills it
386 with the default values, and returns a pointer to it.
387
388 \S{backend-fetch-preset} \cw{fetch_preset()}
389
390 \c int (*fetch_preset)(int i, char **name, game_params **params);
391
392 This function is used to populate the \q{Type} menu, which provides
393 a list of conveniently accessible preset parameters for most games.
394
395 The function is called with \c{i} equal to the index of the preset
396 required (numbering from zero). It returns \cw{FALSE} if that preset
397 does not exist (if \c{i} is less than zero or greater than the
398 largest preset index). Otherwise, it sets \c{*params} to point at a
399 newly allocated \c{game_params} structure containing the preset
400 information, sets \c{*name} to point at a newly allocated C string
401 containing the preset title (to go on the \q{Type} menu), and
402 returns \cw{TRUE}.
403
404 If the game does not wish to support any presets at all, this
405 function is permitted to return \cw{FALSE} always.
406
407 \S{backend-encode-params} \cw{encode_params()}
408
409 \c char *(*encode_params)(game_params *params, int full);
410
411 The job of this function is to take a \c{game_params}, and encode it
412 in a string form for use in game IDs. The return value must be a
413 newly allocated C string, and \e{must} not contain a colon or a hash
414 (since those characters are used to mark the end of the parameter
415 section in a game ID).
416
417 Ideally, it should also not contain any other potentially
418 controversial punctuation; bear in mind when designing a string
419 parameter format that it will probably be used on both Windows and
420 Unix command lines under a variety of exciting shell quoting and
421 metacharacter rules. Sticking entirely to alphanumerics is the
422 safest thing; if you really need punctuation, you can probably get
423 away with commas, periods or underscores without causing anybody any
424 major inconvenience. If you venture far beyond that, you're likely
425 to irritate \e{somebody}.
426
427 (At the time of writing this, all existing games have purely
428 alphanumeric string parameter formats. Usually these involve a
429 letter denoting a parameter, followed optionally by a number giving
430 the value of that parameter, with a few mandatory parts at the
431 beginning such as numeric width and height separated by \cq{x}.)
432
433 If the \c{full} parameter is \cw{TRUE}, this function should encode
434 absolutely everything in the \c{game_params}, such that a subsequent
435 call to \cw{decode_params()} (\k{backend-decode-params}) will yield
436 an identical structure. If \c{full} is \cw{FALSE}, however, you
437 should leave out anything which is not necessary to describe a
438 \e{specific puzzle instance}, i.e. anything which only takes effect
439 when a new puzzle is \e{generated}. For example, the Solo
440 \c{game_params} includes a difficulty rating used when constructing
441 new puzzles; but a Solo game ID need not explicitly include the
442 difficulty, since to describe a puzzle once generated it's
443 sufficient to give the grid dimensions and the location and contents
444 of the clue squares. (Indeed, one might very easily type in a puzzle
445 out of a newspaper without \e{knowing} what its difficulty level is
446 in Solo's terminology.) Therefore. Solo's \cw{encode_params()} only
447 encodes the difficulty level if \c{full} is set.
448
449 \S{backend-decode-params} \cw{decode_params()}
450
451 \c void (*decode_params)(game_params *params, char const *string);
452
453 This function is the inverse of \cw{encode_params()}
454 (\k{backend-encode-params}). It parses the supplied string and fills
455 in the supplied \c{game_params} structure. Note that the structure
456 will \e{already} have been allocated: this function is not expected
457 to create a \e{new} \c{game_params}, but to modify an existing one.
458
459 This function can receive a string which only encodes a subset of
460 the parameters. The most obvious way in which this can happen is if
461 the string was constructed by \cw{encode_params()} with its \c{full}
462 parameter set to \cw{FALSE}; however, it could also happen if the
463 user typed in a parameter set manually and missed something out. Be
464 prepared to deal with a wide range of possibilities.
465
466 When dealing with a parameter which is not specified in the input
467 string, what to do requires a judgment call on the part of the
468 programmer. Sometimes it makes sense to adjust other parameters to
469 bring them into line with the new ones. In Mines, for example, you
470 would probably not want to keep the same mine count if the user
471 dropped the grid size and didn't specify one, since you might easily
472 end up with more mines than would actually fit in the grid! On the
473 other hand, sometimes it makes sense to leave the parameter alone: a
474 Solo player might reasonably expect to be able to configure size and
475 difficulty independently of one another.
476
477 This function currently has no direct means of returning an error if
478 the string cannot be parsed at all. However, the returned
479 \c{game_params} is almost always subsequently passed to
480 \cw{validate_params()} (\k{backend-validate-params}), so if you
481 really want to signal parse errors, you could always have a \c{char
482 *} in your parameters structure which stored an error message, and
483 have \cw{validate_params()} return it if it is non-\cw{NULL}.
484
485 \S{backend-free-params} \cw{free_params()}
486
487 \c void (*free_params)(game_params *params);
488
489 This function frees a \c{game_params} structure, and any subsidiary
490 allocations contained within it.
491
492 \S{backend-dup-params} \cw{dup_params()}
493
494 \c game_params *(*dup_params)(game_params *params);
495
496 This function allocates a new \c{game_params} structure and
497 initialises it with an exact copy of the information in the one
498 provided as input. It returns a pointer to the new duplicate.
499
500 \S{backend-can-configure} \c{can_configure}
501
502 \c int can_configure;
503
504 This boolean data element is set to \cw{TRUE} if the back end
505 supports custom parameter configuration via a dialog box. If it is
506 \cw{TRUE}, then the functions \cw{configure()} and
507 \cw{custom_params()} are expected to work. See \k{backend-configure}
508 and \k{backend-custom-params} for more details.
509
510 \S{backend-configure} \cw{configure()}
511
512 \c config_item *(*configure)(game_params *params);
513
514 This function is called when the user requests a dialog box for
515 custom parameter configuration. It returns a newly allocated array
516 of \cw{config_item} structures, describing the GUI elements required
517 in the dialog box. The array should have one more element than the
518 number of controls, since it is terminated with a \cw{C_END} marker
519 (see below). Each array element describes the control together with
520 its initial value; the front end will modify the value fields and
521 return the updated array to \cw{custom_params()} (see
522 \k{backend-custom-params}).
523
524 The \cw{config_item} structure contains the following elements:
525
526 \c char *name;
527 \c int type;
528 \c char *sval;
529 \c int ival;
530
531 \c{name} is an ASCII string giving the textual label for a GUI
532 control. It is \e{not} expected to be dynamically allocated.
533
534 \c{type} contains one of a small number of \c{enum} values defining
535 what type of control is being described. The meaning of the \c{sval}
536 and \c{ival} fields depends on the value in \c{type}. The valid
537 values are:
538
539 \dt \c{C_STRING}
540
541 \dd Describes a text input box. (This is also used for numeric
542 input. The back end does not bother informing the front end that the
543 box is numeric rather than textual; some front ends do have the
544 capacity to take this into account, but I decided it wasn't worth
545 the extra complexity in the interface.) For this type, \c{ival} is
546 unused, and \c{sval} contains a dynamically allocated string
547 representing the contents of the input box.
548
549 \dt \c{C_BOOLEAN}
550
551 \dd Describes a simple checkbox. For this type, \c{sval} is unused,
552 and \c{ival} is \cw{TRUE} or \cw{FALSE}.
553
554 \dt \c{C_CHOICES}
555
556 \dd Describes a drop-down list presenting one of a small number of
557 fixed choices. For this type, \c{sval} contains a list of strings
558 describing the choices; the very first character of \c{sval} is used
559 as a delimiter when processing the rest (so that the strings
560 \cq{:zero:one:two}, \cq{!zero!one!two} and \cq{xzeroxonextwo} all
561 define a three-element list containing \cq{zero}, \cq{one} and
562 \cq{two}). \c{ival} contains the index of the currently selected
563 element, numbering from zero (so that in the above example, 0 would
564 mean \cq{zero} and 2 would mean \cq{two}).
565
566 \lcont{
567
568 Note that for this control type, \c{sval} is \e{not} dynamically
569 allocated, whereas it was for \c{C_STRING}.
570
571 }
572
573 \dt \c{C_END}
574
575 \dd Marks the end of the array of \c{config_item}s. All other fields
576 are unused.
577
578 The array returned from this function is expected to have filled in
579 the initial values of all the controls according to the input
580 \c{game_params} structure.
581
582 If the game's \c{can_configure} flag is set to \cw{FALSE}, this
583 function is never called and need not do anything at all.
584
585 \S{backend-custom-params} \cw{custom_params()}
586
587 \c game_params *(*custom_params)(config_item *cfg);
588
589 This function is the counterpart to \cw{configure()}
590 (\k{backend-configure}). It receives as input an array of
591 \c{config_item}s which was originally created by \cw{configure()},
592 but in which the control values have since been changed in
593 accordance with user input. Its function is to read the new values
594 out of the controls and return a newly allocated \c{game_params}
595 structure representing the user's chosen parameter set.
596
597 (The front end will have modified the controls' \e{values}, but
598 there will still always be the same set of controls, in the same
599 order, as provided by \cw{configure()}. It is not necessary to check
600 the \c{name} and \c{type} fields, although you could use
601 \cw{assert()} if you were feeling energetic.)
602
603 This function is not expected to (and indeed \e{must not}) free the
604 input \c{config_item} array. (If the parameters fail to validate,
605 the dialog box will stay open.)
606
607 If the game's \c{can_configure} flag is set to \cw{FALSE}, this
608 function is never called and need not do anything at all.
609
610 \S{backend-validate-params} \cw{validate_params()}
611
612 \c char *(*validate_params)(game_params *params, int full);
613
614 This function takes a \c{game_params} structure as input, and checks
615 that the parameters described in it fall within sensible limits. (At
616 the very least, grid dimensions should almost certainly be strictly
617 positive, for example.)
618
619 Return value is \cw{NULL} if no problems were found, or
620 alternatively a (non-dynamically-allocated) ASCII string describing
621 the error in human-readable form.
622
623 If the \c{full} parameter is set, full validation should be
624 performed: any set of parameters which would not permit generation
625 of a sensible puzzle should be faulted. If \c{full} is \e{not} set,
626 the implication is that these parameters are not going to be used
627 for \e{generating} a puzzle; so parameters which can't even sensibly
628 \e{describe} a valid puzzle should still be faulted, but parameters
629 which only affect puzzle generation should not be.
630
631 (The \c{full} option makes a difference when parameter combinations
632 are non-orthogonal. For example, Net has a boolean option
633 controlling whether it enforces a unique solution; it turns out that
634 it's impossible to generate a uniquely soluble puzzle with wrapping
635 walls and width 2, so \cw{validate_params()} will complain if you
636 ask for one. However, if the user had just been playing a unique
637 wrapping puzzle of a more sensible width, and then pastes in a game
638 ID acquired from somebody else which happens to describe a
639 \e{non}-unique wrapping width-2 puzzle, then \cw{validate_params()}
640 will be passed a \c{game_params} containing the width and wrapping
641 settings from the new game ID and the uniqueness setting from the
642 old one. This would be faulted, if it weren't for the fact that
643 \c{full} is not set during this call, so Net ignores the
644 inconsistency. The resulting \c{game_params} is never subsequently
645 used to generate a puzzle; this is a promise made by the mid-end
646 when it asks for a non-full validation.)
647
648 \H{backend-descs} Handling game descriptions
649
650 In this section I present the functions that deal with a textual
651 description of a puzzle, i.e. the part that comes after the colon in
652 a descriptive-format game ID.
653
654 \S{backend-new-desc} \cw{new_desc()}
655
656 \c char *(*new_desc)(game_params *params, random_state *rs,
657 \c                   char **aux, int interactive);
658
659 This function is where all the really hard work gets done. This is
660 the function whose job is to randomly generate a new puzzle,
661 ensuring solubility and uniqueness as appropriate.
662
663 As input it is given a \c{game_params} structure and a random state
664 (see \k{utils-random} for the random number API). It must invent a
665 puzzle instance, encode it in string form, and return a dynamically
666 allocated C string containing that encoding.
667
668 Additionally, it may return a second dynamically allocated string in
669 \c{*aux}. (If it doesn't want to, then it can leave that parameter
670 completely alone; it isn't required to set it to \cw{NULL}, although
671 doing so is harmless.) That string, if present, will be passed to
672 \cw{solve()} (\k{backend-solve}) later on; so if the puzzle is
673 generated in such a way that a solution is known, then information
674 about that solution can be saved in \c{*aux} for \cw{solve()} to
675 use.
676
677 The \c{interactive} parameter should be ignored by almost all
678 puzzles. Its purpose is to distinguish between generating a puzzle
679 within a GUI context for immediate play, and generating a puzzle in
680 a command-line context for saving to be played later. The only
681 puzzle that currently uses this distinction (and, I fervently hope,
682 the only one which will \e{ever} need to use it) is Mines, which
683 chooses a random first-click location when generating puzzles
684 non-interactively, but which waits for the user to place the first
685 click when interactive. If you think you have come up with another
686 puzzle which needs to make use of this parameter, please think for
687 at least ten minutes about whether there is \e{any} alternative!
688
689 Note that game description strings are not required to contain an
690 encoding of parameters such as grid size; a game description is
691 never separated from the \c{game_params} it was generated with, so
692 any information contained in that structure need not be encoded
693 again in the game description.
694
695 \S{backend-validate-desc} \cw{validate_desc()}
696
697 \c char *(*validate_desc)(game_params *params, char *desc);
698
699 This function is given a game description, and its job is to
700 validate that it describes a puzzle which makes sense.
701
702 To some extent it's up to the user exactly how far they take the
703 phrase \q{makes sense}; there are no particularly strict rules about
704 how hard the user is permitted to shoot themself in the foot when
705 typing in a bogus game description by hand. (For example, Rectangles
706 will not verify that the sum of all the numbers in the grid equals
707 the grid's area. So a user could enter a puzzle which was provably
708 not soluble, and the program wouldn't complain; there just wouldn't
709 happen to be any sequence of moves which solved it.)
710
711 The one non-negotiable criterion is that any game description which
712 makes it through \cw{validate_desc()} \e{must not} subsequently
713 cause a crash or an assertion failure when fed to \cw{new_game()}
714 and thence to the rest of the back end.
715
716 The return value is \cw{NULL} on success, or a
717 non-dynamically-allocated C string containing an error message.
718
719 \S{backend-new-game} \cw{new_game()}
720
721 \c game_state *(*new_game)(midend *me, game_params *params,
722 \c                         char *desc);
723
724 This function takes a game description as input, together with its
725 accompanying \c{game_params}, and constructs a \c{game_state}
726 describing the initial state of the puzzle. It returns a newly
727 allocated \c{game_state} structure.
728
729 Almost all puzzles should ignore the \c{me} parameter. It is
730 required by Mines, which needs it for later passing to
731 \cw{midend_supersede_game_desc()} (see \k{backend-supersede}) once
732 the user has placed the first click. I fervently hope that no other
733 puzzle will be awkward enough to require it, so everybody else
734 should ignore it. As with the \c{interactive} parameter in
735 \cw{new_desc()} (\k{backend-new-desc}), if you think you have a
736 reason to need this parameter, please try very hard to think of an
737 alternative approach!
738
739 \H{backend-states} Handling game states
740
741 This section describes the functions which create and destroy
742 \c{game_state} structures.
743
744 (Well, except \cw{new_game()}, which is in \k{backend-new-game}
745 instead of under here; but it deals with game descriptions \e{and}
746 game states and it had to go in one section or the other.)
747
748 \S{backend-dup-game} \cw{dup_game()}
749
750 \c game_state *(*dup_game)(game_state *state);
751
752 This function allocates a new \c{game_state} structure and
753 initialises it with an exact copy of the information in the one
754 provided as input. It returns a pointer to the new duplicate.
755
756 \S{backend-free-game} \cw{free_game()}
757
758 \c void (*free_game)(game_state *state);
759
760 This function frees a \c{game_state} structure, and any subsidiary
761 allocations contained within it.
762
763 \H{backend-ui} Handling \c{game_ui}
764
765 \S{backend-new-ui} \cw{new_ui()}
766
767 \c game_ui *(*new_ui)(game_state *state);
768
769 This function allocates and returns a new \c{game_ui} structure for
770 playing a particular puzzle. It is passed a pointer to the initial
771 \c{game_state}, in case it needs to refer to that when setting up
772 the initial values for the new game.
773
774 \S{backend-free-ui} \cw{free_ui()}
775
776 \c void (*free_ui)(game_ui *ui);
777
778 This function frees a \c{game_ui} structure, and any subsidiary
779 allocations contained within it.
780
781 \S{backend-encode-ui} \cw{encode_ui()}
782
783 \c char *(*encode_ui)(game_ui *ui);
784
785 This function encodes any \e{important} data in a \c{game_ui}
786 structure in string form. It is only called when saving a
787 half-finished game to a file.
788
789 It should be used sparingly. Almost all data in a \c{game_ui} is not
790 important enough to save. The location of the keyboard-controlled
791 cursor, for example, can be reset to a default position on reloading
792 the game without impacting the user experience. If the user should
793 somehow manage to save a game while a mouse drag was in progress,
794 then discarding that mouse drag would be an outright \e{feature},
795
796 A typical thing that \e{would} be worth encoding in this function is
797 the Mines death counter: it's in the \c{game_ui} rather than the
798 \c{game_state} because it's too important to allow the user to
799 revert it by using Undo, and therefore it's also too important to
800 allow the user to revert it by saving and reloading. (Of course, the
801 user could edit the save file by hand... But if the user is \e{that}
802 determined to cheat, they could just as easily modify the game's
803 source.)
804
805 \S{backend-decode-ui} \cw{decode_ui()}
806
807 \c void (*decode_ui)(game_ui *ui, char *encoding);
808
809 This function parses a string previously output by \cw{encode_ui()},
810 and writes the decoded data back into the provided \c{game_ui}
811 structure.
812
813 \S{backend-changed-state} \cw{changed_state()}
814
815 \c void (*changed_state)(game_ui *ui, game_state *oldstate,
816 \c                       game_state *newstate);
817
818 This function is called by the mid-end whenever the current game
819 state changes, for any reason. Those reasons include:
820
821 \b a fresh move being made by \cw{interpret_move()} and
822 \cw{execute_move()}
823
824 \b a solve operation being performed by \cw{solve()} and
825 \cw{execute_move()}
826
827 \b the user moving back and forth along the undo list by means of
828 the Undo and Redo operations
829
830 \b the user selecting Restart to go back to the initial game state.
831
832 The job of \cw{changed_state()} is to update the \c{game_ui} for
833 consistency with the new game state, if any update is necessary. For
834 example, Same Game stores data about the currently selected tile
835 group in its \c{game_ui}, and this data is intrinsically related to
836 the game state it was derived from. So it's very likely to become
837 invalid when the game state changes; thus, Same Game's
838 \cw{changed_state()} function clears the current selection whenever
839 it is called.
840
841 When \cw{anim_length()} or \cw{flash_length()} are called, you can
842 be sure that there has been a previous call to \cw{changed_state()}.
843 So \cw{changed_state()} can set up data in the \c{game_ui} which will
844 be read by \cw{anim_length()} and \cw{flash_length()}, and those
845 functions will not have to worry about being called without the data
846 having been initialised.
847
848 \H{backend-moves} Making moves
849
850 This section describes the functions which actually make moves in
851 the game: that is, the functions which process user input and end up
852 producing new \c{game_state}s.
853
854 \S{backend-interpret-move} \cw{interpret_move()}
855
856 \c char *(*interpret_move)(game_state *state, game_ui *ui,
857 \c                         game_drawstate *ds,
858 \c                         int x, int y, int button);
859
860 This function receives user input and processes it. Its input
861 parameters are the current \c{game_state}, the current \c{game_ui}
862 and the current \c{game_drawstate}, plus details of the input event.
863 \c{button} is either an ASCII value or a special code (listed below)
864 indicating an arrow or function key or a mouse event; when
865 \c{button} is a mouse event, \c{x} and \c{y} contain the pixel
866 coordinates of the mouse pointer relative to the top left of the
867 puzzle's drawing area.
868
869 \cw{interpret_move()} may return in three different ways:
870
871 \b Returning \cw{NULL} indicates that no action whatsoever occurred
872 in response to the input event; the puzzle was not interested in it
873 at all.
874
875 \b Returning the empty string (\cw{""}) indicates that the input
876 event has resulted in a change being made to the \c{game_ui} which
877 will require a redraw of the game window, but that no actual
878 \e{move} was made (i.e. no new \c{game_state} needs to be created).
879
880 \b Returning anything else indicates that a move was made and that a
881 new \c{game_state} must be created. However, instead of actually
882 constructing a new \c{game_state} itself, this function is required
883 to return a string description of the details of the move. This
884 string will be passed to \cw{execute_move()}
885 (\k{backend-execute-move}) to actually create the new
886 \c{game_state}. (Encoding moves as strings in this way means that
887 the mid-end can keep the strings as well as the game states, and the
888 strings can be written to disk when saving the game and fed to
889 \cw{execute_move()} again on reloading.)
890
891 The return value from \cw{interpret_move()} is expected to be
892 dynamically allocated if and only if it is not either \cw{NULL}
893 \e{or} the empty string.
894
895 After this function is called, the back end is permitted to rely on
896 some subsequent operations happening in sequence:
897
898 \b \cw{execute_move()} will be called to convert this move
899 description into a new \c{game_state}
900
901 \b \cw{changed_state()} will be called with the new \c{game_state}.
902
903 This means that if \cw{interpret_move()} needs to do updates to the
904 \c{game_ui} which are easier to perform by referring to the new
905 \c{game_state}, it can safely leave them to be done in
906 \cw{changed_state()} and not worry about them failing to happen.
907
908 (Note, however, that \cw{execute_move()} may \e{also} be called in
909 other circumstances. It is only \cw{interpret_move()} which can rely
910 on a subsequent call to \cw{changed_state()}.)
911
912 The special key codes supported by this function are:
913
914 \dt \cw{LEFT_BUTTON}, \cw{MIDDLE_BUTTON}, \cw{RIGHT_BUTTON}
915
916 \dd Indicate that one of the mouse buttons was pressed down.
917
918 \dt \cw{LEFT_DRAG}, \cw{MIDDLE_DRAG}, \cw{RIGHT_DRAG}
919
920 \dd Indicate that the mouse was moved while one of the mouse buttons
921 was still down. The mid-end guarantees that when one of these events
922 is received, it will always have been preceded by a button-down
923 event (and possibly other drag events) for the same mouse button,
924 and no event involving another mouse button will have appeared in
925 between.
926
927 \dt \cw{LEFT_RELEASE}, \cw{MIDDLE_RELEASE}, \cw{RIGHT_RELEASE}
928
929 \dd Indicate that a mouse button was released.  The mid-end
930 guarantees that when one of these events is received, it will always
931 have been preceded by a button-down event (and possibly some drag
932 events) for the same mouse button, and no event involving another
933 mouse button will have appeared in between.
934
935 \dt \cw{CURSOR_UP}, \cw{CURSOR_DOWN}, \cw{CURSOR_LEFT},
936 \cw{CURSOR_RIGHT}
937
938 \dd Indicate that an arrow key was pressed.
939
940 \dt \cw{CURSOR_SELECT}
941
942 \dd On platforms which have a prominent \q{select} button alongside
943 their cursor keys, indicates that that button was pressed.
944
945 In addition, there are some modifiers which can be bitwise-ORed into
946 the \c{button} parameter:
947
948 \dt \cw{MOD_CTRL}, \cw{MOD_SHFT}
949
950 \dd These indicate that the Control or Shift key was pressed
951 alongside the key. They only apply to the cursor keys, not to mouse
952 buttons or anything else.
953
954 \dt \cw{MOD_NUM_KEYPAD}
955
956 \dd This applies to some ASCII values, and indicates that the key
957 code was input via the numeric keypad rather than the main keyboard.
958 Some puzzles may wish to treat this differently (for example, a
959 puzzle might want to use the numeric keypad as an eight-way
960 directional pad), whereas others might not (a game involving numeric
961 input probably just wants to treat the numeric keypad as numbers).
962
963 \dt \cw{MOD_MASK}
964
965 \dd This mask is the bitwise OR of all the available modifiers; you
966 can bitwise-AND with \cw{~MOD_MASK} to strip all the modifiers off
967 any input value.
968
969 \S{backend-execute-move} \cw{execute_move()}
970
971 \c game_state *(*execute_move)(game_state *state, char *move);
972
973 This function takes an input \c{game_state} and a move string as
974 output from \cw{interpret_move()}. It returns a newly allocated
975 \c{game_state} which contains the result of applying the specified
976 move to the input game state.
977
978 This function may return \cw{NULL} if it cannot parse the move
979 string (and this is definitely preferable to crashing or failing an
980 assertion, since one way this can happen is if loading a corrupt
981 save file). However, it must not return \cw{NULL} for any move
982 string that really was output from \cw{interpret_move()}: this is
983 punishable by assertion failure in the mid-end.
984
985 \S{backend-can-solve} \c{can_solve}
986
987 \c int can_solve;
988
989 This boolean field is set to \cw{TRUE} if the game's \cw{solve()}
990 function does something. If it's set to \cw{FALSE}, the game will
991 not even offer the \q{Solve} menu option.
992
993 \S{backend-solve} \cw{solve()}
994
995 \c char *(*solve)(game_state *orig, game_state *curr,
996 \c                char *aux, char **error);
997
998 This function is called when the user selects the \q{Solve} option
999 from the menu.
1000
1001 It is passed two input game states: \c{orig} is the game state from
1002 the very start of the puzzle, and \c{curr} is the current one.
1003 (Different games find one or other or both of these convenient.) It
1004 is also passed the \c{aux} string saved by \cw{new_desc()}
1005 (\k{backend-new-desc}), in case that encodes important information
1006 needed to provide the solution.
1007
1008 If this function is unable to produce a solution (perhaps, for
1009 example, the game has no in-built solver so it can only solve
1010 puzzles it invented internally and has an \c{aux} string for) then
1011 it may return \cw{NULL}. If it does this, it must also set
1012 \c{*error} to an error message to be presented to the user (such as
1013 \q{Solution not known for this puzzle}); that error message is not
1014 expected to be dynamically allocated.
1015
1016 If this function \e{does} produce a solution, it returns a move
1017 string suitable for feeding to \cw{execute_move()}
1018 (\k{backend-execute-move}).
1019
1020 \H{backend-drawing} Drawing the game graphics
1021
1022 This section discusses the back end functions that deal with
1023 drawing.
1024
1025 \S{backend-new-drawstate} \cw{new_drawstate()}
1026
1027 \c game_drawstate *(*new_drawstate)(drawing *dr, game_state *state);
1028
1029 This function allocates and returns a new \c{game_drawstate}
1030 structure for drawing a particular puzzle. It is passed a pointer to
1031 a \c{game_state}, in case it needs to refer to that when setting up
1032 any initial data.
1033
1034 This function may not rely on the puzzle having been newly started;
1035 a new draw state can be constructed at any time if the front end
1036 requests a forced redraw. For games like Pattern, in which initial
1037 game states are much simpler than general ones, this might be
1038 important to keep in mind.
1039
1040 The parameter \c{dr} is a drawing object (see \k{drawing}) which the
1041 function might need to use to allocate blitters. (However, this
1042 isn't recommended; it's usually more sensible to wait to allocate a
1043 blitter until \cw{set_size()} is called, because that way you can
1044 tailor it to the scale at which the puzzle is being drawn.)
1045
1046 \S{backend-free-drawstate} \cw{free_drawstate()}
1047
1048 \c void (*free_drawstate)(drawing *dr, game_drawstate *ds);
1049
1050 This function frees a \c{game_drawstate} structure, and any
1051 subsidiary allocations contained within it.
1052
1053 The parameter \c{dr} is a drawing object (see \k{drawing}), which
1054 might be required if you are freeing a blitter.
1055
1056 \S{backend-preferred-tilesize} \c{preferred_tilesize}
1057
1058 \c int preferred_tilesize;
1059
1060 Each game is required to define a single integer parameter which
1061 expresses, in some sense, the scale at which it is drawn. This is
1062 described in the APIs as \cq{tilesize}, since most puzzles are on a
1063 square (or possibly triangular or hexagonal) grid and hence a
1064 sensible interpretation of this parameter is to define it as the
1065 size of one grid tile in pixels; however, there's no actual
1066 requirement that the \q{tile size} be proportional to the game
1067 window size. Window size is required to increase monotonically with
1068 \q{tile size}, however.
1069
1070 The data element \c{preferred_tilesize} indicates the tile size
1071 which should be used in the absence of a good reason to do otherwise
1072 (such as the screen being too small, or the user explicitly
1073 requesting a resize if that ever gets implemented).
1074
1075 \S{backend-compute-size} \cw{compute_size()}
1076
1077 \c void (*compute_size)(game_params *params, int tilesize,
1078 \c                      int *x, int *y);
1079
1080 This function is passed a \c{game_params} structure and a tile size.
1081 It returns, in \c{*x} and \c{*y}, the size in pixels of the drawing
1082 area that would be required to render a puzzle with those parameters
1083 at that tile size.
1084
1085 \S{backend-set-size} \cw{set_size()}
1086
1087 \c void (*set_size)(drawing *dr, game_drawstate *ds,
1088 \c                  game_params *params, int tilesize);
1089
1090 This function is responsible for setting up a \c{game_drawstate} to
1091 draw at a given tile size. Typically this will simply involve
1092 copying the supplied \c{tilesize} parameter into a \c{tilesize}
1093 field inside the draw state; for some more complex games it might
1094 also involve setting up other dimension fields, or possibly
1095 allocating a blitter (see \k{drawing-blitter}).
1096
1097 The parameter \c{dr} is a drawing object (see \k{drawing}), which is
1098 required if a blitter needs to be allocated.
1099
1100 \S{backend-colours} \cw{colours()}
1101
1102 \c float *(*colours)(frontend *fe, game_state *state, int *ncolours);
1103
1104 This function is responsible for telling the front end what colours
1105 the puzzle will need to draw itself.
1106
1107 It returns the number of colours required in \c{*ncolours}, and the
1108 return value from the function itself is a dynamically allocated
1109 array of three times that many \c{float}s, containing the red, green
1110 and blue components of each colour respectively as numbers in the
1111 range [0,1].
1112
1113 It is passed a sample \c{game_state} in case it needs one, although
1114 currently no puzzle does need this. (In fact, colours are not
1115 reallocated when the game parameters change or a new game is
1116 started, so you can't reliably use this \c{game_state} to allocate a
1117 different number of colours depending on the game. It is probably
1118 actually a mistake to rely on this parameter at all. I ought to
1119 either remove it or fix it; probably the former.)
1120
1121 The final parameter passed to this function is a front end handle.
1122 The only things it is permitted to do with this handle are to call
1123 the front-end function called \cw{frontend_default_colour()} (see
1124 \k{frontend-default-colour}) or the utility function called
1125 \cw{game_mkhighlight()} (see \k{utils-game-mkhighlight}). (The
1126 latter is a wrapper on the former, so front end implementors only
1127 need to provide \cw{frontend_default_colour()}.) This allows
1128 \cw{colours()} to take local configuration into account when
1129 deciding on its own colour allocations. Most games use the front
1130 end's default colour as their background, apart from a few which
1131 depend on drawing relief highlights so they adjust the background
1132 colour if it's too light for highlights to show up against it.
1133
1134 Note that the colours returned from this function are for
1135 \e{drawing}, not for printing. Printing has an entirely different
1136 colour allocation policy.
1137
1138 \S{backend-anim-length} \cw{anim_length()}
1139
1140 \c float (*anim_length)(game_state *oldstate, game_state *newstate,
1141 \c                      int dir, game_ui *ui);
1142
1143 This function is called when a move is made, undone or redone. It is
1144 given the old and the new \c{game_state}, and its job is to decide
1145 whether the transition between the two needs to be animated or can
1146 be instant.
1147
1148 \c{oldstate} is the state that was current until this call;
1149 \c{newstate} is the state that will be current after it. \c{dir}
1150 specifies the chronological order of those states: if it is
1151 positive, then the transition is the result of a move or a redo (and
1152 so \c{newstate} is the later of the two moves), whereas if it is
1153 negative then the transition is the result of an undo (so that
1154 \c{newstate} is the \e{earlier} move).
1155
1156 If this function decides the transition should be animated, it
1157 returns the desired length of the animation in seconds. If not, it
1158 returns zero.
1159
1160 State changes as a result of a Restart operation are never animated;
1161 the mid-end will handle them internally and never consult this
1162 function at all. State changes as a result of Solve operations are
1163 also not animated by default, although you can change this for a
1164 particular game by setting a flag in \c{mouse_priorities}
1165 (\k{backend-mouse-priorities}).
1166
1167 The function is also passed a pointer to the local \c{game_ui}. It
1168 may refer to information in here to help with its decision (see
1169 \k{writing-conditional-anim} for an example of this), and/or it may
1170 \e{write} information about the nature of the animation which will
1171 be read later by \cw{redraw()}.
1172
1173 When this function is called, it may rely on \cw{changed_state()}
1174 having been called previously, so if \cw{anim_length()} needs to
1175 refer to information in the \c{game_ui}, then \cw{changed_state()}
1176 is a reliable place to have set that information up.
1177
1178 Move animations do not inhibit further input events. If the user
1179 continues playing before a move animation is complete, the animation
1180 will be abandoned and the display will jump straight to the final
1181 state.
1182
1183 \S{backend-flash-length} \cw{flash_length()}
1184
1185 \c float (*flash_length)(game_state *oldstate, game_state *newstate,
1186 \c                       int dir, game_ui *ui);
1187
1188 This function is called when a move is completed. (\q{Completed}
1189 means that not only has the move been made, but any animation which
1190 accompanied it has finished.) It decides whether the transition from
1191 \c{oldstate} to \c{newstate} merits a \q{flash}.
1192
1193 A flash is much like a move animation, but it is \e{not} interrupted
1194 by further user interface activity; it runs to completion in
1195 parallel with whatever else might be going on on the display. The
1196 only thing which will rush a flash to completion is another flash.
1197
1198 The purpose of flashes is to indicate that the game has been
1199 completed. They were introduced as a separate concept from move
1200 animations because of Net: the habit of most Net players (and
1201 certainly me) is to rotate a tile into place and immediately lock
1202 it, then move on to another tile. When you make your last move, at
1203 the instant the final tile is rotated into place the screen starts
1204 to flash to indicate victory \dash but if you then press the lock
1205 button out of habit, then the move animation is cancelled, and the
1206 victory flash does not complete. (And if you \e{don't} press the
1207 lock button, the completed grid will look untidy because there will
1208 be one unlocked square.) Therefore, I introduced a specific concept
1209 of a \q{flash} which is separate from a move animation and can
1210 proceed in parallel with move animations and any other display
1211 activity, so that the victory flash in Net is not cancelled by that
1212 final locking move.
1213
1214 The input parameters to \cw{flash_length()} are exactly the same as
1215 the ones to \cw{anim_length()}.
1216
1217 Just like \cw{anim_length()}, when this function is called, it may
1218 rely on \cw{changed_state()} having been called previously, so if it
1219 needs to refer to information in the \c{game_ui} then
1220 \cw{changed_state()} is a reliable place to have set that
1221 information up.
1222
1223 (Some games use flashes to indicate defeat as well as victory;
1224 Mines, for example, flashes in a different colour when you tread on
1225 a mine from the colour it uses when you complete the game. In order
1226 to achieve this, its \cw{flash_length()} function has to store a
1227 flag in the \c{game_ui} to indicate which flash type is required.)
1228
1229 \S{backend-redraw} \cw{redraw()}
1230
1231 \c void (*redraw)(drawing *dr, game_drawstate *ds,
1232 \c                game_state *oldstate, game_state *newstate, int dir,
1233 \c                game_ui *ui, float anim_time, float flash_time);
1234
1235 This function is responsible for actually drawing the contents of
1236 the game window, and for redrawing every time the game state or the
1237 \c{game_ui} changes.
1238
1239 The parameter \c{dr} is a drawing object which may be passed to the
1240 drawing API functions (see \k{drawing} for documentation of the
1241 drawing API). This function may not save \c{dr} and use it
1242 elsewhere; it must only use it for calling back to the drawing API
1243 functions within its own lifetime.
1244
1245 \c{ds} is the local \c{game_drawstate}, of course, and \c{ui} is the
1246 local \c{game_ui}.
1247
1248 \c{newstate} is the semantically-current game state, and is always
1249 non-\cw{NULL}. If \c{oldstate} is also non-\cw{NULL}, it means that
1250 a move has recently been made and the game is still in the process
1251 of displaying an animation linking the old and new states; in this
1252 situation, \c{anim_time} will give the length of time (in seconds)
1253 that the animation has already been running. If \c{oldstate} is
1254 \cw{NULL}, then \c{anim_time} is unused (and will hopefully be set
1255 to zero to avoid confusion).
1256
1257 \c{flash_time}, if it is is non-zero, denotes that the game is in
1258 the middle of a flash, and gives the time since the start of the
1259 flash. See \k{backend-flash-length} for general discussion of
1260 flashes.
1261
1262 The very first time this function is called for a new
1263 \c{game_drawstate}, it is expected to redraw the \e{entire} drawing
1264 area. Since this often involves drawing visual furniture which is
1265 never subsequently altered, it is often simplest to arrange this by
1266 having a special \q{first time} flag in the draw state, and
1267 resetting it after the first redraw.
1268
1269 When this function (or any subfunction) calls the drawing API, it is
1270 expected to pass colour indices which were previously defined by the
1271 \cw{colours()} function.
1272
1273 \H{backend-printing} Printing functions
1274
1275 This section discusses the back end functions that deal with
1276 printing puzzles out on paper.
1277
1278 \S{backend-can-print} \c{can_print}
1279
1280 \c int can_print;
1281
1282 This flag is set to \cw{TRUE} if the puzzle is capable of printing
1283 itself on paper. (This makes sense for some puzzles, such as Solo,
1284 which can be filled in with a pencil. Other puzzles, such as
1285 Twiddle, inherently involve moving things around and so would not
1286 make sense to print.)
1287
1288 If this flag is \cw{FALSE}, then the functions \cw{print_size()}
1289 and \cw{print()} will never be called.
1290
1291 \S{backend-can-print-in-colour} \c{can_print_in_colour}
1292
1293 \c int can_print_in_colour;
1294
1295 This flag is set to \cw{TRUE} if the puzzle is capable of printing
1296 itself differently when colour is available. For example, Map can
1297 actually print coloured regions in different \e{colours} rather than
1298 resorting to cross-hatching.
1299
1300 If the \c{can_print} flag is \cw{FALSE}, then this flag will be
1301 ignored.
1302
1303 \S{backend-print-size} \cw{print_size()}
1304
1305 \c void (*print_size)(game_params *params, float *x, float *y);
1306
1307 This function is passed a \c{game_params} structure and a tile size.
1308 It returns, in \c{*x} and \c{*y}, the preferred size in
1309 \e{millimetres} of that puzzle if it were to be printed out on paper.
1310
1311 If the \c{can_print} flag is \cw{FALSE}, this function will never be
1312 called.
1313
1314 \S{backend-print} \cw{print()}
1315
1316 \c void (*print)(drawing *dr, game_state *state, int tilesize);
1317
1318 This function is called when a puzzle is to be printed out on paper.
1319 It should use the drawing API functions (see \k{drawing}) to print
1320 itself.
1321
1322 This function is separate from \cw{redraw()} because it is often
1323 very different:
1324
1325 \b The printing function may not depend on pixel accuracy, since
1326 printer resolution is variable. Draw as if your canvas had infinite
1327 resolution.
1328
1329 \b The printing function sometimes needs to display things in a
1330 completely different style. Net, for example, is very different as
1331 an on-screen puzzle and as a printed one.
1332
1333 \b The printing function is often much simpler since it has no need
1334 to deal with repeated partial redraws.
1335
1336 However, there's no reason the printing and redraw functions can't
1337 share some code if they want to.
1338
1339 When this function (or any subfunction) calls the drawing API, the
1340 colour indices it passes should be colours which have been allocated
1341 by the \cw{print_*_colour()} functions within this execution of
1342 \cw{print()}. This is very different from the fixed small number of
1343 colours used in \cw{redraw()}, because printers do not have a
1344 limitation on the total number of colours that may be used. Some
1345 puzzles' printing functions might wish to allocate only one \q{ink}
1346 colour and use it for all drawing; others might wish to allocate
1347 \e{more} colours than are used on screen.
1348
1349 One possible colour policy worth mentioning specifically is that a
1350 puzzle's printing function might want to allocate the \e{same}
1351 colour indices as are used by the redraw function, so that code
1352 shared between drawing and printing does not have to keep switching
1353 its colour indices. In order to do this, the simplest thing is to
1354 make use of the fact that colour indices returned from
1355 \cw{print_*_colour()} are guaranteed to be in increasing order from
1356 zero. So if you have declared an \c{enum} defining three colours
1357 \cw{COL_BACKGROUND}, \cw{COL_THIS} and \cw{COL_THAT}, you might then
1358 write
1359
1360 \c int c;
1361 \c c = print_mono_colour(dr, 1); assert(c == COL_BACKGROUND);
1362 \c c = print_mono_colour(dr, 0); assert(c == COL_THIS);
1363 \c c = print_mono_colour(dr, 0); assert(c == COL_THAT);
1364
1365 If the \c{can_print} flag is \cw{FALSE}, this function will never be
1366 called.
1367
1368 \H{backend-misc} Miscellaneous
1369
1370 \S{backend-can-format-as-text} \c{can_format_as_text}
1371
1372 \c int can_format_as_text;
1373
1374 This boolean field is \cw{TRUE} if the game supports formatting a
1375 game state as ASCII text (typically ASCII art) for copying to the
1376 clipboard and pasting into other applications. If it is \cw{FALSE},
1377 front ends will not offer the \q{Copy} command at all.
1378
1379 If this field is \cw{FALSE}, the function \cw{text_format()}
1380 (\k{backend-text-format}) is not expected to do anything at all.
1381
1382 \S{backend-text-format} \cw{text_format()}
1383
1384 \c char *(*text_format)(game_state *state);
1385
1386 This function is passed a \c{game_state}, and returns a newly
1387 allocated C string containing an ASCII representation of that game
1388 state. It is used to implement the \q{Copy} operation in many front
1389 ends.
1390
1391 This function should only be called if the back end field
1392 \c{can_format_as_text} (\k{backend-can-format-as-text}) is
1393 \cw{TRUE}.
1394
1395 The returned string may contain line endings (and will probably want
1396 to), using the normal C internal \cq{\\n} convention. For
1397 consistency between puzzles, all multi-line textual puzzle
1398 representations should \e{end} with a newline as well as containing
1399 them internally. (There are currently no puzzles which have a
1400 one-line ASCII representation, so there's no precedent yet for
1401 whether that should come with a newline or not.)
1402
1403 \S{backend-wants-statusbar} \cw{wants_statusbar()}
1404
1405 \c int (*wants_statusbar)(void);
1406
1407 This function returns \cw{TRUE} if the puzzle has a use for a
1408 textual status line (to display score, completion status, currently
1409 active tiles, etc).
1410
1411 (This should probably be a static boolean field rather than a
1412 function. I don't remember why I did it this way. I probably ought
1413 to change it.)
1414
1415 \S{backend-is-timed} \c{is_timed}
1416
1417 \c int is_timed;
1418
1419 This boolean field is \cw{TRUE} if the puzzle is time-critical. If
1420 so, the mid-end will maintain a game timer while the user plays.
1421
1422 If this field is \cw{FALSE}, then \cw{timing_state()} will never be
1423 called and need not do anything.
1424
1425 \S{backend-timing-state} \cw{timing_state()}
1426
1427 \c int (*timing_state)(game_state *state, game_ui *ui);
1428
1429 This function is passed the current \c{game_state} and the local
1430 \c{game_ui}; it returns \cw{TRUE} if the game timer should currently
1431 be running.
1432
1433 A typical use for the \c{game_ui} in this function is to note when
1434 the game was first completed (by setting a flag in
1435 \cw{changed_state()} \dash see \k{backend-changed-state}), and
1436 freeze the timer thereafter so that the user can undo back through
1437 their solution process without altering their time.
1438
1439 \S{backend-mouse-priorities} \c{mouse_priorities}
1440
1441 \c int mouse_priorities;
1442
1443 This field is badly named. It is in fact a generic flags word. It
1444 consists of the bitwise OR of the following flags:
1445
1446 \dt \cw{BUTTON_BEATS(x,y)}
1447
1448 \dd Given any \cw{x} and \cw{y} from the set (\cw{LEFT_BUTTON},
1449 \cw{MIDDLE_BUTTON}, \cw{RIGHT_BUTTON}), this macro evaluates to a
1450 bit flag which indicates that when buttons \cw{x} and \cw{y} are
1451 both pressed simultaneously, the mid-end should consider \cw{x} to
1452 have priority. (In the absence of any such flags, the mid-end will
1453 always consider the most recently pressed button to have priority.)
1454
1455 \dt \cw{SOLVE_ANIMATES}
1456
1457 \dd This flag indicates that moves generated by \cw{solve()}
1458 (\k{backend-solve}) are candidates for animation just like any other
1459 move. For most games, solve moves should not be animated, so the
1460 mid-end doesn't even bother calling \cw{anim_length()}
1461 (\k{backend-anim-length}), thus saving some special-case code in
1462 each game. On the rare occasion that animated solve moves are
1463 actually required, you can set this flag.
1464
1465 \H{backend-initiative} Things a back end may do on its own initiative
1466
1467 This section describes a couple of things that a back end may choose
1468 to do by calling functions elsewhere in the program, which would not
1469 otherwise be obvious.
1470
1471 \S{backend-newrs} Create a random state
1472
1473 If a back end needs random numbers at some point during normal play,
1474 it can create a fresh \c{random_state} by first calling
1475 \c{get_random_seed} (\k{frontend-get-random-seed}) and then passing
1476 the returned seed data to \cw{random_init()}.
1477
1478 This is likely not to be what you want. If a puzzle needs randomness
1479 in the middle of play, it's likely to be more sensible to store some
1480 sort of random state within the \e{game_state}, so that the random
1481 numbers are tied to the particular game state and hence the player
1482 can't simply keep undoing their move until they get numbers they
1483 like better.
1484
1485 This facility is currently used only in Net, to implement the
1486 \q{jumble} command, which sets every unlocked tile to a new random
1487 orientation. This randomness \e{is} a reasonable use of the feature,
1488 because it's non-adversarial \dash there's no advantage to the user
1489 in getting different random numbers.
1490
1491 \S{backend-supersede} Supersede its own game description
1492
1493 In response to a move, a back end is (reluctantly) permitted to call
1494 \cw{midend_supersede_game_desc()}:
1495
1496 \c void midend_supersede_game_desc(midend *me,
1497 \c                                 char *desc, char *privdesc);
1498
1499 When the user selects \q{New Game}, the mid-end calls
1500 \cw{new_desc()} (\k{backend-new-desc}) to get a new game
1501 description, and (as well as using that to generate an initial game
1502 state) stores it for the save file and for telling to the user. The
1503 function above overwrites that game description, and also splits it
1504 in two. \c{desc} becomes the new game description which is provided
1505 to the user on request, and is also the one used to construct a new
1506 initial game state if the user selects \q{Restart}. \c{privdesc} is
1507 a \q{private} game description, used to reconstruct the game's
1508 initial state when reloading.
1509
1510 The distinction between the two, as well as the need for this
1511 function at all, comes from Mines. Mines begins with a blank grid
1512 and no idea of where the mines actually are; \cw{new_desc()} does
1513 almost no work in interactive mode, and simply returns a string
1514 encoding the \c{random_state}. When the user first clicks to open a
1515 tile, \e{then} Mines generates the mine positions, in such a way
1516 that the game is soluble from that starting point. Then it uses this
1517 function to supersede the random-state game description with a
1518 proper one. But it needs two: one containing the initial click
1519 location (because that's what you want to happen if you restart the
1520 game, and also what you want to send to a friend so that they play
1521 \e{the same game} as you), and one without the initial click
1522 location (because when you save and reload the game, you expect to
1523 see the same blank initial state as you had before saving).
1524
1525 I should stress again that this function is a horrid hack. Nobody
1526 should use it if they're not Mines; if you think you need to use it,
1527 think again repeatedly in the hope of finding a better way to do
1528 whatever it was you needed to do.
1529
1530 \C{drawing} The drawing API
1531
1532 The back end function \cw{redraw()} (\k{backend-redraw}) is required
1533 to draw the puzzle's graphics on the window's drawing area, or on
1534 paper if the puzzle is printable. To do this portably, it is
1535 provided with a drawing API allowing it to talk directly to the
1536 front end. In this chapter I document that API, both for the benefit
1537 of back end authors trying to use it and for front end authors
1538 trying to implement it.
1539
1540 The drawing API as seen by the back end is a collection of global
1541 functions, each of which takes a pointer to a \c{drawing} structure
1542 (a \q{drawing object}). These objects are supplied as parameters to
1543 the back end's \cw{redraw()} and \cw{print()} functions.
1544
1545 In fact these global functions are not implemented directly by the
1546 front end; instead, they are implemented centrally in \c{drawing.c}
1547 and form a small piece of middleware. The drawing API as supplied by
1548 the front end is a structure containing a set of function pointers,
1549 plus a \cq{void *} handle which is passed to each of those
1550 functions. This enables a single front end to switch between
1551 multiple implementations of the drawing API if necessary. For
1552 example, the Windows API supplies a printing mechanism integrated
1553 into the same GDI which deals with drawing in windows, and therefore
1554 it is likely (although as yet unimplemented in Puzzles) that the
1555 same API implementation can handle both drawing and printing; but on
1556 Unix, the most common way for applications to print is by producing
1557 PostScript output directly, and although it would be \e{possible} to
1558 write a single (say) \cw{draw_rect()} function which checked a
1559 global flag to decide whether to do GTK drawing operations or output
1560 PostScript to a file, it's much nicer to have two separate functions
1561 and switch between them as appropriate.
1562
1563 When drawing, the puzzle window is indexed by pixel coordinates,
1564 with the top left pixel defined as \cw{(0,0)} and the bottom right
1565 pixel \cw{(w-1,h-1)}, where \c{w} and \c{h} are the width and height
1566 values returned by the back end function \cw{compute_size()}
1567 (\k{backend-compute-size}).
1568
1569 When printing, the puzzle's print area is indexed in exactly the
1570 same way (with an arbitrary tile size provided by the printing
1571 module \c{printing.c}), to facilitate sharing of code between the
1572 drawing and printing routines. However, when printing, puzzles may
1573 no longer assume that the coordinate unit has any relationship to a
1574 pixel; the printer's actual resolution might very well not even be
1575 known at print time, so the coordinate unit might be smaller or
1576 larger than a pixel. Puzzles' print functions should restrict
1577 themselves to drawing geometric shapes rather than fiddly pixel
1578 manipulation.
1579
1580 \e{Puzzles' redraw functions may assume that the surface they draw
1581 on is persistent}. It is the responsibility of every front end to
1582 preserve the puzzle's window contents in the face of GUI window
1583 expose issues and similar. It is not permissible to request the back
1584 end redraw any part of a window that it has already drawn, unless
1585 something has actually changed as a result of making moves in the
1586 puzzle.
1587
1588 Most front ends accomplish this by having the drawing routines draw
1589 on a stored bitmap rather than directly on the window, and copying
1590 the bitmap to the window every time a part of the window needs to be
1591 redrawn. Therefore, it is vitally important that whenever the back
1592 end does any drawing it informs the front end of which parts of the
1593 window it has accessed, and hence which parts need repainting. This
1594 is done by calling \cw{draw_update()} (\k{drawing-draw-update}).
1595
1596 In the following sections I first discuss the drawing API as seen by
1597 the back end, and then the \e{almost} identical function-pointer
1598 form seen by the front end.
1599
1600 \H{drawing-backend} Drawing API as seen by the back end
1601
1602 This section documents the back-end drawing API, in the form of
1603 functions which take a \c{drawing} object as an argument.
1604
1605 \S{drawing-draw-rect} \cw{draw_rect()}
1606
1607 \c void draw_rect(drawing *dr, int x, int y, int w, int h,
1608 \c                int colour);
1609
1610 Draws a filled rectangle in the puzzle window.
1611
1612 \c{x} and \c{y} give the coordinates of the top left pixel of the
1613 rectangle. \c{w} and \c{h} give its width and height. Thus, the
1614 horizontal extent of the rectangle runs from \c{x} to \c{x+w-1}
1615 inclusive, and the vertical extent from \c{y} to \c{y+h-1}
1616 inclusive.
1617
1618 \c{colour} is an integer index into the colours array returned by
1619 the back end function \cw{colours()} (\k{backend-colours}).
1620
1621 There is no separate pixel-plotting function. If you want to plot a
1622 single pixel, the approved method is to use \cw{draw_rect()} with
1623 width and height set to 1.
1624
1625 Unlike many of the other drawing functions, this function is
1626 guaranteed to be pixel-perfect: the rectangle will be sharply
1627 defined and not anti-aliased or anything like that.
1628
1629 This function may be used for both drawing and printing.
1630
1631 \S{drawing-draw-rect-outline} \cw{draw_rect_outline()}
1632
1633 \c void draw_rect_outline(drawing *dr, int x, int y, int w, int h,
1634 \c                        int colour);
1635
1636 Draws an outline rectangle in the puzzle window.
1637
1638 \c{x} and \c{y} give the coordinates of the top left pixel of the
1639 rectangle. \c{w} and \c{h} give its width and height. Thus, the
1640 horizontal extent of the rectangle runs from \c{x} to \c{x+w-1}
1641 inclusive, and the vertical extent from \c{y} to \c{y+h-1}
1642 inclusive.
1643
1644 \c{colour} is an integer index into the colours array returned by
1645 the back end function \cw{colours()} (\k{backend-colours}).
1646
1647 From a back end perspective, this function may be considered to be
1648 part of the drawing API. However, front ends are not required to
1649 implement it, since it is actually implemented centrally (in
1650 \cw{misc.c}) as a wrapper on \cw{draw_polygon()}.
1651
1652 This function may be used for both drawing and printing.
1653
1654 \S{drawing-draw-line} \cw{draw_line()}
1655
1656 \c void draw_line(drawing *dr, int x1, int y1, int x2, int y2,
1657 \c                int colour);
1658
1659 Draws a straight line in the puzzle window.
1660
1661 \c{x1} and \c{y1} give the coordinates of one end of the line.
1662 \c{x2} and \c{y2} give the coordinates of the other end. The line
1663 drawn includes both those points.
1664
1665 \c{colour} is an integer index into the colours array returned by
1666 the back end function \cw{colours()} (\k{backend-colours}).
1667
1668 Some platforms may perform anti-aliasing on this function.
1669 Therefore, do not assume that you can erase a line by drawing the
1670 same line over it in the background colour; anti-aliasing might
1671 lead to perceptible ghost artefacts around the vanished line.
1672
1673 This function may be used for both drawing and printing.
1674
1675 \S{drawing-draw-polygon} \cw{draw_polygon()}
1676
1677 \c void draw_polygon(drawing *dr, int *coords, int npoints,
1678 \c                   int fillcolour, int outlinecolour);
1679
1680 Draws an outlined or filled polygon in the puzzle window.
1681
1682 \c{coords} is an array of \cw{(2*npoints)} integers, containing the
1683 \c{x} and \c{y} coordinates of \c{npoints} vertices.
1684
1685 \c{fillcolour} and \c{outlinecolour} are integer indices into the
1686 colours array returned by the back end function \cw{colours()}
1687 (\k{backend-colours}). \c{fillcolour} may also be \cw{-1} to
1688 indicate that the polygon should be outlined only.
1689
1690 The polygon defined by the specified list of vertices is first
1691 filled in \c{fillcolour}, if specified, and then outlined in
1692 \c{outlinecolour}.
1693
1694 \c{outlinecolour} may \e{not} be \cw{-1}; it must be a valid colour
1695 (and front ends are permitted to enforce this by assertion). This is
1696 because different platforms disagree on whether a filled polygon
1697 should include its boundary line or not, so drawing \e{only} a
1698 filled polygon would have non-portable effects. If you want your
1699 filled polygon not to have a visible outline, you must set
1700 \c{outlinecolour} to the same as \c{fillcolour}.
1701
1702 Some platforms may perform anti-aliasing on this function.
1703 Therefore, do not assume that you can erase a polygon by drawing the
1704 same polygon over it in the background colour. Also, be prepared for
1705 the polygon to extend a pixel beyond its obvious bounding box as a
1706 result of this; if you really need it not to do this to avoid
1707 interfering with other delicate graphics, you should probably use
1708 \cw{clip()} (\k{drawing-clip}).
1709
1710 This function may be used for both drawing and printing.
1711
1712 \S{drawing-draw-circle} \cw{draw_circle()}
1713
1714 \c void draw_circle(drawing *dr, int cx, int cy, int radius,
1715 \c                  int fillcolour, int outlinecolour);
1716
1717 Draws an outlined or filled circle in the puzzle window.
1718
1719 \c{cx} and \c{cy} give the coordinates of the centre of the circle.
1720 \c{radius} gives its radius. The total horizontal pixel extent of
1721 the circle is from \c{cx-radius+1} to \c{cx+radius-1} inclusive, and
1722 the vertical extent similarly around \c{cy}.
1723
1724 \c{fillcolour} and \c{outlinecolour} are integer indices into the
1725 colours array returned by the back end function \cw{colours()}
1726 (\k{backend-colours}). \c{fillcolour} may also be \cw{-1} to
1727 indicate that the circle should be outlined only.
1728
1729 The circle is first filled in \c{fillcolour}, if specified, and then
1730 outlined in \c{outlinecolour}.
1731
1732 \c{outlinecolour} may \e{not} be \cw{-1}; it must be a valid colour
1733 (and front ends are permitted to enforce this by assertion). This is
1734 because different platforms disagree on whether a filled circle
1735 should include its boundary line or not, so drawing \e{only} a
1736 filled circle would have non-portable effects. If you want your
1737 filled circle not to have a visible outline, you must set
1738 \c{outlinecolour} to the same as \c{fillcolour}.
1739
1740 Some platforms may perform anti-aliasing on this function.
1741 Therefore, do not assume that you can erase a circle by drawing the
1742 same circle over it in the background colour. Also, be prepared for
1743 the circle to extend a pixel beyond its obvious bounding box as a
1744 result of this; if you really need it not to do this to avoid
1745 interfering with other delicate graphics, you should probably use
1746 \cw{clip()} (\k{drawing-clip}).
1747
1748 This function may be used for both drawing and printing.
1749
1750 \S{drawing-draw-text} \cw{draw_text()}
1751
1752 \c void draw_text(drawing *dr, int x, int y, int fonttype,
1753 \c                int fontsize, int align, int colour, char *text);
1754
1755 Draws text in the puzzle window.
1756
1757 \c{x} and \c{y} give the coordinates of a point. The relation of
1758 this point to the location of the text is specified by \c{align},
1759 which is a bitwise OR of horizontal and vertical alignment flags:
1760
1761 \dt \cw{ALIGN_VNORMAL}
1762
1763 \dd Indicates that \c{y} is aligned with the baseline of the text.
1764
1765 \dt \cw{ALIGN_VCENTRE}
1766
1767 \dd Indicates that \c{y} is aligned with the vertical centre of the
1768 text. (In fact, it's aligned with the vertical centre of normal
1769 \e{capitalised} text: displaying two pieces of text with
1770 \cw{ALIGN_VCENTRE} at the same \cw{y}-coordinate will cause their
1771 baselines to be aligned with one another, even if one is an ascender
1772 and the other a descender.)
1773
1774 \dt \cw{ALIGN_HLEFT}
1775
1776 \dd Indicates that \c{x} is aligned with the left-hand end of the
1777 text.
1778
1779 \dt \cw{ALIGN_HCENTRE}
1780
1781 \dd Indicates that \c{x} is aligned with the horizontal centre of
1782 the text.
1783
1784 \dt \cw{ALIGN_HRIGHT}
1785
1786 \dd Indicates that \c{x} is aligned with the right-hand end of the
1787 text.
1788
1789 \c{fonttype} is either \cw{FONT_FIXED} or \cw{FONT_VARIABLE}, for a
1790 monospaced or proportional font respectively. (No more detail than
1791 that may be specified; it would only lead to portability issues
1792 between different platforms.)
1793
1794 \c{fontsize} is the desired size, in pixels, of the text. This size
1795 corresponds to the overall point size of the text, not to any
1796 internal dimension such as the cap-height.
1797
1798 \c{colour} is an integer index into the colours array returned by
1799 the back end function \cw{colours()} (\k{backend-colours}).
1800
1801 This function may be used for both drawing and printing.
1802
1803 \S{drawing-clip} \cw{clip()}
1804
1805 \c void clip(drawing *dr, int x, int y, int w, int h);
1806
1807 Establishes a clipping rectangle in the puzzle window.
1808
1809 \c{x} and \c{y} give the coordinates of the top left pixel of the
1810 clipping rectangle. \c{w} and \c{h} give its width and height. Thus,
1811 the horizontal extent of the rectangle runs from \c{x} to \c{x+w-1}
1812 inclusive, and the vertical extent from \c{y} to \c{y+h-1}
1813 inclusive. (These are exactly the same semantics as
1814 \cw{draw_rect()}.)
1815
1816 After this call, no drawing operation will affect anything outside
1817 the specified rectangle. The effect can be reversed by calling
1818 \cw{unclip()} (\k{drawing-unclip}).
1819
1820 Back ends should not assume that a clipping rectangle will be
1821 automatically cleared up by the front end if it's left lying around;
1822 that might work on current front ends, but shouldn't be relied upon.
1823 Always explicitly call \cw{unclip()}.
1824
1825 This function may be used for both drawing and printing.
1826
1827 \S{drawing-unclip} \cw{unclip()}
1828
1829 \c void unclip(drawing *dr);
1830
1831 Reverts the effect of a previous call to \cw{clip()}. After this
1832 call, all drawing operations will be able to affect the entire
1833 puzzle window again.
1834
1835 This function may be used for both drawing and printing.
1836
1837 \S{drawing-draw-update} \cw{draw_update()}
1838
1839 \c void draw_update(drawing *dr, int x, int y, int w, int h);
1840
1841 Informs the front end that a rectangular portion of the puzzle
1842 window has been drawn on and needs to be updated.
1843
1844 \c{x} and \c{y} give the coordinates of the top left pixel of the
1845 update rectangle. \c{w} and \c{h} give its width and height. Thus,
1846 the horizontal extent of the rectangle runs from \c{x} to \c{x+w-1}
1847 inclusive, and the vertical extent from \c{y} to \c{y+h-1}
1848 inclusive. (These are exactly the same semantics as
1849 \cw{draw_rect()}.)
1850
1851 The back end redraw function \e{must} call this function to report
1852 any changes it has made to the window. Otherwise, those changes may
1853 not become immediately visible, and may then appear at an
1854 unpredictable subsequent time such as the next time the window is
1855 covered and re-exposed.
1856
1857 This function is only important when drawing. It may be called when
1858 printing as well, but doing so is not compulsory, and has no effect.
1859 (So if you have a shared piece of code between the drawing and
1860 printing routines, that code may safely call \cw{draw_update()}.)
1861
1862 \S{drawing-status-bar} \cw{status_bar()}
1863
1864 \c void status_bar(drawing *dr, char *text);
1865
1866 Sets the text in the game's status bar to \c{text}. The text is copied
1867 from the supplied buffer, so the caller is free to deallocate or
1868 modify the buffer after use.
1869
1870 (This function is not exactly a \e{drawing} function, but it shares
1871 with the drawing API the property that it may only be called from
1872 within the back end redraw function, so this is as good a place as
1873 any to document it.)
1874
1875 This function is for drawing only; it must never be called during
1876 printing.
1877
1878 \S{drawing-blitter} Blitter functions
1879
1880 This section describes a group of related functions which save and
1881 restore a section of the puzzle window. This is most commonly used
1882 to implement user interfaces involving dragging a puzzle element
1883 around the window: at the end of each call to \cw{redraw()}, if an
1884 object is currently being dragged, the back end saves the window
1885 contents under that location and then draws the dragged object, and
1886 at the start of the next \cw{redraw()} the first thing it does is to
1887 restore the background.
1888
1889 The front end defines an opaque type called a \c{blitter}, which is
1890 capable of storing a rectangular area of a specified size.
1891
1892 Blitter functions are for drawing only; they must never be called
1893 during printing.
1894
1895 \S2{drawing-blitter-new} \cw{blitter_new()}
1896
1897 \c blitter *blitter_new(drawing *dr, int w, int h);
1898
1899 Creates a new blitter object which stores a rectangle of size \c{w}
1900 by \c{h} pixels. Returns a pointer to the blitter object.
1901
1902 Blitter objects are best stored in the \c{game_drawstate}. A good
1903 time to create them is in the \cw{set_size()} function
1904 (\k{backend-set-size}), since it is at this point that you first
1905 know how big a rectangle they will need to save.
1906
1907 \S2{drawing-blitter-free} \cw{blitter_free()}
1908
1909 \c void blitter_free(drawing *dr, blitter *bl);
1910
1911 Disposes of a blitter object. Best called in \cw{free_drawstate()}.
1912 (However, check that the blitter object is not \cw{NULL} before
1913 attempting to free it; it is possible that a draw state might be
1914 created and freed without ever having \cw{set_size()} called on it
1915 in between.)
1916
1917 \S2{drawing-blitter-save} \cw{blitter_save()}
1918
1919 \c void blitter_save(drawing *dr, blitter *bl, int x, int y);
1920
1921 This is a true drawing API function, in that it may only be called
1922 from within the game redraw routine. It saves a rectangular portion
1923 of the puzzle window into the specified blitter object.
1924
1925 \c{x} and \c{y} give the coordinates of the top left corner of the
1926 saved rectangle. The rectangle's width and height are the ones
1927 specified when the blitter object was created.
1928
1929 This function is required to cope and do the right thing if \c{x}
1930 and \c{y} are out of range. (The right thing probably means saving
1931 whatever part of the blitter rectangle overlaps with the visible
1932 area of the puzzle window.)
1933
1934 \S2{drawing-blitter-load} \cw{blitter_load()}
1935
1936 \c void blitter_load(drawing *dr, blitter *bl, int x, int y);
1937
1938 This is a true drawing API function, in that it may only be called
1939 from within the game redraw routine. It restores a rectangular
1940 portion of the puzzle window from the specified blitter object.
1941
1942 \c{x} and \c{y} give the coordinates of the top left corner of the
1943 rectangle to be restored. The rectangle's width and height are the
1944 ones specified when the blitter object was created.
1945
1946 Alternatively, you can specify both \c{x} and \c{y} as the special
1947 value \cw{BLITTER_FROMSAVED}, in which case the rectangle will be
1948 restored to exactly where it was saved from. (This is probably what
1949 you want to do almost all the time, if you're using blitters to
1950 implement draggable puzzle elements.)
1951
1952 This function is required to cope and do the right thing if \c{x}
1953 and \c{y} (or the equivalent ones saved in the blitter) are out of
1954 range. (The right thing probably means restoring whatever part of
1955 the blitter rectangle overlaps with the visible area of the puzzle
1956 window.)
1957
1958 If this function is called on a blitter which had previously been
1959 saved from a partially out-of-range rectangle, then the parts of the
1960 saved bitmap which were not visible at save time are undefined. If
1961 the blitter is restored to a different position so as to make those
1962 parts visible, the effect on the drawing area is undefined.
1963
1964 \S{print-mono-colour} \cw{print_mono_colour()}
1965
1966 \c int print_mono_colour(drawing *dr, int grey);
1967
1968 This function allocates a colour index for a simple monochrome
1969 colour during printing.
1970
1971 \c{grey} must be 0 or 1. If \c{grey} is 0, the colour returned is
1972 black; if \c{grey} is 1, the colour is white.
1973
1974 \S{print-grey-colour} \cw{print_grey_colour()}
1975
1976 \c int print_grey_colour(drawing *dr, int hatch, float grey);
1977
1978 This function allocates a colour index for a grey-scale colour
1979 during printing.
1980
1981 \c{grey} may be any number between 0 (black) and 1 (white); for
1982 example, 0.5 indicates a medium grey.
1983
1984 If printing in black and white only, the \c{grey} value will not be
1985 used; instead, regions shaded in this colour will be hatched with
1986 parallel lines. The \c{hatch} parameter defines what type of
1987 hatching should be used in place of this colour:
1988
1989 \dt \cw{HATCH_SOLID}
1990
1991 \dd In black and white, this colour will be replaced by solid black.
1992
1993 \dt \cw{HATCH_CLEAR}
1994
1995 \dd In black and white, this colour will be replaced by solid white.
1996
1997 \dt \cw{HATCH_SLASH}
1998
1999 \dd This colour will be hatched by lines slanting to the right at 45
2000 degrees. 
2001
2002 \dt \cw{HATCH_BACKSLASH}
2003
2004 \dd This colour will be hatched by lines slanting to the left at 45
2005 degrees.
2006
2007 \dt \cw{HATCH_HORIZ}
2008
2009 \dd This colour will be hatched by horizontal lines.
2010
2011 \dt \cw{HATCH_VERT}
2012
2013 \dd This colour will be hatched by vertical lines.
2014
2015 \dt \cw{HATCH_PLUS}
2016
2017 \dd This colour will be hatched by criss-crossing horizontal and
2018 vertical lines.
2019
2020 \dt \cw{HATCH_X}
2021
2022 \dd This colour will be hatched by criss-crossing diagonal lines.
2023
2024 Colours defined to use hatching may not be used for drawing lines;
2025 they may only be used for filling areas. That is, they may be used
2026 as the \c{fillcolour} parameter to \cw{draw_circle()} and
2027 \cw{draw_polygon()}, and as the colour parameter to
2028 \cw{draw_rect()}, but may not be used as the \c{outlinecolour}
2029 parameter to \cw{draw_circle()} or \cw{draw_polygon()}, or with
2030 \cw{draw_line()}.
2031
2032 \S{print-rgb-colour} \cw{print_rgb_colour()}
2033
2034 \c int print_rgb_colour(drawing *dr, int hatch,
2035 \c                      float r, float g, float b);
2036
2037 This function allocates a colour index for a fully specified RGB
2038 colour during printing.
2039
2040 \c{r}, \c{g} and \c{b} may each be anywhere in the range from 0 to 1.
2041
2042 If printing in black and white only, these values will not be used;
2043 instead, regions shaded in this colour will be hatched with parallel
2044 lines. The \c{hatch} parameter defines what type of hatching should
2045 be used in place of this colour; see \k{print-grey-colour} for its
2046 definition.
2047
2048 \S{print-line-width} \cw{print_line_width()}
2049
2050 \c void print_line_width(drawing *dr, int width);
2051
2052 This function is called to set the thickness of lines drawn during
2053 printing. It is meaningless in drawing: all lines drawn by
2054 \cw{draw_line()}, \cw{draw_circle} and \cw{draw_polygon()} are one
2055 pixel in thickness. However, in printing there is no clear
2056 definition of a pixel and so line widths must be explicitly
2057 specified.
2058
2059 The line width is specified in the usual coordinate system. Note,
2060 however, that it is a hint only: the central printing system may
2061 choose to vary line thicknesses at user request or due to printer
2062 capabilities.
2063
2064 \H{drawing-frontend} The drawing API as implemented by the front end
2065
2066 This section describes the drawing API in the function-pointer form
2067 in which it is implemented by a front end.
2068
2069 (It isn't only platform-specific front ends which implement this
2070 API; the platform-independent module \c{ps.c} also provides an
2071 implementation of it which outputs PostScript. Thus, any platform
2072 which wants to do PS printing can do so with minimum fuss.)
2073
2074 The following entries all describe function pointer fields in a
2075 structure called \c{drawing_api}. Each of the functions takes a
2076 \cq{void *} context pointer, which it should internally cast back to
2077 a more useful type. Thus, a drawing \e{object} (\c{drawing *)}
2078 suitable for passing to the back end redraw or printing functions
2079 is constructed by passing a \c{drawing_api} and a \cq{void *} to the
2080 function \cw{drawing_init()} (see \k{drawing-init}).
2081
2082 \S{drawingapi-draw-text} \cw{draw_text()}
2083
2084 \c void (*draw_text)(void *handle, int x, int y, int fonttype,
2085 \c                   int fontsize, int align, int colour, char *text);
2086
2087 This function behaves exactly like the back end \cw{draw_text()}
2088 function; see \k{drawing-draw-text}.
2089
2090 \S{drawingapi-draw-rect} \cw{draw_rect()}
2091
2092 \c void (*draw_rect)(void *handle, int x, int y, int w, int h,
2093 \c                   int colour);
2094
2095 This function behaves exactly like the back end \cw{draw_rect()}
2096 function; see \k{drawing-draw-rect}.
2097
2098 \S{drawingapi-draw-line} \cw{draw_line()}
2099
2100 \c void (*draw_line)(void *handle, int x1, int y1, int x2, int y2,
2101 \c                   int colour);
2102
2103 This function behaves exactly like the back end \cw{draw_line()}
2104 function; see \k{drawing-draw-line}.
2105
2106 \S{drawingapi-draw-polygon} \cw{draw_polygon()}
2107
2108 \c void (*draw_polygon)(void *handle, int *coords, int npoints,
2109 \c                      int fillcolour, int outlinecolour);
2110
2111 This function behaves exactly like the back end \cw{draw_polygon()}
2112 function; see \k{drawing-draw-polygon}.
2113
2114 \S{drawingapi-draw-circle} \cw{draw_circle()}
2115
2116 \c void (*draw_circle)(void *handle, int cx, int cy, int radius,
2117 \c                     int fillcolour, int outlinecolour);
2118
2119 This function behaves exactly like the back end \cw{draw_circle()}
2120 function; see \k{drawing-draw-circle}.
2121
2122 \S{drawingapi-draw-update} \cw{draw_update()}
2123
2124 \c void (*draw_update)(void *handle, int x, int y, int w, int h);
2125
2126 This function behaves exactly like the back end \cw{draw_text()}
2127 function; see \k{drawing-draw-text}.
2128
2129 An implementation of this API which only supports printing is
2130 permitted to define this function pointer to be \cw{NULL} rather
2131 than bothering to define an empty function. The middleware in
2132 \cw{drawing.c} will notice and avoid calling it.
2133
2134 \S{drawingapi-clip} \cw{clip()}
2135
2136 \c void (*clip)(void *handle, int x, int y, int w, int h);
2137
2138 This function behaves exactly like the back end \cw{clip()}
2139 function; see \k{drawing-clip}.
2140
2141 \S{drawingapi-unclip} \cw{unclip()}
2142
2143 \c void (*unclip)(void *handle);
2144
2145 This function behaves exactly like the back end \cw{unclip()}
2146 function; see \k{drawing-unclip}.
2147
2148 \S{drawingapi-start-draw} \cw{start_draw()}
2149
2150 \c void (*start_draw)(void *handle);
2151
2152 This function is called at the start of drawing. It allows the front
2153 end to initialise any temporary data required to draw with, such as
2154 device contexts.
2155
2156 Implementations of this API which do not provide drawing services
2157 may define this function pointer to be \cw{NULL}; it will never be
2158 called unless drawing is attempted.
2159
2160 \S{drawingapi-end-draw} \cw{end_draw()}
2161
2162 \c void (*end_draw)(void *handle);
2163
2164 This function is called at the end of drawing. It allows the front
2165 end to do cleanup tasks such as deallocating device contexts and
2166 scheduling appropriate GUI redraw events.
2167
2168 Implementations of this API which do not provide drawing services
2169 may define this function pointer to be \cw{NULL}; it will never be
2170 called unless drawing is attempted.
2171
2172 \S{drawingapi-status-bar} \cw{status_bar()}
2173
2174 \c void (*status_bar)(void *handle, char *text);
2175
2176 This function behaves exactly like the back end \cw{status_bar()}
2177 function; see \k{drawing-status-bar}.
2178
2179 Front ends implementing this function should not use the provided
2180 text directly; they should call \cw{midend_rewrite_statusbar()}
2181 (\k{midend-rewrite-statusbar}) to process it first.
2182
2183 In a game which has a timer, this function is likely to be called
2184 every time the timer goes off, i.e. many times a second. It is
2185 therefore likely to be common that this function is called with
2186 precisely the same text as the last time it was called. Front ends
2187 may well wish to detect this common case and avoid bothering to do
2188 anything. If they do, however, they \e{must} perform this check on
2189 the value \e{returned} from \cw{midend_rewrite_statusbar()}, rather
2190 than the value passed in to it (because the mid-end will frequently
2191 update the status-bar timer without the back end's intervention).
2192
2193 Implementations of this API which do not provide drawing services
2194 may define this function pointer to be \cw{NULL}; it will never be
2195 called unless drawing is attempted.
2196
2197 \S{drawingapi-blitter-new} \cw{blitter_new()}
2198
2199 \c blitter *(*blitter_new)(void *handle, int w, int h);
2200
2201 This function behaves exactly like the back end \cw{blitter_new()}
2202 function; see \k{drawing-blitter-new}.
2203
2204 Implementations of this API which do not provide drawing services
2205 may define this function pointer to be \cw{NULL}; it will never be
2206 called unless drawing is attempted.
2207
2208 \S{drawingapi-blitter-free} \cw{blitter_free()}
2209
2210 \c void (*blitter_free)(void *handle, blitter *bl);
2211
2212 This function behaves exactly like the back end \cw{blitter_free()}
2213 function; see \k{drawing-blitter-free}.
2214
2215 Implementations of this API which do not provide drawing services
2216 may define this function pointer to be \cw{NULL}; it will never be
2217 called unless drawing is attempted.
2218
2219 \S{drawingapi-blitter-save} \cw{blitter_save()}
2220
2221 \c void (*blitter_save)(void *handle, blitter *bl, int x, int y);
2222
2223 This function behaves exactly like the back end \cw{blitter_save()}
2224 function; see \k{drawing-blitter-save}.
2225
2226 Implementations of this API which do not provide drawing services
2227 may define this function pointer to be \cw{NULL}; it will never be
2228 called unless drawing is attempted.
2229
2230 \S{drawingapi-blitter-load} \cw{blitter_load()}
2231
2232 \c void (*blitter_load)(void *handle, blitter *bl, int x, int y);
2233
2234 This function behaves exactly like the back end \cw{blitter_load()}
2235 function; see \k{drawing-blitter-load}.
2236
2237 Implementations of this API which do not provide drawing services
2238 may define this function pointer to be \cw{NULL}; it will never be
2239 called unless drawing is attempted.
2240
2241 \S{drawingapi-begin-doc} \cw{begin_doc()}
2242
2243 \c void (*begin_doc)(void *handle, int pages);
2244
2245 This function is called at the beginning of a printing run. It gives
2246 the front end an opportunity to initialise any required printing
2247 subsystem. It also provides the number of pages in advance.
2248
2249 Implementations of this API which do not provide printing services
2250 may define this function pointer to be \cw{NULL}; it will never be
2251 called unless printing is attempted.
2252
2253 \S{drawingapi-begin-page} \cw{begin_page()}
2254
2255 \c void (*begin_page)(void *handle, int number);
2256
2257 This function is called during printing, at the beginning of each
2258 page. It gives the page number (numbered from 1 rather than 0, so
2259 suitable for use in user-visible contexts).
2260
2261 Implementations of this API which do not provide printing services
2262 may define this function pointer to be \cw{NULL}; it will never be
2263 called unless printing is attempted.
2264
2265 \S{drawingapi-begin-puzzle} \cw{begin_puzzle()}
2266
2267 \c void (*begin_puzzle)(void *handle, float xm, float xc,
2268 \c                      float ym, float yc, int pw, int ph, float wmm);
2269
2270 This function is called during printing, just before printing a
2271 single puzzle on a page. It specifies the size and location of the
2272 puzzle on the page.
2273
2274 \c{xm} and \c{xc} specify the horizontal position of the puzzle on
2275 the page, as a linear function of the page width. The front end is
2276 expected to multiply the page width by \c{xm}, add \c{xc} (measured
2277 in millimetres), and use the resulting x-coordinate as the left edge
2278 of the puzzle.
2279
2280 Similarly, \c{ym} and \c{yc} specify the vertical position of the
2281 puzzle as a function of the page height: the page height times
2282 \c{xm}, plus \c{xc} millimetres, equals the desired distance from
2283 the top of the page to the top of the puzzle.
2284
2285 (This unwieldy mechanism is required because not all printing
2286 systems can communicate the page size back to the software. The
2287 PostScript back end, for example, writes out PS which determines the
2288 page size at print time by means of calling \cq{clippath}, and
2289 centres the puzzles within that. Thus, exactly the same PS file
2290 works on A4 or on US Letter paper without needing local
2291 configuration, which simplifies matters.)
2292
2293 \cw{pw} and \cw{ph} give the size of the puzzle in drawing API
2294 coordinates. The printing system will subsequently call the puzzle's
2295 own print function, which will in turn call drawing API functions in
2296 the expectation that an area \cw{pw} by \cw{ph} units is available
2297 to draw the puzzle on.
2298
2299 Finally, \cw{wmm} gives the desired width of the puzzle in
2300 millimetres. (The aspect ratio is expected to be preserved, so if
2301 the desired puzzle height is also needed then it can be computed as
2302 \cw{wmm*ph/pw}.)
2303
2304 Implementations of this API which do not provide printing services
2305 may define this function pointer to be \cw{NULL}; it will never be
2306 called unless printing is attempted.
2307
2308 \S{drawingapi-end-puzzle} \cw{end_puzzle()}
2309
2310 \c void (*end_puzzle)(void *handle);
2311
2312 This function is called after the printing of a specific puzzle is
2313 complete.
2314
2315 Implementations of this API which do not provide printing services
2316 may define this function pointer to be \cw{NULL}; it will never be
2317 called unless printing is attempted.
2318
2319 \S{drawingapi-end-page} \cw{end_page()}
2320
2321 \c void (*end_page)(void *handle, int number);
2322
2323 This function is called after the printing of a page is finished.
2324
2325 Implementations of this API which do not provide printing services
2326 may define this function pointer to be \cw{NULL}; it will never be
2327 called unless printing is attempted.
2328
2329 \S{drawingapi-end-doc} \cw{end_doc()}
2330
2331 \c void (*end_doc)(void *handle);
2332
2333 This function is called after the printing of the entire document is
2334 finished. This is the moment to close files, send things to the
2335 print spooler, or whatever the local convention is.
2336
2337 Implementations of this API which do not provide printing services
2338 may define this function pointer to be \cw{NULL}; it will never be
2339 called unless printing is attempted.
2340
2341 \S{drawingapi-line-width} \cw{line_width()}
2342
2343 \c void (*line_width)(void *handle, float width);
2344
2345 This function is called to set the line thickness, during printing
2346 only. Note that the width is a \cw{float} here, where it was an
2347 \cw{int} as seen by the back end. This is because \cw{drawing.c} may
2348 have scaled it on the way past.
2349
2350 However, the width is still specified in the same coordinate system
2351 as the rest of the drawing.
2352
2353 Implementations of this API which do not provide printing services
2354 may define this function pointer to be \cw{NULL}; it will never be
2355 called unless printing is attempted.
2356
2357 \H{drawingapi-frontend} The drawing API as called by the front end
2358
2359 There are a small number of functions provided in \cw{drawing.c}
2360 which the front end needs to \e{call}, rather than helping to
2361 implement. They are described in this section.
2362
2363 \S{drawing-init} \cw{drawing_init()}
2364
2365 \c drawing *drawing_init(const drawing_api *api, void *handle);
2366
2367 This function creates a drawing object. It is passed a
2368 \c{drawing_api}, which is a structure containing nothing but
2369 function pointers; and also a \cq{void *} handle. The handle is
2370 passed back to each function pointer when it is called.
2371
2372 \S{drawing-free} \cw{drawing_free()}
2373
2374 \c void drawing_free(drawing *dr);
2375
2376 This function frees a drawing object. Note that the \cq{void *}
2377 handle is not freed; if that needs cleaning up it must be done by
2378 the front end.
2379
2380 \S{drawing-print-get-colour} \cw{print_get_colour()}
2381
2382 \c void print_get_colour(drawing *dr, int colour, int *hatch,
2383 \c                       float *r, float *g, float *b)
2384
2385 This function is called by the implementations of the drawing API
2386 functions when they are called in a printing context. It takes a
2387 colour index as input, and returns the description of the colour as
2388 requested by the back end.
2389
2390 \c{*r}, \c{*g} and \c{*b} are filled with the RGB values of the
2391 desired colour if printing in colour.
2392
2393 \c{*hatch} is filled with the type of hatching (or not) desired if
2394 printing in black and white. See \k{print-grey-colour} for details
2395 of the values this integer can take.
2396
2397 \C{midend} The API provided by the mid-end
2398
2399 This chapter documents the API provided by the mid-end to be called
2400 by the front end. You probably only need to read this if you are a
2401 front end implementor, i.e. you are porting Puzzles to a new
2402 platform. If you're only interested in writing new puzzles, you can
2403 safely skip this chapter.
2404
2405 All the persistent state in the mid-end is encapsulated within a
2406 \c{midend} structure, to facilitate having multiple mid-ends in any
2407 port which supports multiple puzzle windows open simultaneously.
2408 Each \c{midend} is intended to handle the contents of a single
2409 puzzle window.
2410
2411 \H{midend-new} \cw{midend_new()}
2412
2413 \c midend *midend_new(frontend *fe, const game *ourgame,
2414 \c                    const drawing_api *drapi, void *drhandle)
2415
2416 Allocates and returns a new mid-end structure.
2417
2418 The \c{fe} argument is stored in the mid-end. It will be used when
2419 calling back to functions such as \cw{activate_timer()}
2420 (\k{frontend-activate-timer}), and will be passed on to the back end
2421 function \cw{colours()} (\k{backend-colours}).
2422
2423 The parameters \c{drapi} and \c{drhandle} are passed to
2424 \cw{drawing_init()} (\k{drawing-init}) to construct a drawing object
2425 which will be passed to the back end function \cw{redraw()}
2426 (\k{backend-redraw}). Hence, all drawing-related function pointers
2427 defined in \c{drapi} can expect to be called with \c{drhandle} as
2428 their first argument.
2429
2430 The \c{ourgame} argument points to a container structure describing
2431 a game back end. The mid-end thus created will only be capable of
2432 handling that one game. (So even in a monolithic front end
2433 containing all the games, this imposes the constraint that any
2434 individual puzzle window is tied to a single game. Unless, of
2435 course, you feel brave enough to change the mid-end for the window
2436 without closing the window...)
2437
2438 \H{midend-free} \cw{midend_free()}
2439
2440 \c void midend_free(midend *me);
2441
2442 Frees a mid-end structure and all its associated data.
2443
2444 \H{midend-set-params} \cw{midend_set_params()}
2445
2446 \c void midend_set_params(midend *me, game_params *params);
2447
2448 Sets the current game parameters for a mid-end. Subsequent games
2449 generated by \cw{midend_new_game()} (\k{midend-new-game}) will use
2450 these parameters until further notice.
2451
2452 The usual way in which the front end will have an actual
2453 \c{game_params} structure to pass to this function is if it had
2454 previously got it from \cw{midend_fetch_preset()}
2455 (\k{midend-fetch-preset}). Thus, this function is usually called in
2456 response to the user making a selection from the presets menu.
2457
2458 \H{midend-get-params} \cw{midend_get_params()}
2459
2460 \c game_params *midend_get_params(midend *me);
2461
2462 Returns the current game parameters stored in this mid-end.
2463
2464 The returned value is dynamically allocated, and should be freed
2465 when finished with by passing it to the game's own
2466 \cw{free_params()} function (see \k{backend-free-params}).
2467
2468 \H{midend-size} \cw{midend_size()}
2469
2470 \c void midend_size(midend *me, int *x, int *y, int expand);
2471
2472 Tells the mid-end to figure out its window size.
2473
2474 On input, \c{*x} and \c{*y} should contain the maximum or requested
2475 size for the window. (Typically this will be the size of the screen
2476 that the window has to fit on, or similar.) The mid-end will
2477 repeatedly call the back end function \cw{compute_size()}
2478 (\k{backend-compute-size}), searching for a tile size that best
2479 satisfies the requirements. On exit, \c{*x} and \c{*y} will contain
2480 the size needed for the puzzle window's drawing area. (It is of
2481 course up to the front end to adjust this for any additional window
2482 furniture such as menu bars and window borders, if necessary. The
2483 status bar is also not included in this size.)
2484
2485 If \c{expand} is set to \cw{FALSE}, then the game's tile size will
2486 never go over its preferred one. This is the recommended approach
2487 when opening a new window at default size: the game will use its
2488 preferred size unless it has to use a smaller one to fit on the
2489 screen.
2490
2491 If \c{expand} is set to \cw{TRUE}, the mid-end will pick a tile size
2492 which approximates the input size \e{as closely as possible}, and
2493 will go over the game's preferred tile size if necessary to achieve
2494 this. Use this option if you want your front end to support dynamic
2495 resizing of the puzzle window with automatic scaling of the puzzle
2496 to fit.
2497
2498 The mid-end will try as hard as it can to return a size which is
2499 less than or equal to the input size, in both dimensions. In extreme
2500 circumstances it may fail (if even the lowest possible tile size
2501 gives window dimensions greater than the input), in which case it
2502 will return a size greater than the input size. Front ends should be
2503 prepared for this to happen (i.e. don't crash or fail an assertion),
2504 but may handle it in any way they see fit: by rejecting the game
2505 parameters which caused the problem, by opening a window larger than
2506 the screen regardless of inconvenience, by introducing scroll bars
2507 on the window, by drawing on a large bitmap and scaling it into a
2508 smaller window, or by any other means you can think of. It is likely
2509 that when the tile size is that small the game will be unplayable
2510 anyway, so don't put \e{too} much effort into handling it
2511 creatively.
2512
2513 If your platform has no limit on window size (or if you're planning
2514 to use scroll bars for large puzzles), you can pass dimensions of
2515 \cw{INT_MAX} as input to this function. You should probably not do
2516 that \e{and} set the \c{expand} flag, though!
2517
2518 \H{midend-new-game} \cw{midend_new_game()}
2519
2520 \c void midend_new_game(midend *me);
2521
2522 Causes the mid-end to begin a new game. Normally the game will be a
2523 new randomly generated puzzle. However, if you have previously
2524 called \cw{midend_game_id()} or \cw{midend_set_config()}, the game
2525 generated might be dictated by the results of those functions. (In
2526 particular, you \e{must} call \cw{midend_new_game()} after calling
2527 either of those functions, or else no immediate effect will be
2528 visible.)
2529
2530 You will probably need to call \cw{midend_size()} after calling this
2531 function, because if the game parameters have been changed since the
2532 last new game then the window size might need to change. (If you
2533 know the parameters \e{haven't} changed, you don't need to do this.)
2534
2535 This function will create a new \c{game_drawstate}, but does not
2536 actually perform a redraw (since you often need to call
2537 \cw{midend_size()} before the redraw can be done). So after calling
2538 this function and after calling \cw{midend_size()}, you should then
2539 call \cw{midend_redraw()}. (It is not necessary to call
2540 \cw{midend_force_redraw()}; that will discard the draw state and
2541 create a fresh one, which is unnecessary in this case since there's
2542 a fresh one already. It would work, but it's usually excessive.)
2543
2544 \H{midend-restart-game} \cw{midend_restart_game()}
2545
2546 \c void midend_restart_game(midend *me);
2547
2548 This function causes the current game to be restarted. This is done
2549 by placing a new copy of the original game state on the end of the
2550 undo list (so that an accidental restart can be undone).
2551
2552 This function automatically causes a redraw, i.e. the front end can
2553 expect its drawing API to be called from \e{within} a call to this
2554 function.
2555
2556 \H{midend-force-redraw} \cw{midend_force_redraw()}
2557
2558 \c void midend_force_redraw(midend *me);
2559
2560 Forces a complete redraw of the puzzle window, by means of
2561 discarding the current \c{game_drawstate} and creating a new one
2562 from scratch before calling the game's \cw{redraw()} function.
2563
2564 The front end can expect its drawing API to be called from within a
2565 call to this function.
2566
2567 \H{midend-redraw} \cw{midend_redraw()}
2568
2569 \c void midend_redraw(midend *me);
2570
2571 Causes a partial redraw of the puzzle window, by means of simply
2572 calling the game's \cw{redraw()} function. (That is, the only things
2573 redrawn will be things that have changed since the last redraw.)
2574
2575 The front end can expect its drawing API to be called from within a
2576 call to this function.
2577
2578 \H{midend-process-key} \cw{midend_process_key()}
2579
2580 \c int midend_process_key(midend *me, int x, int y, int button);
2581
2582 The front end calls this function to report a mouse or keyboard
2583 event. The parameters \c{x}, \c{y} and \c{button} are almost
2584 identical to the ones passed to the back end function
2585 \cw{interpret_move()} (\k{backend-interpret-move}), except that the
2586 front end is \e{not} required to provide the guarantees about mouse
2587 event ordering. The mid-end will sort out multiple simultaneous
2588 button presses and changes of button; the front end's responsibility
2589 is simply to pass on the mouse events it receives as accurately as
2590 possible.
2591
2592 (Some platforms may need to emulate absent mouse buttons by means of
2593 using a modifier key such as Shift with another mouse button. This
2594 tends to mean that if Shift is pressed or released in the middle of
2595 a mouse drag, the mid-end will suddenly stop receiving, say,
2596 \cw{LEFT_DRAG} events and start receiving \cw{RIGHT_DRAG}s, with no
2597 intervening button release or press events. This too is something
2598 which the mid-end will sort out for you; the front end has no
2599 obligation to maintain sanity in this area.)
2600
2601 The front end \e{should}, however, always eventually send some kind
2602 of button release. On some platforms this requires special effort:
2603 Windows, for example, requires a call to the system API function
2604 \cw{SetCapture()} in order to ensure that your window receives a
2605 mouse-up event even if the pointer has left the window by the time
2606 the mouse button is released. On any platform that requires this
2607 sort of thing, the front end \e{is} responsible for doing it.
2608
2609 Calling this function is very likely to result in calls back to the
2610 front end's drawing API and/or \cw{activate_timer()}
2611 (\k{frontend-activate-timer}).
2612
2613 \H{midend-colours} \cw{midend_colours()}
2614
2615 \c float *midend_colours(midend *me, int *ncolours);
2616
2617 Returns an array of the colours required by the game, in exactly the
2618 same format as that returned by the back end function \cw{colours()}
2619 (\k{backend-colours}). Front ends should call this function rather
2620 than calling the back end's version directly, since the mid-end adds
2621 standard customisation facilities. (At the time of writing, those
2622 customisation facilities are implemented hackily by means of
2623 environment variables, but it's not impossible that they may become
2624 more full and formal in future.)
2625
2626 \H{midend-timer} \cw{midend_timer()}
2627
2628 \c void midend_timer(midend *me, float tplus);
2629
2630 If the mid-end has called \cw{activate_timer()}
2631 (\k{frontend-activate-timer}) to request regular callbacks for
2632 purposes of animation or timing, this is the function the front end
2633 should call on a regular basis. The argument \c{tplus} gives the
2634 time, in seconds, since the last time either this function was
2635 called or \cw{activate_timer()} was invoked.
2636
2637 One of the major purposes of timing in the mid-end is to perform
2638 move animation. Therefore, calling this function is very likely to
2639 result in calls back to the front end's drawing API.
2640
2641 \H{midend-num-presets} \cw{midend_num_presets()}
2642
2643 \c int midend_num_presets(midend *me);
2644
2645 Returns the number of game parameter presets supplied by this game.
2646 Front ends should use this function and \cw{midend_fetch_preset()}
2647 to configure their presets menu rather than calling the back end
2648 directly, since the mid-end adds standard customisation facilities.
2649 (At the time of writing, those customisation facilities are
2650 implemented hackily by means of environment variables, but it's not
2651 impossible that they may become more full and formal in future.)
2652
2653 \H{midend-fetch-preset} \cw{midend_fetch_preset()}
2654
2655 \c void midend_fetch_preset(midend *me, int n,
2656 \c                          char **name, game_params **params);
2657
2658 Returns one of the preset game parameter structures for the game. On
2659 input \c{n} must be a non-negative integer and less than the value
2660 returned from \cw{midend_num_presets()}. On output, \c{*name} is set
2661 to an ASCII string suitable for entering in the game's presets menu,
2662 and \c{*params} is set to the corresponding \c{game_params}
2663 structure.
2664
2665 Both of the two output values are dynamically allocated, but they
2666 are owned by the mid-end structure: the front end should not ever
2667 free them directly, because they will be freed automatically during
2668 \cw{midend_free()}.
2669
2670 \H{midend-wants-statusbar} \cw{midend_wants_statusbar()}
2671
2672 \c int midend_wants_statusbar(midend *me);
2673
2674 This function returns \cw{TRUE} if the puzzle has a use for a
2675 textual status line (to display score, completion status, currently
2676 active tiles, time, or anything else).
2677
2678 Front ends should call this function rather than talking directly to
2679 the back end.
2680
2681 \H{midend-get-config} \cw{midend_get_config()}
2682
2683 \c config_item *midend_get_config(midend *me, int which,
2684 \c                                char **wintitle);
2685
2686 Returns a dialog box description for user configuration.
2687
2688 On input, \cw{which} should be set to one of three values, which
2689 select which of the various dialog box descriptions is returned:
2690
2691 \dt \cw{CFG_SETTINGS}
2692
2693 \dd Requests the GUI parameter configuration box generated by the
2694 puzzle itself. This should be used when the user selects \q{Custom}
2695 from the game types menu (or equivalent). The mid-end passes this
2696 request on to the back end function \cw{configure()}
2697 (\k{backend-configure}).
2698
2699 \dt \cw{CFG_DESC}
2700
2701 \dd Requests a box suitable for entering a descriptive game ID (and
2702 viewing the existing one). The mid-end generates this dialog box
2703 description itself. This should be used when the user selects
2704 \q{Specific} from the game menu (or equivalent).
2705
2706 \dt \cw{CFG_SEED}
2707
2708 \dd Requests a box suitable for entering a random-seed game ID (and
2709 viewing the existing one). The mid-end generates this dialog box
2710 description itself. This should be used when the user selects
2711 \q{Random Seed} from the game menu (or equivalent).
2712
2713 The returned value is an array of \cw{config_item}s, exactly as
2714 described in \k{backend-configure}. Another returned value is an
2715 ASCII string giving a suitable title for the configuration window,
2716 in \c{*wintitle}.
2717
2718 Both returned values are dynamically allocated and will need to be
2719 freed. The window title can be freed in the obvious way; the
2720 \cw{config_item} array is a slightly complex structure, so a utility
2721 function \cw{free_cfg()} is provided to free it for you. See
2722 \k{utils-free-cfg}.
2723
2724 (Of course, you will probably not want to free the \cw{config_item}
2725 array until the dialog box is dismissed, because before then you
2726 will probably need to pass it to \cw{midend_set_config}.)
2727
2728 \H{midend-set-config} \cw{midend_set_config()}
2729
2730 \c char *midend_set_config(midend *me, int which,
2731 \c                         config_item *cfg);
2732
2733 Passes the mid-end the results of a configuration dialog box.
2734 \c{which} should have the same value which it had when
2735 \cw{midend_get_config()} was called; \c{cfg} should be the array of
2736 \c{config_item}s returned from \cw{midend_get_config()}, modified to
2737 contain the results of the user's editing operations.
2738
2739 This function returns \cw{NULL} on success, or otherwise (if the
2740 configuration data was in some way invalid) an ASCII string
2741 containing an error message suitable for showing to the user.
2742
2743 If the function succeeds, it is likely that the game parameters will
2744 have been changed and it is certain that a new game will be
2745 requested. The front end should therefore call
2746 \cw{midend_new_game()}, and probably also re-think the window size
2747 using \cw{midend_size()} and eventually perform a refresh using
2748 \cw{midend_redraw()}.
2749
2750 \H{midend-game-id} \cw{midend_game_id()}
2751
2752 \c char *midend_game_id(midend *me, char *id);
2753
2754 Passes the mid-end a string game ID (of any of the valid forms
2755 \cq{params}, \cq{params:description} or \cq{params#seed}) which the
2756 mid-end will process and use for the next generated game.
2757
2758 This function returns \cw{NULL} on success, or otherwise (if the
2759 configuration data was in some way invalid) an ASCII string
2760 containing an error message (not dynamically allocated) suitable for
2761 showing to the user. In the event of an error, the mid-end's
2762 internal state will be left exactly as it was before the call.
2763
2764 If the function succeeds, it is likely that the game parameters will
2765 have been changed and it is certain that a new game will be
2766 requested. The front end should therefore call
2767 \cw{midend_new_game()}, and probably also re-think the window size
2768 using \cw{midend_size()} and eventually case a refresh using
2769 \cw{midend_redraw()}.
2770
2771 \H{midend-get-game-id} \cw{midend_get_game_id()}
2772
2773 \c char *midend_get_game_id(midend *me)
2774
2775 Returns a descriptive game ID (i.e. one in the form
2776 \cq{params:description}) describing the game currently active in the
2777 mid-end. The returned string is dynamically allocated.
2778
2779 \H{midend-text-format} \cw{midend_text_format()}
2780
2781 \c char *midend_text_format(midend *me);
2782
2783 Formats the current game's current state as ASCII text suitable for
2784 copying to the clipboard. The returned string is dynamically
2785 allocated.
2786
2787 You should not call this function if the game's
2788 \c{can_format_as_text} flag is \cw{FALSE}.
2789
2790 If the returned string contains multiple lines (which is likely), it
2791 will use the normal C line ending convention (\cw{\\n} only). On
2792 platforms which use a different line ending convention for data in
2793 the clipboard, it is the front end's responsibility to perform the
2794 conversion.
2795
2796 \H{midend-solve} \cw{midend_solve()}
2797
2798 \c char *midend_solve(midend *me);
2799
2800 Requests the mid-end to perform a Solve operation.
2801
2802 On success, \cw{NULL} is returned. On failure, an error message (not
2803 dynamically allocated) is returned, suitable for showing to the
2804 user.
2805
2806 The front end can expect its drawing API and/or
2807 \cw{activate_timer()} to be called from within a call to this
2808 function.
2809
2810 \H{midend-rewrite-statusbar} \cw{midend_rewrite_statusbar()}
2811
2812 \c char *midend_rewrite_statusbar(midend *me, char *text);
2813
2814 The front end should call this function from within
2815 \cw{status_bar()} (\k{drawing-status-bar}). It should be passed the
2816 string that was passed by the back end to \cw{status_bar()}; it will
2817 return a dynamically allocated string adjusted by the mid-end.
2818 (Specifically, adjusted to include the timer if the game is a timed
2819 one.) The returned value should be placed in the actual status bar
2820 in place of the input value.
2821
2822 (This is a nasty piece of architecture; I apologise for it. It would
2823 seem a lot more pleasant to have the back end pass its status bar
2824 text to the mid-end, which in turn would rewrite it and pass it on
2825 to the front end, so that each front end needed to do nothing
2826 strange. The main reason why I haven't done this is because it means
2827 the back end redraw function would need to be passed a mid-end
2828 pointer \e{as well} as a front end pointer, which seemed like an
2829 excessive proliferation of opaque handles. The only way to avoid
2830 that proliferation would be to have all the drawing API functions
2831 also gatewayed through the mid-end, and that seemed like an
2832 excessive proliferation of wrapper functions. The current setup
2833 isn't nice, but it has minimal impact and I'm unconvinced that any
2834 of the other options are an improvement.)
2835
2836 \H{midend-serialise} \cw{midend_serialise()}
2837
2838 \c void midend_serialise(midend *me,
2839 \c                       void (*write)(void *ctx, void *buf, int len),
2840 \c                       void *wctx);
2841
2842 Calling this function causes the mid-end to convert its entire
2843 internal state into a long ASCII text string, and to pass that
2844 string (piece by piece) to the supplied \c{write} function.
2845
2846 Desktop implementations can use this function to save a game in any
2847 state (including half-finished) to a disk file, by supplying a
2848 \c{write} function which is a wrapper on \cw{fwrite()} (or local
2849 equivalent). Other implementations may find other uses for it, such
2850 as compressing the large and sprawling mid-end state into a
2851 manageable amount of memory when a palmtop application is suspended
2852 so that another one can run; in this case \cw{write} might want to
2853 write to a memory buffer rather than a file. There may be other uses
2854 for it as well.
2855
2856 This function will call back to the supplied \c{write} function a
2857 number of times, with the first parameter (\c{ctx}) equal to
2858 \c{wctx}, and the other two parameters pointing at a piece of the
2859 output string.
2860
2861 \H{midend-deserialise} \cw{midend_deserialise()}
2862
2863 \c char *midend_deserialise(midend *me,
2864 \c                          int (*read)(void *ctx, void *buf, int len),
2865 \c                          void *rctx);
2866
2867 This function is the counterpart to \cw{midend_serialise()}. It
2868 calls the supplied \cw{read} function repeatedly to read a quantity
2869 of data, and attempts to interpret that data as a serialised mid-end
2870 as output by \cw{midend_serialise()}.
2871
2872 The \cw{read} function is called with the first parameter (\c{ctx})
2873 equal to \c{rctx}, and should attempt to read \c{len} bytes of data
2874 into the buffer pointed to by \c{buf}. It should return \cw{FALSE}
2875 on failure or \cw{TRUE} on success. It should not report success
2876 unless it has filled the entire buffer; on platforms which might be
2877 reading from a pipe or other blocking data source, \c{read} is
2878 responsible for looping until the whole buffer has been filled.
2879
2880 If the de-serialisation operation is successful, the mid-end's
2881 internal data structures will be replaced by the results of the
2882 load, and \cw{NULL} will be returned. Otherwise, the mid-end's state
2883 will be completely unchanged and an error message (typically some
2884 variation on \q{save file is corrupt}) will be returned. As usual,
2885 the error message string is not dynamically allocated.
2886
2887 If this function succeeds, it is likely that the game parameters
2888 will have been changed. The front end should therefore probably
2889 re-think the window size using \cw{midend_size()}, and probably
2890 cause a refresh using \cw{midend_redraw()}.
2891
2892 Because each mid-end is tied to a specific game back end, this
2893 function will fail if you attempt to read in a save file generated
2894 by a different game from the one configured in this mid-end, even if
2895 your application is a monolithic one containing all the puzzles. (It
2896 would be pretty easy to write a function which would look at a save
2897 file and determine which game it was for; any front end implementor
2898 who needs such a function can probably be accommodated.)
2899
2900 \H{frontend-backend} Direct reference to the back end structure by
2901 the front end
2902
2903 Although \e{most} things the front end needs done should be done by
2904 calling the mid-end, there are a few situations in which the front
2905 end needs to refer directly to the game back end structure.
2906
2907 The most obvious of these is
2908
2909 \b passing the game back end as a parameter to \cw{midend_new()}.
2910
2911 There are a few other back end features which are not wrapped by the
2912 mid-end because there didn't seem much point in doing so:
2913
2914 \b fetching the \c{name} field to use in window titles and similar
2915
2916 \b reading the \c{can_configure}, \c{can_solve} and
2917 \c{can_format_as_text} fields to decide whether to add those items
2918 to the menu bar or equivalent
2919
2920 \b reading the \c{winhelp_topic} field (Windows only)
2921
2922 \b the GTK front end provides a \cq{--generate} command-line option
2923 which directly calls the back end to do most of its work. This is
2924 not really part of the main front end code, though, and I'm not sure
2925 it counts.
2926
2927 In order to find the game back end structure, the front end does one
2928 of two things:
2929
2930 \b If the particular front end is compiling a separate binary per
2931 game, then the back end structure is a global variable with the
2932 standard name \cq{thegame}:
2933
2934 \lcont{
2935
2936 \c extern const game thegame;
2937
2938 }
2939
2940 \b If the front end is compiled as a monolithic application
2941 containing all the puzzles together (in which case the preprocessor
2942 symbol \cw{COMBINED} must be defined when compiling most of the code
2943 base), then there will be two global variables defined:
2944
2945 \lcont{
2946
2947 \c extern const game *gamelist[];
2948 \c extern const int gamecount;
2949
2950 \c{gamelist} will be an array of \c{gamecount} game structures,
2951 declared in the source module \c{list.c}. The application should
2952 search that array for the game it wants, probably by reaching into
2953 each game structure and looking at its \c{name} field.
2954
2955 }
2956
2957 \H{frontend-api} Mid-end to front-end calls
2958
2959 This section describes the small number of functions which a front
2960 end must provide to be called by the mid-end or other standard
2961 utility modules.
2962
2963 \H{frontend-get-random-seed} \cw{get_random_seed()}
2964
2965 \c void get_random_seed(void **randseed, int *randseedsize);
2966
2967 This function is called by a new mid-end, and also occasionally by
2968 game back ends. Its job is to return a piece of data suitable for
2969 using as a seed for initialisation of a new \c{random_state}.
2970
2971 On exit, \c{*randseed} should be set to point at a newly allocated
2972 piece of memory containing some seed data, and \c{*randseedsize}
2973 should be set to the length of that data.
2974
2975 A simple and entirely adequate implementation is to return a piece
2976 of data containing the current system time at the highest
2977 conveniently available resolution.
2978
2979 \H{frontend-activate-timer} \cw{activate_timer()}
2980
2981 \c void activate_timer(frontend *fe);
2982
2983 This is called by the mid-end to request that the front end begin
2984 calling it back at regular intervals.
2985
2986 The timeout interval is left up to the front end; the finer it is,
2987 the smoother move animations will be, but the more CPU time will be
2988 used. Current front ends use values around 20ms (i.e. 50Hz).
2989
2990 After this function is called, the mid-end will expect to receive
2991 calls to \cw{midend_timer()} on a regular basis.
2992
2993 \H{frontend-deactivate-timer} \cw{deactivate_timer()}
2994
2995 \c void deactivate_timer(frontend *fe);
2996
2997 This is called by the mid-end to request that the front end stop
2998 calling \cw{midend_timer()}.
2999
3000 \H{frontend-fatal} \cw{fatal()}
3001
3002 \c void fatal(char *fmt, ...);
3003
3004 This is called by some utility functions if they encounter a
3005 genuinely fatal error such as running out of memory. It is a
3006 variadic function in the style of \cw{printf()}, and is expected to
3007 show the formatted error message to the user any way it can and then
3008 terminate the application. It must not return.
3009
3010 \H{frontend-default-colour} \cw{frontend_default_colour()}
3011
3012 \c void frontend_default_colour(frontend *fe, float *output);
3013
3014 This function expects to be passed a pointer to an array of three
3015 \cw{float}s. It returns the platform's local preferred background
3016 colour in those three floats, as red, green and blue values (in that
3017 order) ranging from \cw{0.0} to \cw{1.0}.
3018
3019 This function should only ever be called by the back end function
3020 \cw{colours()} (\k{backend-colours}). (Thus, it isn't a
3021 \e{midend}-to-frontend function as such, but there didn't seem to be
3022 anywhere else particularly good to put it. Sorry.)
3023
3024 \C{utils} Utility APIs
3025
3026 This chapter documents a variety of utility APIs provided for the
3027 general use of the rest of the Puzzles code.
3028
3029 \H{utils-random} Random number generation
3030
3031 Platforms' local random number generators vary widely in quality and
3032 seed size. Puzzles therefore supplies its own high-quality random
3033 number generator, with the additional advantage of giving the same
3034 results if fed the same seed data on different platforms. This
3035 allows game random seeds to be exchanged between different ports of
3036 Puzzles and still generate the same games.
3037
3038 Unlike the ANSI C \cw{rand()} function, the Puzzles random number
3039 generator has an \e{explicit} state object called a
3040 \c{random_state}. One of these is managed by each mid-end, for
3041 example, and passed to the back end to generate a game with.
3042
3043 \S{utils-random-init} \cw{random_init()}
3044
3045 \c random_state *random_init(char *seed, int len);
3046
3047 Allocates, initialises and returns a new \c{random_state}. The input
3048 data is used as the seed for the random number stream (i.e. using
3049 the same seed at a later time will generate the same stream).
3050
3051 The seed data can be any data at all; there is no requirement to use
3052 printable ASCII, or NUL-terminated strings, or anything like that.
3053
3054 \S{utils-random-copy} \cw{random_copy()}
3055
3056 \c random_state *random_copy(random_state *tocopy);
3057
3058 Allocates a new \c{random_state}, copies the contents of another
3059 \c{random_state} into it, and returns the new state.  If exactly the
3060 same sequence of functions is subseqently called on both the copy and
3061 the original, the results will be identical.  This may be useful for
3062 speculatively performing some operation using a given random state,
3063 and later replaying that operation precisely.
3064
3065 \S{utils-random-free} \cw{random_free()}
3066
3067 \c void random_free(random_state *state);
3068
3069 Frees a \c{random_state}.
3070
3071 \S{utils-random-bits} \cw{random_bits()}
3072
3073 \c unsigned long random_bits(random_state *state, int bits);
3074
3075 Returns a random number from 0 to \cw{2^bits-1} inclusive. \c{bits}
3076 should be between 1 and 32 inclusive.
3077
3078 \S{utils-random-upto} \cw{random_upto()}
3079
3080 \c unsigned long random_upto(random_state *state, unsigned long limit);
3081
3082 Returns a random number from 0 to \cw{limit-1} inclusive.
3083
3084 \S{utils-random-state-encode} \cw{random_state_encode()}
3085
3086 \c char *random_state_encode(random_state *state);
3087
3088 Encodes the entire contents of a \c{random_state} in printable
3089 ASCII. Returns a dynamically allocated string containing that
3090 encoding. This can subsequently be passed to
3091 \cw{random_state_decode()} to reconstruct the same \c{random_state}.
3092
3093 \S{utils-random-state-decode} \cw{random_state_decode()}
3094
3095 \c random_state *random_state_decode(char *input);
3096
3097 Decodes a string generated by \cw{random_state_encode()} and
3098 reconstructs an equivalent \c{random_state} to the one encoded, i.e.
3099 it should produce the same stream of random numbers.
3100
3101 This function has no error reporting; if you pass it an invalid
3102 string it will simply generate an arbitrary random state, which may
3103 turn out to be noticeably non-random.
3104
3105 \S{utils-shuffle} \cw{shuffle()}
3106
3107 \c void shuffle(void *array, int nelts, int eltsize, random_state *rs);
3108
3109 Shuffles an array into a random order. The interface is much like
3110 ANSI C \cw{qsort()}, except that there's no need for a compare
3111 function.
3112
3113 \c{array} is a pointer to the first element of the array. \c{nelts}
3114 is the number of elements in the array; \c{eltsize} is the size of a
3115 single element (typically measured using \c{sizeof}). \c{rs} is a
3116 \c{random_state} used to generate all the random numbers for the
3117 shuffling process.
3118
3119 \H{utils-alloc} Memory allocation
3120
3121 Puzzles has some central wrappers on the standard memory allocation
3122 functions, which provide compile-time type checking, and run-time
3123 error checking by means of quitting the application if it runs out
3124 of memory. This doesn't provide the best possible recovery from
3125 memory shortage, but on the other hand it greatly simplifies the
3126 rest of the code, because nothing else anywhere needs to worry about
3127 \cw{NULL} returns from allocation.
3128
3129 \S{utils-snew} \cw{snew()}
3130
3131 \c var = snew(type);
3132 \e iii        iiii
3133
3134 This macro takes a single argument which is a \e{type name}. It
3135 allocates space for one object of that type. If allocation fails it
3136 will call \cw{fatal()} and not return; so if it does return, you can
3137 be confident that its return value is non-\cw{NULL}.
3138
3139 The return value is cast to the specified type, so that the compiler
3140 will type-check it against the variable you assign it into. Thus,
3141 this ensures you don't accidentally allocate memory the size of the
3142 wrong type and assign it into a variable of the right one (or vice
3143 versa!).
3144
3145 \S{utils-snewn} \cw{snewn()}
3146
3147 \c var = snewn(n, type);
3148 \e iii         i  iiii
3149
3150 This macro is the array form of \cw{snew()}. It takes two arguments;
3151 the first is a number, and the second is a type name. It allocates
3152 space for that many objects of that type, and returns a type-checked
3153 non-\cw{NULL} pointer just as \cw{snew()} does.
3154
3155 \S{utils-sresize} \cw{sresize()}
3156
3157 \c var = sresize(var, n, type);
3158 \e iii           iii  i  iiii
3159
3160 This macro is a type-checked form of \cw{realloc()}. It takes three
3161 arguments: an input memory block, a new size in elements, and a
3162 type. It re-sizes the input memory block to a size sufficient to
3163 contain that many elements of that type. It returns a type-checked
3164 non-\cw{NULL} pointer, like \cw{snew()} and \cw{snewn()}.
3165
3166 The input memory block can be \cw{NULL}, in which case this function
3167 will behave exactly like \cw{snewn()}. (In principle any
3168 ANSI-compliant \cw{realloc()} implementation ought to cope with
3169 this, but I've never quite trusted it to work everywhere.)
3170
3171 \S{utils-sfree} \cw{sfree()}
3172
3173 \c void sfree(void *p);
3174
3175 This function is pretty much equivalent to \cw{free()}. It is
3176 provided with a dynamically allocated block, and frees it.
3177
3178 The input memory block can be \cw{NULL}, in which case this function
3179 will do nothing. (In principle any ANSI-compliant \cw{free()}
3180 implementation ought to cope with this, but I've never quite trusted
3181 it to work everywhere.)
3182
3183 \S{utils-dupstr} \cw{dupstr()}
3184
3185 \c char *dupstr(const char *s);
3186
3187 This function dynamically allocates a duplicate of a C string. Like
3188 the \cw{snew()} functions, it guarantees to return non-\cw{NULL} or
3189 not return at all.
3190
3191 (Many platforms provide the function \cw{strdup()}. As well as
3192 guaranteeing never to return \cw{NULL}, my version has the advantage
3193 of being defined \e{everywhere}, rather than inconveniently not
3194 quite everywhere.)
3195
3196 \S{utils-free-cfg} \cw{free_cfg()}
3197
3198 \c void free_cfg(config_item *cfg);
3199
3200 This function correctly frees an array of \c{config_item}s,
3201 including walking the array until it gets to the end and freeing
3202 precisely those \c{sval} fields which are expected to be dynamically
3203 allocated.
3204
3205 (See \k{backend-configure} for details of the \c{config_item}
3206 structure.)
3207
3208 \H{utils-tree234} Sorted and counted tree functions
3209
3210 Many games require complex algorithms for generating random puzzles,
3211 and some require moderately complex algorithms even during play. A
3212 common requirement during these algorithms is for a means of
3213 maintaining sorted or unsorted lists of items, such that items can
3214 be removed and added conveniently.
3215
3216 For general use, Puzzles provides the following set of functions
3217 which maintain 2-3-4 trees in memory. (A 2-3-4 tree is a balanced
3218 tree structure, with the property that all lookups, insertions,
3219 deletions, splits and joins can be done in \cw{O(log N)} time.)
3220
3221 All these functions expect you to be storing a tree of \c{void *}
3222 pointers. You can put anything you like in those pointers.
3223
3224 By the use of per-node element counts, these tree structures have
3225 the slightly unusual ability to look elements up by their numeric
3226 index within the list represented by the tree. This means that they
3227 can be used to store an unsorted list (in which case, every time you
3228 insert a new element, you must explicitly specify the position where
3229 you wish to insert it). They can also do numeric lookups in a sorted
3230 tree, which might be useful for (for example) tracking the median of
3231 a changing data set.
3232
3233 As well as storing sorted lists, these functions can be used for
3234 storing \q{maps} (associative arrays), by defining each element of a
3235 tree to be a (key, value) pair.
3236
3237 \S{utils-newtree234} \cw{newtree234()}
3238
3239 \c tree234 *newtree234(cmpfn234 cmp);
3240
3241 Creates a new empty tree, and returns a pointer to it.
3242
3243 The parameter \c{cmp} determines the sorting criterion on the tree.
3244 Its prototype is
3245
3246 \c typedef int (*cmpfn234)(void *, void *);
3247
3248 If you want a sorted tree, you should provide a function matching
3249 this prototype, which returns like \cw{strcmp()} does (negative if
3250 the first argument is smaller than the second, positive if it is
3251 bigger, zero if they compare equal). In this case, the function
3252 \cw{addpos234()} will not be usable on your tree (because all
3253 insertions must respect the sorting order).
3254
3255 If you want an unsorted tree, pass \cw{NULL}. In this case you will
3256 not be able to use either \cw{add234()} or \cw{del234()}, or any
3257 other function such as \cw{find234()} which depends on a sorting
3258 order. Your tree will become something more like an array, except
3259 that it will efficiently support insertion and deletion as well as
3260 lookups by numeric index.
3261
3262 \S{utils-freetree234} \cw{freetree234()}
3263
3264 \c void freetree234(tree234 *t);
3265
3266 Frees a tree. This function will not free the \e{elements} of the
3267 tree (because they might not be dynamically allocated, or you might
3268 be storing the same set of elements in more than one tree); it will
3269 just free the tree structure itself. If you want to free all the
3270 elements of a tree, you should empty it before passing it to
3271 \cw{freetree234()}, by means of code along the lines of
3272
3273 \c while ((element = delpos234(tree, 0)) != NULL)
3274 \c     sfree(element); /* or some more complicated free function */
3275 \e                     iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
3276
3277 \S{utils-add234} \cw{add234()}
3278
3279 \c void *add234(tree234 *t, void *e);
3280
3281 Inserts a new element \c{e} into the tree \c{t}. This function
3282 expects the tree to be sorted; the new element is inserted according
3283 to the sort order.
3284
3285 If an element comparing equal to \c{e} is already in the tree, then
3286 the insertion will fail, and the return value will be the existing
3287 element. Otherwise, the insertion succeeds, and \c{e} is returned.
3288
3289 \S{utils-addpos234} \cw{addpos234()}
3290
3291 \c void *addpos234(tree234 *t, void *e, int index);
3292
3293 Inserts a new element into an unsorted tree. Since there is no
3294 sorting order to dictate where the new element goes, you must
3295 specify where you want it to go. Setting \c{index} to zero puts the
3296 new element right at the start of the list; setting \c{index} to the
3297 current number of elements in the tree puts the new element at the
3298 end.
3299
3300 Return value is \c{e}, in line with \cw{add234()} (although this
3301 function cannot fail except by running out of memory, in which case
3302 it will bomb out and die rather than returning an error indication).
3303
3304 \S{utils-index234} \cw{index234()}
3305
3306 \c void *index234(tree234 *t, int index);
3307
3308 Returns a pointer to the \c{index}th element of the tree, or
3309 \cw{NULL} if \c{index} is out of range. Elements of the tree are
3310 numbered from zero.
3311
3312 \S{utils-find234} \cw{find234()}
3313
3314 \c void *find234(tree234 *t, void *e, cmpfn234 cmp);
3315
3316 Searches for an element comparing equal to \c{e} in a sorted tree.
3317
3318 If \c{cmp} is \cw{NULL}, the tree's ordinary comparison function
3319 will be used to perform the search. However, sometimes you don't
3320 want that; suppose, for example, each of your elements is a big
3321 structure containing a \c{char *} name field, and you want to find
3322 the element with a given name. You \e{could} achieve this by
3323 constructing a fake element structure, setting its name field
3324 appropriately, and passing it to \cw{find234()}, but you might find
3325 it more convenient to pass \e{just} a name string to \cw{find234()},
3326 supplying an alternative comparison function which expects one of
3327 its arguments to be a bare name and the other to be a large
3328 structure containing a name field.
3329
3330 Therefore, if \c{cmp} is not \cw{NULL}, then it will be used to
3331 compare \c{e} to elements of the tree. The first argument passed to
3332 \c{cmp} will always be \c{e}; the second will be an element of the
3333 tree.
3334
3335 (See \k{utils-newtree234} for the definition of the \c{cmpfn234}
3336 function pointer type.)
3337
3338 The returned value is the element found, or \cw{NULL} if the search
3339 is unsuccessful.
3340
3341 \S{utils-findrel234} \cw{findrel234()}
3342
3343 \c void *findrel234(tree234 *t, void *e, cmpfn234 cmp, int relation);
3344
3345 This function is like \cw{find234()}, but has the additional ability
3346 to do a \e{relative} search. The additional parameter \c{relation}
3347 can be one of the following values:
3348
3349 \dt \cw{REL234_EQ}
3350
3351 \dd Find only an element that compares equal to \c{e}. This is
3352 exactly the behaviour of \cw{find234()}.
3353
3354 \dt \cw{REL234_LT}
3355
3356 \dd Find the greatest element that compares strictly less than
3357 \c{e}. \c{e} may be \cw{NULL}, in which case it finds the greatest
3358 element in the whole tree (which could also be done by
3359 \cw{index234(t, count234(t)-1)}).
3360
3361 \dt \cw{REL234_LE}
3362
3363 \dd Find the greatest element that compares less than or equal to
3364 \c{e}. (That is, find an element that compares equal to \c{e} if
3365 possible, but failing that settle for something just less than it.)
3366
3367 \dt \cw{REL234_GT}
3368
3369 \dd Find the smallest element that compares strictly greater than
3370 \c{e}. \c{e} may be \cw{NULL}, in which case it finds the smallest
3371 element in the whole tree (which could also be done by
3372 \cw{index234(t, 0)}).
3373
3374 \dt \cw{REL234_GE}
3375
3376 \dd Find the smallest element that compares greater than or equal to
3377 \c{e}. (That is, find an element that compares equal to \c{e} if
3378 possible, but failing that settle for something just bigger than
3379 it.)
3380
3381 Return value, as before, is the element found or \cw{NULL} if no
3382 element satisfied the search criterion.
3383
3384 \S{utils-findpos234} \cw{findpos234()}
3385
3386 \c void *findpos234(tree234 *t, void *e, cmpfn234 cmp, int *index);
3387
3388 This function is like \cw{find234()}, but has the additional feature
3389 of returning the index of the element found in the tree; that index
3390 is written to \c{*index} in the event of a successful search (a
3391 non-\cw{NULL} return value).
3392
3393 \c{index} may be \cw{NULL}, in which case this function behaves
3394 exactly like \cw{find234()}.
3395
3396 \S{utils-findrelpos234} \cw{findrelpos234()}
3397
3398 \c void *findrelpos234(tree234 *t, void *e, cmpfn234 cmp, int relation,
3399 \c                     int *index);
3400
3401 This function combines all the features of \cw{findrel234()} and
3402 \cw{findpos234()}.
3403
3404 \S{utils-del234} \cw{del234()}
3405
3406 \c void *del234(tree234 *t, void *e);
3407
3408 Finds an element comparing equal to \c{e} in the tree, deletes it,
3409 and returns it.
3410
3411 The input tree must be sorted.
3412
3413 The element found might be \c{e} itself, or might merely compare
3414 equal to it.
3415
3416 Return value is \cw{NULL} if no such element is found.
3417
3418 \S{utils-delpos234} \cw{delpos234()}
3419
3420 \c void *delpos234(tree234 *t, int index);
3421
3422 Deletes the element at position \c{index} in the tree, and returns
3423 it.
3424
3425 Return value is \cw{NULL} if the index is out of range.
3426
3427 \S{utils-count234} \cw{count234()}
3428
3429 \c int count234(tree234 *t);
3430
3431 Returns the number of elements currently in the tree.
3432
3433 \S{utils-splitpos234} \cw{splitpos234()}
3434
3435 \c tree234 *splitpos234(tree234 *t, int index, int before);
3436
3437 Splits the input tree into two pieces at a given position, and
3438 creates a new tree containing all the elements on one side of that
3439 position.
3440
3441 If \c{before} is \cw{TRUE}, then all the items at or after position
3442 \c{index} are left in the input tree, and the items before that
3443 point are returned in the new tree. Otherwise, the reverse happens:
3444 all the items at or after \c{index} are moved into the new tree, and
3445 those before that point are left in the old one.
3446
3447 If \c{index} is equal to 0 or to the number of elements in the input
3448 tree, then one of the two trees will end up empty (and this is not
3449 an error condition). If \c{index} is further out of range in either
3450 direction, the operation will fail completely and return \cw{NULL}.
3451
3452 This operation completes in \cw{O(log N)} time, no matter how large
3453 the tree or how balanced or unbalanced the split.
3454
3455 \S{utils-split234} \cw{split234()}
3456
3457 \c tree234 *split234(tree234 *t, void *e, cmpfn234 cmp, int rel);
3458
3459 Splits a sorted tree according to its sort order.
3460
3461 \c{rel} can be any of the relation constants described in
3462 \k{utils-findrel234}, \e{except} for \cw{REL234_EQ}. All the
3463 elements having that relation to \c{e} will be transferred into the
3464 new tree; the rest will be left in the old one.
3465
3466 The parameter \c{cmp} has the same semantics as it does in
3467 \cw{find234()}: if it is not \cw{NULL}, it will be used in place of
3468 the tree's own comparison function when comparing elements to \c{e},
3469 in such a way that \c{e} itself is always the first of its two
3470 operands.
3471
3472 Again, this operation completes in \cw{O(log N)} time, no matter how
3473 large the tree or how balanced or unbalanced the split.
3474
3475 \S{utils-join234} \cw{join234()}
3476
3477 \c tree234 *join234(tree234 *t1, tree234 *t2);
3478
3479 Joins two trees together by concatenating the lists they represent.
3480 All the elements of \c{t2} are moved into \c{t1}, in such a way that
3481 they appear \e{after} the elements of \c{t1}. The tree \c{t2} is
3482 freed; the return value is \c{t1}.
3483
3484 If you apply this function to a sorted tree and it violates the sort
3485 order (i.e. the smallest element in \c{t2} is smaller than or equal
3486 to the largest element in \c{t1}), the operation will fail and
3487 return \cw{NULL}.
3488
3489 This operation completes in \cw{O(log N)} time, no matter how large
3490 the trees being joined together.
3491
3492 \S{utils-join234r} \cw{join234r()}
3493
3494 \c tree234 *join234r(tree234 *t1, tree234 *t2);
3495
3496 Joins two trees together in exactly the same way as \cw{join234()},
3497 but this time the combined tree is returned in \c{t2}, and \c{t1} is
3498 destroyed. The elements in \c{t1} still appear before those in
3499 \c{t2}.
3500
3501 Again, this operation completes in \cw{O(log N)} time, no matter how
3502 large the trees being joined together.
3503
3504 \S{utils-copytree234} \cw{copytree234()}
3505
3506 \c tree234 *copytree234(tree234 *t, copyfn234 copyfn,
3507 \c                      void *copyfnstate);
3508
3509 Makes a copy of an entire tree.
3510
3511 If \c{copyfn} is \cw{NULL}, the tree will be copied but the elements
3512 will not be; i.e. the new tree will contain pointers to exactly the
3513 same physical elements as the old one.
3514
3515 If you want to copy each actual element during the operation, you
3516 can instead pass a function in \c{copyfn} which makes a copy of each
3517 element. That function has the prototype
3518
3519 \c typedef void *(*copyfn234)(void *state, void *element);
3520
3521 and every time it is called, the \c{state} parameter will be set to
3522 the value you passed in as \c{copyfnstate}.
3523
3524 \H{utils-misc} Miscellaneous utility functions and macros
3525
3526 This section contains all the utility functions which didn't
3527 sensibly fit anywhere else.
3528
3529 \S{utils-truefalse} \cw{TRUE} and \cw{FALSE}
3530
3531 The main Puzzles header file defines the macros \cw{TRUE} and
3532 \cw{FALSE}, which are used throughout the code in place of 0 and 1
3533 to indicate that the values are in a boolean context. For code base
3534 consistency, I'd prefer it if submissions of new code followed this
3535 convention as well.
3536
3537 \S{utils-maxmin} \cw{max()} and \cw{min()}
3538
3539 The main Puzzles header file defines the pretty standard macros
3540 \cw{max()} and \cw{min()}, each of which is given two arguments and
3541 returns the one which compares greater or less respectively.
3542
3543 These macros may evaluate their arguments multiple times. Avoid side
3544 effects.
3545
3546 \S{utils-pi} \cw{PI}
3547
3548 The main Puzzles header file defines a macro \cw{PI} which expands
3549 to a floating-point constant representing pi.
3550
3551 (I've never understood why ANSI's \cw{<math.h>} doesn't define this.
3552 It'd be so useful!)
3553
3554 \S{utils-obfuscate-bitmap} \cw{obfuscate_bitmap()}
3555
3556 \c void obfuscate_bitmap(unsigned char *bmp, int bits, int decode);
3557
3558 This function obscures the contents of a piece of data, by
3559 cryptographic methods. It is useful for games of hidden information
3560 (such as Mines, Guess or Black Box), in which the game ID
3561 theoretically reveals all the information the player is supposed to
3562 be trying to guess. So in order that players should be able to send
3563 game IDs to one another without accidentally spoiling the resulting
3564 game by looking at them, these games obfuscate their game IDs using
3565 this function.
3566
3567 Although the obfuscation function is cryptographic, it cannot
3568 properly be called encryption because it has no key. Therefore,
3569 anybody motivated enough can re-implement it, or hack it out of the
3570 Puzzles source, and strip the obfuscation off one of these game IDs
3571 to see what lies beneath. (Indeed, they could usually do it much
3572 more easily than that, by entering the game ID into their own copy
3573 of the puzzle and hitting Solve.) The aim is not to protect against
3574 a determined attacker; the aim is simply to protect people who
3575 wanted to play the game honestly from \e{accidentally} spoiling
3576 their own fun.
3577
3578 The input argument \c{bmp} points at a piece of memory to be
3579 obfuscated. \c{bits} gives the length of the data. Note that that
3580 length is in \e{bits} rather than bytes: if you ask for obfuscation
3581 of a partial number of bytes, then you will get it. Bytes are
3582 considered to be used from the top down: thus, for example, setting
3583 \c{bits} to 10 will cover the whole of \cw{bmp[0]} and the \e{top
3584 two} bits of \cw{bmp[1]}. The remainder of a partially used byte is
3585 undefined (i.e. it may be corrupted by the function).
3586
3587 The parameter \c{decode} is \cw{FALSE} for an encoding operation,
3588 and \cw{TRUE} for a decoding operation. Each is the inverse of the
3589 other. (There's no particular reason you shouldn't obfuscate by
3590 decoding and restore cleartext by encoding, if you really wanted to;
3591 it should still work.)
3592
3593 The input bitmap is processed in place.
3594
3595 \S{utils-bin2hex} \cw{bin2hex()}
3596
3597 \c char *bin2hex(const unsigned char *in, int inlen);
3598
3599 This function takes an input byte array and converts it into an
3600 ASCII string encoding those bytes in (lower-case) hex. It returns a
3601 dynamically allocated string containing that encoding.
3602
3603 This function is useful for encoding the result of
3604 \cw{obfuscate_bitmap()} in printable ASCII for use in game IDs.
3605
3606 \S{utils-hex2bin} \cw{hex2bin()}
3607
3608 \c unsigned char *hex2bin(const char *in, int outlen);
3609
3610 This function takes an ASCII string containing hex digits, and
3611 converts it back into a byte array of length \c{outlen}. If there
3612 aren't enough hex digits in the string, the contents of the
3613 resulting array will be undefined.
3614
3615 This function is the inverse of \cw{bin2hex()}.
3616
3617 \S{utils-game-mkhighlight} \cw{game_mkhighlight()}
3618
3619 \c void game_mkhighlight(frontend *fe, float *ret,
3620 \c                       int background, int highlight, int lowlight);
3621
3622 It's reasonably common for a puzzle game's graphics to use
3623 highlights and lowlights to indicate \q{raised} or \q{lowered}
3624 sections. Fifteen, Sixteen and Twiddle are good examples of this.
3625
3626 Puzzles using this graphical style are running a risk if they just
3627 use whatever background colour is supplied to them by the front end,
3628 because that background colour might be too light to see any
3629 highlights on at all. (In particular, it's not unheard of for the
3630 front end to specify a default background colour of white.)
3631
3632 Therefore, such puzzles can call this utility function from their
3633 \cw{colours()} routine (\k{backend-colours}). You pass it your front
3634 end handle, a pointer to the start of your return array, and three
3635 colour indices. It will:
3636
3637 \b call \cw{frontend_default_colour()} (\k{frontend-default-colour})
3638 to fetch the front end's default background colour
3639
3640 \b alter the brightness of that colour if it's unsuitable
3641
3642 \b define brighter and darker variants of the colour to be used as
3643 highlights and lowlights
3644
3645 \b write those results into the relevant positions in the \c{ret}
3646 array.
3647
3648 Thus, \cw{ret[background*3]} to \cw{ret[background*3+2]} will be set
3649 to RGB values defining a sensible background colour, and similary
3650 \c{highlight} and \c{lowlight} will be set to sensible colours.
3651
3652 \C{writing} How to write a new puzzle
3653
3654 This chapter gives a guide to how to actually write a new puzzle:
3655 where to start, what to do first, how to solve common problems.
3656
3657 The previous chapters have been largely composed of facts. This one
3658 is mostly advice.
3659
3660 \H{writing-editorial} Choosing a puzzle
3661
3662 Before you start writing a puzzle, you have to choose one. Your
3663 taste in puzzle games is up to you, of course; and, in fact, you're
3664 probably reading this guide because you've \e{already} thought of a
3665 game you want to write. But if you want to get it accepted into the
3666 official Puzzles distribution, then there's a criterion it has to
3667 meet.
3668
3669 The current Puzzles editorial policy is that all games should be
3670 \e{fair}. A fair game is one which a player can only fail to
3671 complete through demonstrable lack of skill \dash that is, such that
3672 a better player in the same situation would have \e{known} to do
3673 something different.
3674
3675 For a start, that means every game presented to the user must have
3676 \e{at least one solution}. Giving the unsuspecting user a puzzle
3677 which is actually impossible is not acceptable. (There is an
3678 exception: if the user has selected some non-default option which is
3679 clearly labelled as potentially unfair, \e{then} you're allowed to
3680 generate possibly insoluble puzzles, because the user isn't
3681 unsuspecting any more. Same Game and Mines both have options of this
3682 type.)
3683
3684 Also, this actually \e{rules out} games such as Klondike, or the
3685 normal form of Mahjong Solitaire. Those games have the property that
3686 even if there is a solution (i.e. some sequence of moves which will
3687 get from the start state to the solved state), the player doesn't
3688 necessarily have enough information to \e{find} that solution. In
3689 both games, it is possible to reach a dead end because you had an
3690 arbitrary choice to make and made it the wrong way. This violates
3691 the fairness criterion, because a better player couldn't have known
3692 they needed to make the other choice.
3693
3694 (GNOME has a variant on Mahjong Solitaire which makes it fair: there
3695 is a Shuffle operation which randomly permutes all the remaining
3696 tiles without changing their positions, which allows you to get out
3697 of a sticky situation. Using this operation adds a 60-second penalty
3698 to your solution time, so it's to the player's advantage to try to
3699 minimise the chance of having to use it. It's still possible to
3700 render the game uncompletable if you end up with only two tiles
3701 vertically stacked, but that's easy to foresee and avoid using a
3702 shuffle operation. This form of the game \e{is} fair. Implementing
3703 it in Puzzles would require an infrastructure change so that the
3704 back end could communicate time penalties to the mid-end, but that
3705 would be easy enough.)
3706
3707 Providing a \e{unique} solution is a little more negotiable; it
3708 depends on the puzzle. Solo would have been of unacceptably low
3709 quality if it didn't always have a unique solution, whereas Twiddle
3710 inherently has multiple solutions by its very nature and it would
3711 have been meaningless to even \e{suggest} making it uniquely
3712 soluble. Somewhere in between, Flip could reasonably be made to have
3713 unique solutions (by enforcing a zero-dimension kernel in every
3714 generated matrix) but it doesn't seem like a serious quality problem
3715 that it doesn't.
3716
3717 Of course, you don't \e{have} to care about all this. There's
3718 nothing stopping you implementing any puzzle you want to if you're
3719 happy to maintain your puzzle yourself, distribute it from your own
3720 web site, fork the Puzzles code completely, or anything like that.
3721 It's free software; you can do what you like with it. But any game
3722 that you want to be accepted into \e{my} Puzzles code base has to
3723 satisfy the fairness criterion, which means all randomly generated
3724 puzzles must have a solution (unless the user has deliberately
3725 chosen otherwise) and it must be possible \e{in theory} to find that
3726 solution without having to guess.
3727
3728 \H{writing-gs} Getting started
3729
3730 The simplest way to start writing a new puzzle is to copy
3731 \c{nullgame.c}. This is a template puzzle source file which does
3732 almost nothing, but which contains all the back end function
3733 prototypes and declares the back end data structure correctly. It is
3734 built every time the rest of Puzzles is built, to ensure that it
3735 doesn't get out of sync with the code and remains buildable.
3736
3737 So start by copying \c{nullgame.c} into your new source file. Then
3738 you'll gradually add functionality until the very boring Null Game
3739 turns into your real game.
3740
3741 Next you'll need to add your puzzle to the Makefiles, in order to
3742 compile it conveniently. \e{Do not edit the Makefiles}: they are
3743 created automatically by the script \c{mkfiles.pl}, from the file
3744 called \c{Recipe}. Edit \c{Recipe}, and then re-run \c{mkfiles.pl}.
3745
3746 Once your source file is building, you can move on to the fun bit.
3747
3748 \S{writing-generation} Puzzle generation
3749
3750 Randomly generating instances of your puzzle is almost certain to be
3751 the most difficult part of the code, and also the task with the
3752 highest chance of turning out to be completely infeasible. Therefore
3753 I strongly recommend doing it \e{first}, so that if it all goes
3754 horribly wrong you haven't wasted any more time than you absolutely
3755 had to. What I usually do is to take an unmodified \c{nullgame.c},
3756 and start adding code to \cw{new_game_desc()} which tries to
3757 generate a puzzle instance and print it out using \cw{printf()}.
3758 Once that's working, \e{then} I start connecting it up to the return
3759 value of \cw{new_game_desc()}, populating other structures like
3760 \c{game_params}, and generally writing the rest of the source file.
3761
3762 There are many ways to generate a puzzle which is known to be
3763 soluble. In this section I list all the methods I currently know of,
3764 in case any of them can be applied to your puzzle. (Not all of these
3765 methods will work, or in some cases even make sense, for all
3766 puzzles.)
3767
3768 Some puzzles are mathematically tractable, meaning you can work out
3769 in advance which instances are soluble. Sixteen, for example, has a
3770 parity constraint in some settings which renders exactly half the
3771 game space unreachable, but it can be mathematically proved that any
3772 position not in that half \e{is} reachable. Therefore, Sixteen's
3773 grid generation simply consists of selecting at random from a well
3774 defined subset of the game space. Cube in its default state is even
3775 easier: \e{every} possible arrangement of the blue squares and the
3776 cube's starting position is soluble!
3777
3778 Another option is to redefine what you mean by \q{soluble}. Black
3779 Box takes this approach. There are layouts of balls in the box which
3780 are completely indistinguishable from one another no matter how many
3781 beams you fire into the box from which angles, which would normally
3782 be grounds for declaring those layouts unfair; but fortunately,
3783 detecting that indistinguishability is computationally easy. So
3784 Black Box doesn't demand that your ball placements match its own; it
3785 merely demands that your ball placements be \e{indistinguishable}
3786 from the ones it was thinking of. If you have an ambiguous puzzle,
3787 then any of the possible answers is considered to be a solution.
3788 Having redefined the rules in that way, any puzzle is soluble again.
3789
3790 Those are the simple techniques. If they don't work, you have to get
3791 cleverer.
3792
3793 One way to generate a soluble puzzle is to start from the solved
3794 state and make inverse moves until you reach a starting state. Then
3795 you know there's a solution, because you can just list the inverse
3796 moves you made and make them in the opposite order to return to the
3797 solved state.
3798
3799 This method can be simple and effective for puzzles where you get to
3800 decide what's a starting state and what's not. In Pegs, for example,
3801 the generator begins with one peg in the centre of the board and
3802 makes inverse moves until it gets bored; in this puzzle, valid
3803 inverse moves are easy to detect, and \e{any} state that's reachable
3804 from the solved state by inverse moves is a reasonable starting
3805 position. So Pegs just continues making inverse moves until the
3806 board satisfies some criteria about extent and density, and then
3807 stops and declares itself done.
3808
3809 For other puzzles, it can be a lot more difficult. Same Game uses
3810 this strategy too, and it's lucky to get away with it at all: valid
3811 inverse moves aren't easy to find (because although it's easy to
3812 insert additional squares in a Same Game position, it's difficult to
3813 arrange that \e{after} the insertion they aren't adjacent to any
3814 other squares of the same colour), so you're constantly at risk of
3815 running out of options and having to backtrack or start again. Also,
3816 Same Game grids never start off half-empty, which means you can't
3817 just stop when you run out of moves \dash you have to find a way to
3818 fill the grid up \e{completely}.
3819
3820 The other way to generate a puzzle that's soluble is to start from
3821 the other end, and actually write a \e{solver}. This tends to ensure
3822 that a puzzle has a \e{unique} solution over and above having a
3823 solution at all, so it's a good technique to apply to puzzles for
3824 which that's important.
3825
3826 One theoretical drawback of generating soluble puzzles by using a
3827 solver is that your puzzles are restricted in difficulty to those
3828 which the solver can handle. (Most solvers are not fully general:
3829 many sets of puzzle rules are NP-complete or otherwise nasty, so
3830 most solvers can only handle a subset of the theoretically soluble
3831 puzzles.) It's been my experience in practice, however, that this
3832 usually isn't a problem; computers are good at very different things
3833 from humans, and what the computer thinks is nice and easy might
3834 still be pleasantly challenging for a human. For example, when
3835 solving Dominosa puzzles I frequently find myself using a variety of
3836 reasoning techniques that my solver doesn't know about; in
3837 principle, therefore, I should be able to solve the puzzle using
3838 only those techniques it \e{does} know about, but this would involve
3839 repeatedly searching the entire grid for the one simple deduction I
3840 can make. Computers are good at this sort of exhaustive search, but
3841 it's been my experience that human solvers prefer to do more complex
3842 deductions than to spend ages searching for simple ones. So in many
3843 cases I don't find my own playing experience to be limited by the
3844 restrictions on the solver.
3845
3846 (This isn't \e{always} the case. Solo is a counter-example;
3847 generating Solo puzzles using a simple solver does lead to
3848 qualitatively easier puzzles. Therefore I had to make the Solo
3849 solver rather more advanced than most of them.)
3850
3851 There are several different ways to apply a solver to the problem of
3852 generating a soluble puzzle. I list a few of them below.
3853
3854 The simplest approach is brute force: randomly generate a puzzle,
3855 use the solver to see if it's soluble, and if not, throw it away and
3856 try again until you get lucky. This is often a viable technique if
3857 all else fails, but it tends not to scale well: for many puzzle
3858 types, the probability of finding a uniquely soluble instance
3859 decreases sharply as puzzle size goes up, so this technique might
3860 work reasonably fast for small puzzles but take (almost) forever at
3861 larger sizes. Still, if there's no other alternative it can be
3862 usable: Pattern and Dominosa both use this technique. (However,
3863 Dominosa has a means of tweaking the randomly generated grids to
3864 increase the \e{probability} of them being soluble, by ruling out
3865 one of the most common ambiguous cases. This improved generation
3866 speed by over a factor of 10 on the highest preset!)
3867
3868 An approach which can be more scalable involves generating a grid
3869 and then tweaking it to make it soluble. This is the technique used
3870 by Mines and also by Net: first a random puzzle is generated, and
3871 then the solver is run to see how far it gets. Sometimes the solver
3872 will get stuck; when that happens, examine the area it's having
3873 trouble with, and make a small random change in that area to allow
3874 it to make more progress. Continue solving (possibly even without
3875 restarting the solver), tweaking as necessary, until the solver
3876 finishes. Then restart the solver from the beginning to ensure that
3877 the tweaks haven't caused new problems in the process of solving old
3878 ones (which can sometimes happen).
3879
3880 This strategy works well in situations where the usual solver
3881 failure mode is to get stuck in an easily localised spot. Thus it
3882 works well for Net and Mines, whose most common failure mode tends
3883 to be that most of the grid is fine but there are a few widely
3884 separated ambiguous sections; but it would work less well for
3885 Dominosa, in which the way you get stuck is to have scoured the
3886 whole grid and not found anything you can deduce \e{anywhere}. Also,
3887 it relies on there being a low probability that tweaking the grid
3888 introduces a new problem at the same time as solving the old one;
3889 Mines and Net also have the property that most of their deductions
3890 are local, so that it's very unlikely for a tweak to affect
3891 something half way across the grid from the location where it was
3892 applied. In Dominosa, by contrast, a lot of deductions use
3893 information about half the grid (\q{out of all the sixes, only one
3894 is next to a three}, which can depend on the values of up to 32 of
3895 the 56 squares in the default setting!), so this tweaking strategy
3896 would be rather less likely to work well.
3897
3898 A more specialised strategy is that used in Solo and Slant. These
3899 puzzles have the property that they derive their difficulty from not
3900 presenting all the available clues. (In Solo's case, if all the
3901 possible clues were provided then the puzzle would already be
3902 solved; in Slant it would still require user action to fill in the
3903 lines, but it would present no challenge at all). Therefore, a
3904 simple generation technique is to leave the decision of which clues
3905 to provide until the last minute. In other words, first generate a
3906 random \e{filled} grid with all possible clues present, and then
3907 gradually remove clues for as long as the solver reports that it's
3908 still soluble. Unlike the methods described above, this technique
3909 \e{cannot} fail \dash once you've got a filled grid, nothing can
3910 stop you from being able to convert it into a viable puzzle.
3911 However, it wouldn't even be meaningful to apply this technique to
3912 (say) Pattern, in which clues can never be left out, so the only way
3913 to affect the set of clues is by altering the solution.
3914
3915 (Unfortunately, Solo is complicated by the need to provide puzzles
3916 at varying difficulty levels. It's easy enough to generate a puzzle
3917 of \e{at most} a given level of difficulty; you just have a solver
3918 with configurable intelligence, and you set it to a given level and
3919 apply the above technique, thus guaranteeing that the resulting grid
3920 is solvable by someone with at most that much intelligence. However,
3921 generating a puzzle of \e{at least} a given level of difficulty is
3922 rather harder; if you go for \e{at most} Intermediate level, you're
3923 likely to find that you've accidentally generated a Trivial grid a
3924 lot of the time, because removing just one number is sufficient to
3925 take the puzzle from Trivial straight to Ambiguous. In that
3926 situation Solo has no remaining options but to throw the puzzle away
3927 and start again.)
3928
3929 A final strategy is to use the solver \e{during} puzzle
3930 construction: lay out a bit of the grid, run the solver to see what
3931 it allows you to deduce, and then lay out a bit more to allow the
3932 solver to make more progress. There are articles on the web that
3933 recommend constructing Sudoku puzzles by this method (which is
3934 completely the opposite way round to how Solo does it); for Sudoku
3935 it has the advantage that you get to specify your clue squares in
3936 advance (so you can have them make pretty patterns).
3937
3938 Rectangles uses a strategy along these lines. First it generates a
3939 grid by placing the actual rectangles; then it has to decide where
3940 in each rectangle to place a number. It uses a solver to help it
3941 place the numbers in such a way as to ensure a unique solution. It
3942 does this by means of running a test solver, but it runs the solver
3943 \e{before} it's placed any of the numbers \dash which means the
3944 solver must be capable of coping with uncertainty about exactly
3945 where the numbers are! It runs the solver as far as it can until it
3946 gets stuck; then it narrows down the possible positions of a number
3947 in order to allow the solver to make more progress, and so on. Most
3948 of the time this process terminates with the grid fully solved, at
3949 which point any remaining number-placement decisions can be made at
3950 random from the options not so far ruled out. Note that unlike the
3951 Net/Mines tweaking strategy described above, this algorithm does not
3952 require a checking run after it completes: if it finishes
3953 successfully at all, then it has definitely produced a uniquely
3954 soluble puzzle.
3955
3956 Most of the strategies described above are not 100% reliable. Each
3957 one has a failure rate: every so often it has to throw out the whole
3958 grid and generate a fresh one from scratch. (Solo's strategy would
3959 be the exception, if it weren't for the need to provide configurable
3960 difficulty levels.) Occasional failures are not a fundamental
3961 problem in this sort of work, however: it's just a question of
3962 dividing the grid generation time by the success rate (if it takes
3963 10ms to generate a candidate grid and 1/5 of them work, then it will
3964 take 50ms on average to generate a viable one), and seeing whether
3965 the expected time taken to \e{successfully} generate a puzzle is
3966 unacceptably slow. Dominosa's generator has a very low success rate
3967 (about 1 out of 20 candidate grids turn out to be usable, and if you
3968 think \e{that's} bad then go and look at the source code and find
3969 the comment showing what the figures were before the generation-time
3970 tweaks!), but the generator itself is very fast so this doesn't
3971 matter. Rectangles has a slower generator, but fails well under 50%
3972 of the time.
3973
3974 So don't be discouraged if you have an algorithm that doesn't always
3975 work: if it \e{nearly} always works, that's probably good enough.
3976 The one place where reliability is important is that your algorithm
3977 must never produce false positives: it must not claim a puzzle is
3978 soluble when it isn't. It can produce false negatives (failing to
3979 notice that a puzzle is soluble), and it can fail to generate a
3980 puzzle at all, provided it doesn't do either so often as to become
3981 slow.
3982
3983 One last piece of advice: for grid-based puzzles, when writing and
3984 testing your generation algorithm, it's almost always a good idea
3985 \e{not} to test it initially on a grid that's square (i.e.
3986 \cw{w==h}), because if the grid is square then you won't notice if
3987 you mistakenly write \c{h} instead of \c{w} (or vice versa)
3988 somewhere in the code. Use a rectangular grid for testing, and any
3989 size of grid will be likely to work after that.
3990
3991 \S{writing-textformats} Designing textual description formats
3992
3993 Another aspect of writing a puzzle which is worth putting some
3994 thought into is the design of the various text description formats:
3995 the format of the game parameter encoding, the game description
3996 encoding, and the move encoding.
3997
3998 The first two of these should be reasonably intuitive for a user to
3999 type in; so provide some flexibility where possible. Suppose, for
4000 example, your parameter format consists of two numbers separated by
4001 an \c{x} to specify the grid dimensions (\c{10x10} or \c{20x15}),
4002 and then has some suffixes to specify other aspects of the game
4003 type. It's almost always a good idea in this situation to arrange
4004 that \cw{decode_params()} can handle the suffixes appearing in any
4005 order, even if \cw{encode_params()} only ever generates them in one
4006 order.
4007
4008 These formats will also be expected to be reasonably stable: users
4009 will expect to be able to exchange game IDs with other users who
4010 aren't running exactly the same version of your game. So make them
4011 robust and stable: don't build too many assumptions into the game ID
4012 format which will have to be changed every time something subtle
4013 changes in the puzzle code.
4014
4015 \H{writing-howto} Common how-to questions
4016
4017 This section lists some common things people want to do when writing
4018 a puzzle, and describes how to achieve them within the Puzzles
4019 framework.
4020
4021 \S{writing-howto-cursor} Drawing objects at only one position
4022
4023 A common phenomenon is to have an object described in the
4024 \c{game_state} or the \c{game_ui} which can only be at one position.
4025 A cursor \dash probably specified in the \c{game_ui} \dash is a good
4026 example.
4027
4028 In the \c{game_ui}, it would \e{obviously} be silly to have an array
4029 covering the whole game grid with a boolean flag stating whether the
4030 cursor was at each position. Doing that would waste space, would
4031 make it difficult to find the cursor in order to do anything with
4032 it, and would introduce the potential for synchronisation bugs in
4033 which you ended up with two cursors or none. The obviously sensible
4034 way to store a cursor in the \c{game_ui} is to have fields directly
4035 encoding the cursor's coordinates.
4036
4037 However, it is a mistake to assume that the same logic applies to
4038 the \c{game_drawstate}. If you replicate the cursor position fields
4039 in the draw state, the redraw code will get very complicated. In the
4040 draw state, in fact, it \e{is} probably the right thing to have a
4041 cursor flag for every position in the grid. You probably have an
4042 array for the whole grid in the drawstate already (stating what is
4043 currently displayed in the window at each position); the sensible
4044 approach is to add a \q{cursor} flag to each element of that array.
4045 Then the main redraw loop will look something like this
4046 (pseudo-code):
4047
4048 \c for (y = 0; y < h; y++) {
4049 \c     for (x = 0; x < w; x++) {
4050 \c         int value = state->symbol_at_position[y][x];
4051 \c         if (x == ui->cursor_x && y == ui->cursor_y)
4052 \c             value |= CURSOR;
4053 \c         if (ds->symbol_at_position[y][x] != value) {
4054 \c             symbol_drawing_subroutine(fe, ds, x, y, value);
4055 \c             ds->symbol_at_position[y][x] = value;
4056 \c         }
4057 \c     }
4058 \c }
4059
4060 This loop is very simple, pretty hard to get wrong, and
4061 \e{automatically} deals both with erasing the previous cursor and
4062 drawing the new one, with no special case code required.
4063
4064 This type of loop is generally a sensible way to write a redraw
4065 function, in fact. The best thing is to ensure that the information
4066 stored in the draw state for each position tells you \e{everything}
4067 about what was drawn there. A good way to ensure that is to pass
4068 precisely the same information, and \e{only} that information, to a
4069 subroutine that does the actual drawing; then you know there's no
4070 additional information which affects the drawing but which you don't
4071 notice changes in.
4072
4073 \S{writing-keyboard-cursor} Implementing a keyboard-controlled cursor
4074
4075 It is often useful to provide a keyboard control method in a
4076 basically mouse-controlled game. A keyboard-controlled cursor is
4077 best implemented by storing its location in the \c{game_ui} (since
4078 if it were in the \c{game_state} then the user would have to
4079 separately undo every cursor move operation). So the procedure would
4080 be:
4081
4082 \b Put cursor position fields in the \c{game_ui}.
4083
4084 \b \cw{interpret_move()} responds to arrow keys by modifying the
4085 cursor position fields and returning \cw{""}.
4086
4087 \b \cw{interpret_move()} responds to some sort of fire button by
4088 actually performing a move based on the current cursor location.
4089
4090 \b You might want an additional \c{game_ui} field stating whether
4091 the cursor is currently visible, and having it disappear when a
4092 mouse action occurs (so that it doesn't clutter the display when not
4093 actually in use).
4094
4095 \b You might also want to automatically hide the cursor in
4096 \cw{changed_state()} when the current game state changes to one in
4097 which there is no move to make (which is the case in some types of
4098 completed game).
4099
4100 \b \cw{redraw()} draws the cursor using the technique described in
4101 \k{writing-howto-cursor}.
4102
4103 \S{writing-howto-dragging} Implementing draggable sprites
4104
4105 Some games have a user interface which involves dragging some sort
4106 of game element around using the mouse. If you need to show a
4107 graphic moving smoothly over the top of other graphics, use a
4108 blitter (see \k{drawing-blitter} for the blitter API) to save the
4109 background underneath it. The typical scenario goes:
4110
4111 \b Have a blitter field in the \c{game_drawstate}.
4112
4113 \b Set the blitter field to \cw{NULL} in the game's
4114 \cw{new_drawstate()} function, since you don't yet know how big the
4115 piece of saved background needs to be.
4116
4117 \b In the game's \cw{set_size()} function, once you know the size of
4118 the object you'll be dragging around the display and hence the
4119 required size of the blitter, actually allocate the blitter (making
4120 sure to free a previous one if present \dash it's possible that
4121 \cw{set_size()} might be called twice on the same draw state).
4122
4123 \b In \cw{free_drawstate()}, free the blitter if it's not \cw{NULL}.
4124
4125 \b In \cw{interpret_move()}, respond to mouse-down and mouse-drag
4126 events by updating some fields in the \cw{game_ui} which indicate
4127 that a drag is in progress.
4128
4129 \b At the \e{very end} of \cw{redraw()}, after all other drawing has
4130 been done, draw the moving object if there is one. First save the
4131 background under the object in the blitter; then set a clip
4132 rectangle covering precisely the area you just saved (just in case
4133 anti-aliasing or some other error causes your drawing to go beyond
4134 the area you saved). Then draw the object, and call \cw{unclip()}.
4135 Finally, set a flag in the \cw{game_drawstate} that indicates that
4136 the blitter needs restoring.
4137
4138 \b At the very start of \cw{redraw()}, before doing anything else at
4139 all, check the flag in the \cw{game_drawstate}, and if it says the
4140 blitter needs restoring then restore it. (Then clear the flag, so
4141 that this won't happen again in the next redraw if no moving object
4142 is drawn this time.)
4143
4144 This way, you will be able to write the rest of the redraw function
4145 completely ignoring the dragged object, as if it were floating above
4146 your bitmap and being completely separate.
4147
4148 \S{writing-ref-counting} Sharing large invariant data between all
4149 game states
4150
4151 In some puzzles, there is a large amount of data which never changes
4152 between game states. The array of numbers in Dominosa is a good
4153 example.
4154
4155 You \e{could} dynamically allocate a copy of that array in every
4156 \c{game_state}, and have \cw{dup_game()} make a fresh copy of it for
4157 every new \c{game_state}; but it would waste memory and time. A
4158 more efficient way is to use a reference-counted structure.
4159
4160 \b Define a structure type containing the data in question, and also
4161 containing an integer reference count.
4162
4163 \b Have a field in \c{game_state} which is a pointer to this
4164 structure.
4165
4166 \b In \cw{new_game()}, when creating a fresh game state at the start
4167 of a new game, create an instance of this structure, initialise it
4168 with the invariant data, and set its reference count to 1.
4169
4170 \b In \cw{dup_game()}, rather than making a copy of the structure
4171 for the new game state, simply set the new game state to point at
4172 the same copy of the structure, and increment its reference count.
4173
4174 \b In \cw{free_game()}, decrement the reference count in the
4175 structure pointed to by the game state; if the count reaches zero,
4176 free the structure.
4177
4178 This way, the invariant data will persist for only as long as it's
4179 genuinely needed; \e{as soon} as the last game state for a
4180 particular puzzle instance is freed, the invariant data for that
4181 puzzle will vanish as well. Reference counting is a very efficient
4182 form of garbage collection, when it works at all. (Which it does in
4183 this instance, of course, because there's no possibility of circular
4184 references.)
4185
4186 \S{writing-flash-types} Implementing multiple types of flash
4187
4188 In some games you need to flash in more than one different way.
4189 Mines, for example, flashes white when you win, and flashes red when
4190 you tread on a mine and die.
4191
4192 The simple way to do this is:
4193
4194 \b Have a field in the \c{game_ui} which describes the type of flash.
4195
4196 \b In \cw{flash_length()}, examine the old and new game states to
4197 decide whether a flash is required and what type. Write the type of
4198 flash to the \c{game_ui} field whenever you return non-zero.
4199
4200 \b In \cw{redraw()}, when you detect that \c{flash_time} is
4201 non-zero, examine the field in \c{game_ui} to decide which type of
4202 flash to draw.
4203
4204 \cw{redraw()} will never be called with \c{flash_time} non-zero
4205 unless \cw{flash_length()} was first called to tell the mid-end that
4206 a flash was required; so whenever \cw{redraw()} notices that
4207 \c{flash_time} is non-zero, you can be sure that the field in
4208 \c{game_ui} is correctly set.
4209
4210 \S{writing-move-anim} Animating game moves
4211
4212 A number of puzzle types benefit from a quick animation of each move
4213 you make.
4214
4215 For some games, such as Fifteen, this is particularly easy. Whenever
4216 \cw{redraw()} is called with \c{oldstate} non-\cw{NULL}, Fifteen
4217 simply compares the position of each tile in the two game states,
4218 and if the tile is not in the same place then it draws it some
4219 fraction of the way from its old position to its new position. This
4220 method copes automatically with undo.
4221
4222 Other games are less obvious. In Sixteen, for example, you can't
4223 just draw each tile a fraction of the way from its old to its new
4224 position: if you did that, the end tile would zip very rapidly past
4225 all the others to get to the other end and that would look silly.
4226 (Worse, it would look inconsistent if the end tile was drawn on top
4227 going one way and on the bottom going the other way.)
4228
4229 A useful trick here is to define a field or two in the game state
4230 that indicates what the last move was.
4231
4232 \b Add a \q{last move} field to the \c{game_state} (or two or more
4233 fields if the move is complex enough to need them).
4234
4235 \b \cw{new_game()} initialises this field to a null value for a new
4236 game state.
4237
4238 \b \cw{execute_move()} sets up the field to reflect the move it just
4239 performed.
4240
4241 \b \cw{redraw()} now needs to examine its \c{dir} parameter. If
4242 \c{dir} is positive, it determines the move being animated by
4243 looking at the last-move field in \c{newstate}; but if \c{dir} is
4244 negative, it has to look at the last-move field in \c{oldstate}, and
4245 invert whatever move it finds there.
4246
4247 Note also that Sixteen needs to store the \e{direction} of the move,
4248 because you can't quite determine it by examining the row or column
4249 in question. You can in almost all cases, but when the row is
4250 precisely two squares long it doesn't work since a move in either
4251 direction looks the same. (You could argue that since moving a
4252 2-element row left and right has the same effect, it doesn't matter
4253 which one you animate; but in fact it's very disorienting to click
4254 the arrow left and find the row moving right, and almost as bad to
4255 undo a move to the right and find the game animating \e{another}
4256 move to the right.)
4257
4258 \S{writing-conditional-anim} Animating drag operations
4259
4260 In Untangle, moves are made by dragging a node from an old position
4261 to a new position. Therefore, at the time when the move is initially
4262 made, it should not be animated, because the node has already been
4263 dragged to the right place and doesn't need moving there. However,
4264 it's nice to animate the same move if it's later undone or redone.
4265 This requires a bit of fiddling.
4266
4267 The obvious approach is to have a flag in the \c{game_ui} which
4268 inhibits move animation, and to set that flag in
4269 \cw{interpret_move()}. The question is, when would the flag be reset
4270 again? The obvious place to do so is \cw{changed_state()}, which
4271 will be called once per move. But it will be called \e{before}
4272 \cw{anim_length()}, so if it resets the flag then \cw{anim_length()}
4273 will never see the flag set at all.
4274
4275 The solution is to have \e{two} flags in a queue.
4276
4277 \b Define two flags in \c{game_ui}; let's call them \q{current} and
4278 \q{next}.
4279
4280 \b Set both to \cw{FALSE} in \c{new_ui()}.
4281
4282 \b When a drag operation completes in \cw{interpret_move()}, set the
4283 \q{next} flag to \cw{TRUE}.
4284
4285 \b Every time \cw{changed_state()} is called, set the value of
4286 \q{current} to the value in \q{next}, and then set the value of
4287 \q{next} to \cw{FALSE}.
4288
4289 \b That way, \q{current} will be \cw{TRUE} \e{after} a call to
4290 \cw{changed_state()} if and only if that call to
4291 \cw{changed_state()} was the result of a drag operation processed by
4292 \cw{interpret_move()}. Any other call to \cw{changed_state()}, due
4293 to an Undo or a Redo or a Restart or a Solve, will leave \q{current}
4294 \cw{FALSE}.
4295
4296 \b So now \cw{anim_length()} can request a move animation if and
4297 only if the \q{current} flag is \e{not} set.
4298
4299 \S{writing-cheating} Inhibiting the victory flash when Solve is used
4300
4301 Many games flash when you complete them, as a visual congratulation
4302 for having got to the end of the puzzle. It often seems like a good
4303 idea to disable that flash when the puzzle is brought to a solved
4304 state by means of the Solve operation.
4305
4306 This is easily done:
4307
4308 \b Add a \q{cheated} flag to the \c{game_state}.
4309
4310 \b Set this flag to \cw{FALSE} in \cw{new_game()}.
4311
4312 \b Have \cw{solve()} return a move description string which clearly
4313 identifies the move as a solve operation.
4314
4315 \b Have \cw{execute_move()} respond to that clear identification by
4316 setting the \q{cheated} flag in the returned \c{game_state}. The
4317 flag will then be propagated to all subsequent game states, even if
4318 the user continues fiddling with the game after it is solved.
4319
4320 \b \cw{flash_length()} now returns non-zero if \c{oldstate} is not
4321 completed and \c{newstate} is, \e{and} neither state has the
4322 \q{cheated} flag set.
4323
4324 \H{writing-testing} Things to test once your puzzle is written
4325
4326 Puzzle implementations written in this framework are self-testing as
4327 far as I could make them.
4328
4329 Textual game and move descriptions, for example, are generated and
4330 parsed as part of the normal process of play. Therefore, if you can
4331 make moves in the game \e{at all} you can be reasonably confident
4332 that the mid-end serialisation interface will function correctly and
4333 you will be able to save your game. (By contrast, if I'd stuck with
4334 a single \cw{make_move()} function performing the jobs of both
4335 \cw{interpret_move()} and \cw{execute_move()}, and had separate
4336 functions to encode and decode a game state in string form, then
4337 those functions would not be used during normal play; so they could
4338 have been completely broken, and you'd never know it until you tried
4339 to save the game \dash which would have meant you'd have to test
4340 game saving \e{extensively} and make sure to test every possible
4341 type of game state. As an added bonus, doing it the way I did leads
4342 to smaller save files.)
4343
4344 There is one exception to this, which is the string encoding of the
4345 \c{game_ui}. Most games do not store anything permanent in the
4346 \c{game_ui}, and hence do not need to put anything in its encode and
4347 decode functions; but if there is anything in there, you do need to
4348 test game loading and saving to ensure those functions work
4349 properly.
4350
4351 It's also worth testing undo and redo of all operations, to ensure
4352 that the redraw and the animations (if any) work properly. Failing
4353 to animate undo properly seems to be a common error.
4354
4355 Other than that, just use your common sense.