chiark / gitweb /
Lee Dowling points out that duplicating the entire grid data
[sgt-puzzles.git] / cube.c
1 /*
2  * cube.c: Cube game.
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13
14 #define MAXVERTICES 20
15 #define MAXFACES 20
16 #define MAXORDER 4
17 struct solid {
18     int nvertices;
19     float vertices[MAXVERTICES * 3];   /* 3*npoints coordinates */
20     int order;
21     int nfaces;
22     int faces[MAXFACES * MAXORDER];    /* order*nfaces point indices */
23     float normals[MAXFACES * 3];       /* 3*npoints vector components */
24     float shear;                       /* isometric shear for nice drawing */
25     float border;                      /* border required around arena */
26 };
27
28 static const struct solid s_tetrahedron = {
29     4,
30     {
31         0.0F, -0.57735026919F, -0.20412414523F,
32         -0.5F, 0.28867513459F, -0.20412414523F,
33         0.0F, -0.0F, 0.6123724357F,
34         0.5F, 0.28867513459F, -0.20412414523F,
35     },
36     3, 4,
37     {
38         0,2,1, 3,1,2, 2,0,3, 1,3,0
39     },
40     {
41         -0.816496580928F, -0.471404520791F, 0.333333333334F,
42         0.0F, 0.942809041583F, 0.333333333333F,
43         0.816496580928F, -0.471404520791F, 0.333333333334F,
44         0.0F, 0.0F, -1.0F,
45     },
46     0.0F, 0.3F
47 };
48
49 static const struct solid s_cube = {
50     8,
51     {
52         -0.5F,-0.5F,-0.5F, -0.5F,-0.5F,+0.5F,
53         -0.5F,+0.5F,-0.5F, -0.5F,+0.5F,+0.5F,
54         +0.5F,-0.5F,-0.5F, +0.5F,-0.5F,+0.5F,
55         +0.5F,+0.5F,-0.5F, +0.5F,+0.5F,+0.5F,
56     },
57     4, 6,
58     {
59         0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2
60     },
61     {
62         -1.0F,0.0F,0.0F, 0.0F,0.0F,+1.0F,
63         +1.0F,0.0F,0.0F, 0.0F,0.0F,-1.0F,
64         0.0F,-1.0F,0.0F, 0.0F,+1.0F,0.0F
65     },
66     0.3F, 0.5F
67 };
68
69 static const struct solid s_octahedron = {
70     6,
71     {
72         -0.5F, -0.28867513459472505F, 0.4082482904638664F,
73         0.5F, 0.28867513459472505F, -0.4082482904638664F,
74         -0.5F, 0.28867513459472505F, -0.4082482904638664F,
75         0.5F, -0.28867513459472505F, 0.4082482904638664F,
76         0.0F, -0.57735026918945009F, -0.4082482904638664F,
77         0.0F, 0.57735026918945009F, 0.4082482904638664F,
78     },
79     3, 8,
80     {
81         4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3
82     },
83     {
84         -0.816496580928F, -0.471404520791F, -0.333333333334F,
85         -0.816496580928F, 0.471404520791F, 0.333333333334F,
86         0.0F, -0.942809041583F, 0.333333333333F,
87         0.0F, 0.0F, 1.0F,
88         0.0F, 0.0F, -1.0F,
89         0.0F, 0.942809041583F, -0.333333333333F,
90         0.816496580928F, -0.471404520791F, -0.333333333334F,
91         0.816496580928F, 0.471404520791F, 0.333333333334F,
92     },
93     0.0F, 0.5F
94 };
95
96 static const struct solid s_icosahedron = {
97     12,
98     {
99         0.0F, 0.57735026919F, 0.75576131408F,
100         0.0F, -0.93417235896F, 0.17841104489F,
101         0.0F, 0.93417235896F, -0.17841104489F,
102         0.0F, -0.57735026919F, -0.75576131408F,
103         -0.5F, -0.28867513459F, 0.75576131408F,
104         -0.5F, 0.28867513459F, -0.75576131408F,
105         0.5F, -0.28867513459F, 0.75576131408F,
106         0.5F, 0.28867513459F, -0.75576131408F,
107         -0.80901699437F, 0.46708617948F, 0.17841104489F,
108         0.80901699437F, 0.46708617948F, 0.17841104489F,
109         -0.80901699437F, -0.46708617948F, -0.17841104489F,
110         0.80901699437F, -0.46708617948F, -0.17841104489F,
111     },
112     3, 20,
113     {
114         8,0,2,  0,9,2,  1,10,3, 11,1,3,  0,4,6,
115         4,1,6,  5,2,7,  3,5,7,  4,8,10,  8,5,10,
116         9,6,11, 7,9,11,  0,8,4,  9,0,6,  10,1,4,
117         1,11,6, 8,2,5,  2,9,7,  3,10,5, 11,3,7,
118     },
119     {
120         -0.356822089773F, 0.87267799625F, 0.333333333333F,
121         0.356822089773F, 0.87267799625F, 0.333333333333F,
122         -0.356822089773F, -0.87267799625F, -0.333333333333F,
123         0.356822089773F, -0.87267799625F, -0.333333333333F,
124         -0.0F, 0.0F, 1.0F,
125         0.0F, -0.666666666667F, 0.745355992501F,
126         0.0F, 0.666666666667F, -0.745355992501F,
127         0.0F, 0.0F, -1.0F,
128         -0.934172358963F, -0.12732200375F, 0.333333333333F,
129         -0.934172358963F, 0.12732200375F, -0.333333333333F,
130         0.934172358963F, -0.12732200375F, 0.333333333333F,
131         0.934172358963F, 0.12732200375F, -0.333333333333F,
132         -0.57735026919F, 0.333333333334F, 0.745355992501F,
133         0.57735026919F, 0.333333333334F, 0.745355992501F,
134         -0.57735026919F, -0.745355992501F, 0.333333333334F,
135         0.57735026919F, -0.745355992501F, 0.333333333334F,
136         -0.57735026919F, 0.745355992501F, -0.333333333334F,
137         0.57735026919F, 0.745355992501F, -0.333333333334F,
138         -0.57735026919F, -0.333333333334F, -0.745355992501F,
139         0.57735026919F, -0.333333333334F, -0.745355992501F,
140     },
141     0.0F, 0.8F
142 };
143
144 enum {
145     TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON
146 };
147 static const struct solid *solids[] = {
148     &s_tetrahedron, &s_cube, &s_octahedron, &s_icosahedron
149 };
150
151 enum {
152     COL_BACKGROUND,
153     COL_BORDER,
154     COL_BLUE,
155     NCOLOURS
156 };
157
158 enum { LEFT, RIGHT, UP, DOWN, UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT };
159
160 #define PREFERRED_GRID_SCALE 48
161 #define GRID_SCALE (ds->gridscale)
162 #define ROLLTIME 0.13F
163
164 #define SQ(x) ( (x) * (x) )
165
166 #define MATMUL(ra,m,a) do { \
167     float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \
168     rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \
169     ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \
170     rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \
171     (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \
172 } while (0)
173
174 #define APPROXEQ(x,y) ( SQ(x-y) < 0.1 )
175
176 struct grid_square {
177     float x, y;
178     int npoints;
179     float points[8];                   /* maximum */
180     int directions[8];                 /* bit masks showing point pairs */
181     int flip;
182     int tetra_class;
183 };
184
185 struct game_params {
186     int solid;
187     /*
188      * Grid dimensions. For a square grid these are width and
189      * height respectively; otherwise the grid is a hexagon, with
190      * the top side and the two lower diagonals having length d1
191      * and the remaining three sides having length d2 (so that
192      * d1==d2 gives a regular hexagon, and d2==0 gives a triangle).
193      */
194     int d1, d2;
195 };
196
197 typedef struct game_grid game_grid;
198 struct game_grid {
199     int refcount;
200     struct grid_square *squares;
201     int nsquares;
202 };
203
204 #define SET_SQUARE(state, i, val) \
205     ((state)->bluemask[(i)/32] &= ~(1 << ((i)%32)), \
206      (state)->bluemask[(i)/32] |= ((!!val) << ((i)%32)))
207 #define GET_SQUARE(state, i) \
208     (((state)->bluemask[(i)/32] >> ((i)%32)) & 1)
209
210 struct game_state {
211     struct game_params params;
212     const struct solid *solid;
213     int *facecolours;
214     game_grid *grid;
215     unsigned long *bluemask;
216     int current;                       /* index of current grid square */
217     int sgkey[2];                      /* key-point indices into grid sq */
218     int dgkey[2];                      /* key-point indices into grid sq */
219     int spkey[2];                      /* key-point indices into polyhedron */
220     int dpkey[2];                      /* key-point indices into polyhedron */
221     int previous;
222     float angle;
223     int completed;
224     int movecount;
225 };
226
227 static game_params *default_params(void)
228 {
229     game_params *ret = snew(game_params);
230
231     ret->solid = CUBE;
232     ret->d1 = 4;
233     ret->d2 = 4;
234
235     return ret;
236 }
237
238 static int game_fetch_preset(int i, char **name, game_params **params)
239 {
240     game_params *ret = snew(game_params);
241     char *str;
242
243     switch (i) {
244       case 0:
245         str = "Cube";
246         ret->solid = CUBE;
247         ret->d1 = 4;
248         ret->d2 = 4;
249         break;
250       case 1:
251         str = "Tetrahedron";
252         ret->solid = TETRAHEDRON;
253         ret->d1 = 1;
254         ret->d2 = 2;
255         break;
256       case 2:
257         str = "Octahedron";
258         ret->solid = OCTAHEDRON;
259         ret->d1 = 2;
260         ret->d2 = 2;
261         break;
262       case 3:
263         str = "Icosahedron";
264         ret->solid = ICOSAHEDRON;
265         ret->d1 = 3;
266         ret->d2 = 3;
267         break;
268       default:
269         sfree(ret);
270         return FALSE;
271     }
272
273     *name = dupstr(str);
274     *params = ret;
275     return TRUE;
276 }
277
278 static void free_params(game_params *params)
279 {
280     sfree(params);
281 }
282
283 static game_params *dup_params(game_params *params)
284 {
285     game_params *ret = snew(game_params);
286     *ret = *params;                    /* structure copy */
287     return ret;
288 }
289
290 static void decode_params(game_params *ret, char const *string)
291 {
292     switch (*string) {
293       case 't': ret->solid = TETRAHEDRON; string++; break;
294       case 'c': ret->solid = CUBE;        string++; break;
295       case 'o': ret->solid = OCTAHEDRON;  string++; break;
296       case 'i': ret->solid = ICOSAHEDRON; string++; break;
297       default: break;
298     }
299     ret->d1 = ret->d2 = atoi(string);
300     while (*string && isdigit((unsigned char)*string)) string++;
301     if (*string == 'x') {
302         string++;
303         ret->d2 = atoi(string);
304     }
305 }
306
307 static char *encode_params(game_params *params, int full)
308 {
309     char data[256];
310
311     assert(params->solid >= 0 && params->solid < 4);
312     sprintf(data, "%c%dx%d", "tcoi"[params->solid], params->d1, params->d2);
313
314     return dupstr(data);
315 }
316 typedef void (*egc_callback)(void *, struct grid_square *);
317
318 static void enum_grid_squares(game_params *params, egc_callback callback, void *ctx)
319 {
320     const struct solid *solid = solids[params->solid];
321
322     if (solid->order == 4) {
323         int x, y;
324
325         for (y = 0; y < params->d2; y++)
326             for (x = 0; x < params->d1; x++) {
327                 struct grid_square sq;
328
329                 sq.x = (float)x;
330                 sq.y = (float)y;
331                 sq.points[0] = x - 0.5F;
332                 sq.points[1] = y - 0.5F;
333                 sq.points[2] = x - 0.5F;
334                 sq.points[3] = y + 0.5F;
335                 sq.points[4] = x + 0.5F;
336                 sq.points[5] = y + 0.5F;
337                 sq.points[6] = x + 0.5F;
338                 sq.points[7] = y - 0.5F;
339                 sq.npoints = 4;
340
341                 sq.directions[LEFT]  = 0x03;   /* 0,1 */
342                 sq.directions[RIGHT] = 0x0C;   /* 2,3 */
343                 sq.directions[UP]    = 0x09;   /* 0,3 */
344                 sq.directions[DOWN]  = 0x06;   /* 1,2 */
345                 sq.directions[UP_LEFT] = 0;   /* no diagonals in a square */
346                 sq.directions[UP_RIGHT] = 0;   /* no diagonals in a square */
347                 sq.directions[DOWN_LEFT] = 0;   /* no diagonals in a square */
348                 sq.directions[DOWN_RIGHT] = 0;   /* no diagonals in a square */
349
350                 sq.flip = FALSE;
351
352                 /*
353                  * This is supremely irrelevant, but just to avoid
354                  * having any uninitialised structure members...
355                  */
356                 sq.tetra_class = 0;
357
358                 callback(ctx, &sq);
359             }
360     } else {
361         int row, rowlen, other, i, firstix = -1;
362         float theight = (float)(sqrt(3) / 2.0);
363
364         for (row = 0; row < params->d1 + params->d2; row++) {
365             if (row < params->d2) {
366                 other = +1;
367                 rowlen = row + params->d1;
368             } else {
369                 other = -1;
370                 rowlen = 2*params->d2 + params->d1 - row;
371             }
372
373             /*
374              * There are `rowlen' down-pointing triangles.
375              */
376             for (i = 0; i < rowlen; i++) {
377                 struct grid_square sq;
378                 int ix;
379                 float x, y;
380
381                 ix = (2 * i - (rowlen-1));
382                 x = ix * 0.5F;
383                 y = theight * row;
384                 sq.x = x;
385                 sq.y = y + theight / 3;
386                 sq.points[0] = x - 0.5F;
387                 sq.points[1] = y;
388                 sq.points[2] = x;
389                 sq.points[3] = y + theight;
390                 sq.points[4] = x + 0.5F;
391                 sq.points[5] = y;
392                 sq.npoints = 3;
393
394                 sq.directions[LEFT]  = 0x03;   /* 0,1 */
395                 sq.directions[RIGHT] = 0x06;   /* 1,2 */
396                 sq.directions[UP]    = 0x05;   /* 0,2 */
397                 sq.directions[DOWN]  = 0;      /* invalid move */
398
399                 /*
400                  * Down-pointing triangle: both the up diagonals go
401                  * up, and the down ones go left and right.
402                  */
403                 sq.directions[UP_LEFT] = sq.directions[UP_RIGHT] =
404                     sq.directions[UP];
405                 sq.directions[DOWN_LEFT] = sq.directions[LEFT];
406                 sq.directions[DOWN_RIGHT] = sq.directions[RIGHT];
407
408                 sq.flip = TRUE;
409
410                 if (firstix < 0)
411                     firstix = ix & 3;
412                 ix -= firstix;
413                 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
414
415                 callback(ctx, &sq);
416             }
417
418             /*
419              * There are `rowlen+other' up-pointing triangles.
420              */
421             for (i = 0; i < rowlen+other; i++) {
422                 struct grid_square sq;
423                 int ix;
424                 float x, y;
425
426                 ix = (2 * i - (rowlen+other-1));
427                 x = ix * 0.5F;
428                 y = theight * row;
429                 sq.x = x;
430                 sq.y = y + 2*theight / 3;
431                 sq.points[0] = x + 0.5F;
432                 sq.points[1] = y + theight;
433                 sq.points[2] = x;
434                 sq.points[3] = y;
435                 sq.points[4] = x - 0.5F;
436                 sq.points[5] = y + theight;
437                 sq.npoints = 3;
438
439                 sq.directions[LEFT]  = 0x06;   /* 1,2 */
440                 sq.directions[RIGHT] = 0x03;   /* 0,1 */
441                 sq.directions[DOWN]  = 0x05;   /* 0,2 */
442                 sq.directions[UP]    = 0;      /* invalid move */
443
444                 /*
445                  * Up-pointing triangle: both the down diagonals go
446                  * down, and the up ones go left and right.
447                  */
448                 sq.directions[DOWN_LEFT] = sq.directions[DOWN_RIGHT] =
449                     sq.directions[DOWN];
450                 sq.directions[UP_LEFT] = sq.directions[LEFT];
451                 sq.directions[UP_RIGHT] = sq.directions[RIGHT];
452
453                 sq.flip = FALSE;
454
455                 if (firstix < 0)
456                     firstix = (ix - 1) & 3;
457                 ix -= firstix;
458                 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
459
460                 callback(ctx, &sq);
461             }
462         }
463     }
464 }
465
466 static int grid_area(int d1, int d2, int order)
467 {
468     /*
469      * An NxM grid of squares has NM squares in it.
470      * 
471      * A grid of triangles with dimensions A and B has a total of
472      * A^2 + B^2 + 4AB triangles in it. (You can divide it up into
473      * a side-A triangle containing A^2 subtriangles, a side-B
474      * triangle containing B^2, and two congruent parallelograms,
475      * each with side lengths A and B, each therefore containing AB
476      * two-triangle rhombuses.)
477      */
478     if (order == 4)
479         return d1 * d2;
480     else
481         return d1*d1 + d2*d2 + 4*d1*d2;
482 }
483
484 static config_item *game_configure(game_params *params)
485 {
486     config_item *ret = snewn(4, config_item);
487     char buf[80];
488
489     ret[0].name = "Type of solid";
490     ret[0].type = C_CHOICES;
491     ret[0].sval = ":Tetrahedron:Cube:Octahedron:Icosahedron";
492     ret[0].ival = params->solid;
493
494     ret[1].name = "Width / top";
495     ret[1].type = C_STRING;
496     sprintf(buf, "%d", params->d1);
497     ret[1].sval = dupstr(buf);
498     ret[1].ival = 0;
499
500     ret[2].name = "Height / bottom";
501     ret[2].type = C_STRING;
502     sprintf(buf, "%d", params->d2);
503     ret[2].sval = dupstr(buf);
504     ret[2].ival = 0;
505
506     ret[3].name = NULL;
507     ret[3].type = C_END;
508     ret[3].sval = NULL;
509     ret[3].ival = 0;
510
511     return ret;
512 }
513
514 static game_params *custom_params(config_item *cfg)
515 {
516     game_params *ret = snew(game_params);
517
518     ret->solid = cfg[0].ival;
519     ret->d1 = atoi(cfg[1].sval);
520     ret->d2 = atoi(cfg[2].sval);
521
522     return ret;
523 }
524
525 static void count_grid_square_callback(void *ctx, struct grid_square *sq)
526 {
527     int *classes = (int *)ctx;
528     int thisclass;
529
530     if (classes[4] == 4)
531         thisclass = sq->tetra_class;
532     else if (classes[4] == 2)
533         thisclass = sq->flip;
534     else
535         thisclass = 0;
536
537     classes[thisclass]++;
538 }
539
540 static char *validate_params(game_params *params, int full)
541 {
542     int classes[5];
543     int i;
544
545     if (params->solid < 0 || params->solid >= lenof(solids))
546         return "Unrecognised solid type";
547
548     if (solids[params->solid]->order == 4) {
549         if (params->d1 <= 0 || params->d2 <= 0)
550             return "Both grid dimensions must be greater than zero";
551     } else {
552         if (params->d1 <= 0 && params->d2 <= 0)
553             return "At least one grid dimension must be greater than zero";
554     }
555
556     for (i = 0; i < 4; i++)
557         classes[i] = 0;
558     if (params->solid == TETRAHEDRON)
559         classes[4] = 4;
560     else if (params->solid == OCTAHEDRON)
561         classes[4] = 2;
562     else
563         classes[4] = 1;
564     enum_grid_squares(params, count_grid_square_callback, classes);
565
566     for (i = 0; i < classes[4]; i++)
567         if (classes[i] < solids[params->solid]->nfaces / classes[4])
568             return "Not enough grid space to place all blue faces";
569
570     if (grid_area(params->d1, params->d2, solids[params->solid]->order) <
571         solids[params->solid]->nfaces + 1)
572         return "Not enough space to place the solid on an empty square";
573
574     return NULL;
575 }
576
577 struct grid_data {
578     int *gridptrs[4];
579     int nsquares[4];
580     int nclasses;
581     int squareindex;
582 };
583
584 static void classify_grid_square_callback(void *ctx, struct grid_square *sq)
585 {
586     struct grid_data *data = (struct grid_data *)ctx;
587     int thisclass;
588
589     if (data->nclasses == 4)
590         thisclass = sq->tetra_class;
591     else if (data->nclasses == 2)
592         thisclass = sq->flip;
593     else
594         thisclass = 0;
595
596     data->gridptrs[thisclass][data->nsquares[thisclass]++] =
597         data->squareindex++;
598 }
599
600 static char *new_game_desc(game_params *params, random_state *rs,
601                            char **aux, int interactive)
602 {
603     struct grid_data data;
604     int i, j, k, m, area, facesperclass;
605     int *flags;
606     char *desc, *p;
607
608     /*
609      * Enumerate the grid squares, dividing them into equivalence
610      * classes as appropriate. (For the tetrahedron, there is one
611      * equivalence class for each face; for the octahedron there
612      * are two classes; for the other two solids there's only one.)
613      */
614
615     area = grid_area(params->d1, params->d2, solids[params->solid]->order);
616     if (params->solid == TETRAHEDRON)
617         data.nclasses = 4;
618     else if (params->solid == OCTAHEDRON)
619         data.nclasses = 2;
620     else
621         data.nclasses = 1;
622     data.gridptrs[0] = snewn(data.nclasses * area, int);
623     for (i = 0; i < data.nclasses; i++) {
624         data.gridptrs[i] = data.gridptrs[0] + i * area;
625         data.nsquares[i] = 0;
626     }
627     data.squareindex = 0;
628     enum_grid_squares(params, classify_grid_square_callback, &data);
629
630     facesperclass = solids[params->solid]->nfaces / data.nclasses;
631
632     for (i = 0; i < data.nclasses; i++)
633         assert(data.nsquares[i] >= facesperclass);
634     assert(data.squareindex == area);
635
636     /*
637      * So now we know how many faces to allocate in each class. Get
638      * on with it.
639      */
640     flags = snewn(area, int);
641     for (i = 0; i < area; i++)
642         flags[i] = FALSE;
643
644     for (i = 0; i < data.nclasses; i++) {
645         for (j = 0; j < facesperclass; j++) {
646             int n = random_upto(rs, data.nsquares[i]);
647
648             assert(!flags[data.gridptrs[i][n]]);
649             flags[data.gridptrs[i][n]] = TRUE;
650
651             /*
652              * Move everything else up the array. I ought to use a
653              * better data structure for this, but for such small
654              * numbers it hardly seems worth the effort.
655              */
656             while (n < data.nsquares[i]-1) {
657                 data.gridptrs[i][n] = data.gridptrs[i][n+1];
658                 n++;
659             }
660             data.nsquares[i]--;
661         }
662     }
663
664     /*
665      * Now we know precisely which squares are blue. Encode this
666      * information in hex. While we're looping over this, collect
667      * the non-blue squares into a list in the now-unused gridptrs
668      * array.
669      */
670     desc = snewn(area / 4 + 40, char);
671     p = desc;
672     j = 0;
673     k = 8;
674     m = 0;
675     for (i = 0; i < area; i++) {
676         if (flags[i]) {
677             j |= k;
678         } else {
679             data.gridptrs[0][m++] = i;
680         }
681         k >>= 1;
682         if (!k) {
683             *p++ = "0123456789ABCDEF"[j];
684             k = 8;
685             j = 0;
686         }
687     }
688     if (k != 8)
689         *p++ = "0123456789ABCDEF"[j];
690
691     /*
692      * Choose a non-blue square for the polyhedron.
693      */
694     sprintf(p, ",%d", data.gridptrs[0][random_upto(rs, m)]);
695
696     sfree(data.gridptrs[0]);
697     sfree(flags);
698
699     return desc;
700 }
701
702 static void add_grid_square_callback(void *ctx, struct grid_square *sq)
703 {
704     game_grid *grid = (game_grid *)ctx;
705
706     grid->squares[grid->nsquares++] = *sq;   /* structure copy */
707 }
708
709 static int lowest_face(const struct solid *solid)
710 {
711     int i, j, best;
712     float zmin;
713
714     best = 0;
715     zmin = 0.0;
716     for (i = 0; i < solid->nfaces; i++) {
717         float z = 0;
718
719         for (j = 0; j < solid->order; j++) {
720             int f = solid->faces[i*solid->order + j];
721             z += solid->vertices[f*3+2];
722         }
723
724         if (i == 0 || zmin > z) {
725             zmin = z;
726             best = i;
727         }
728     }
729
730     return best;
731 }
732
733 static int align_poly(const struct solid *solid, struct grid_square *sq,
734                       int *pkey)
735 {
736     float zmin;
737     int i, j;
738     int flip = (sq->flip ? -1 : +1);
739
740     /*
741      * First, find the lowest z-coordinate present in the solid.
742      */
743     zmin = 0.0;
744     for (i = 0; i < solid->nvertices; i++)
745         if (zmin > solid->vertices[i*3+2])
746             zmin = solid->vertices[i*3+2];
747
748     /*
749      * Now go round the grid square. For each point in the grid
750      * square, we're looking for a point of the polyhedron with the
751      * same x- and y-coordinates (relative to the square's centre),
752      * and z-coordinate equal to zmin (near enough).
753      */
754     for (j = 0; j < sq->npoints; j++) {
755         int matches, index;
756
757         matches = 0;
758         index = -1;
759
760         for (i = 0; i < solid->nvertices; i++) {
761             float dist = 0;
762
763             dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x);
764             dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y);
765             dist += SQ(solid->vertices[i*3+2] - zmin);
766
767             if (dist < 0.1) {
768                 matches++;
769                 index = i;
770             }
771         }
772
773         if (matches != 1 || index < 0)
774             return FALSE;
775         pkey[j] = index;
776     }
777
778     return TRUE;
779 }
780
781 static void flip_poly(struct solid *solid, int flip)
782 {
783     int i;
784
785     if (flip) {
786         for (i = 0; i < solid->nvertices; i++) {
787             solid->vertices[i*3+0] *= -1;
788             solid->vertices[i*3+1] *= -1;
789         }
790         for (i = 0; i < solid->nfaces; i++) {
791             solid->normals[i*3+0] *= -1;
792             solid->normals[i*3+1] *= -1;
793         }
794     }
795 }
796
797 static struct solid *transform_poly(const struct solid *solid, int flip,
798                                     int key0, int key1, float angle)
799 {
800     struct solid *ret = snew(struct solid);
801     float vx, vy, ax, ay;
802     float vmatrix[9], amatrix[9], vmatrix2[9];
803     int i;
804
805     *ret = *solid;                     /* structure copy */
806
807     flip_poly(ret, flip);
808
809     /*
810      * Now rotate the polyhedron through the given angle. We must
811      * rotate about the Z-axis to bring the two vertices key0 and
812      * key1 into horizontal alignment, then rotate about the
813      * X-axis, then rotate back again.
814      */
815     vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0];
816     vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1];
817     assert(APPROXEQ(vx*vx + vy*vy, 1.0));
818
819     vmatrix[0] =  vx; vmatrix[3] = vy; vmatrix[6] = 0;
820     vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0;
821     vmatrix[2] =   0; vmatrix[5] =  0; vmatrix[8] = 1;
822
823     ax = (float)cos(angle);
824     ay = (float)sin(angle);
825
826     amatrix[0] = 1; amatrix[3] =   0; amatrix[6] =  0;
827     amatrix[1] = 0; amatrix[4] =  ax; amatrix[7] = ay;
828     amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax;
829
830     memcpy(vmatrix2, vmatrix, sizeof(vmatrix));
831     vmatrix2[1] = vy;
832     vmatrix2[3] = -vy;
833
834     for (i = 0; i < ret->nvertices; i++) {
835         MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i);
836         MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i);
837         MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i);
838     }
839     for (i = 0; i < ret->nfaces; i++) {
840         MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i);
841         MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i);
842         MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i);
843     }
844
845     return ret;
846 }
847
848 static char *validate_desc(game_params *params, char *desc)
849 {
850     int area = grid_area(params->d1, params->d2, solids[params->solid]->order);
851     int i, j;
852
853     i = (area + 3) / 4;
854     for (j = 0; j < i; j++) {
855         int c = desc[j];
856         if (c >= '0' && c <= '9') continue;
857         if (c >= 'A' && c <= 'F') continue;
858         if (c >= 'a' && c <= 'f') continue;
859         return "Not enough hex digits at start of string";
860         /* NB if desc[j]=='\0' that will also be caught here, so we're safe */
861     }
862
863     if (desc[i] != ',')
864         return "Expected ',' after hex digits";
865
866     i++;
867     do {
868         if (desc[i] < '0' || desc[i] > '9')
869             return "Expected decimal integer after ','";
870         i++;
871     } while (desc[i]);
872
873     return NULL;
874 }
875
876 static game_state *new_game(midend *me, game_params *params, char *desc)
877 {
878     game_grid *grid = snew(game_grid);
879     game_state *state = snew(game_state);
880     int area;
881
882     state->params = *params;           /* structure copy */
883     state->solid = solids[params->solid];
884
885     area = grid_area(params->d1, params->d2, state->solid->order);
886     grid->squares = snewn(area, struct grid_square);
887     grid->nsquares = 0;
888     enum_grid_squares(params, add_grid_square_callback, grid);
889     assert(grid->nsquares == area);
890     state->grid = grid;
891     grid->refcount = 1;
892
893     state->facecolours = snewn(state->solid->nfaces, int);
894     memset(state->facecolours, 0, state->solid->nfaces * sizeof(int));
895
896     state->bluemask = snewn((state->grid->nsquares + 31) / 32, unsigned long);
897     memset(state->bluemask, 0, (state->grid->nsquares + 31) / 32 *
898            sizeof(unsigned long));
899
900     /*
901      * Set up the blue squares and polyhedron position according to
902      * the game description.
903      */
904     {
905         char *p = desc;
906         int i, j, v;
907
908         j = 8;
909         v = 0;
910         for (i = 0; i < state->grid->nsquares; i++) {
911             if (j == 8) {
912                 v = *p++;
913                 if (v >= '0' && v <= '9')
914                     v -= '0';
915                 else if (v >= 'A' && v <= 'F')
916                     v -= 'A' - 10;
917                 else if (v >= 'a' && v <= 'f')
918                     v -= 'a' - 10;
919                 else
920                     break;
921             }
922             if (v & j)
923                 SET_SQUARE(state, i, TRUE);
924             j >>= 1;
925             if (j == 0)
926                 j = 8;
927         }
928
929         if (*p == ',')
930             p++;
931
932         state->current = atoi(p);
933         if (state->current < 0 || state->current >= state->grid->nsquares)
934             state->current = 0;        /* got to do _something_ */
935     }
936
937     /*
938      * Align the polyhedron with its grid square and determine
939      * initial key points.
940      */
941     {
942         int pkey[4];
943         int ret;
944
945         ret = align_poly(state->solid, &state->grid->squares[state->current], pkey);
946         assert(ret);
947
948         state->dpkey[0] = state->spkey[0] = pkey[0];
949         state->dpkey[1] = state->spkey[0] = pkey[1];
950         state->dgkey[0] = state->sgkey[0] = 0;
951         state->dgkey[1] = state->sgkey[0] = 1;
952     }
953
954     state->previous = state->current;
955     state->angle = 0.0;
956     state->completed = 0;
957     state->movecount = 0;
958
959     return state;
960 }
961
962 static game_state *dup_game(game_state *state)
963 {
964     game_state *ret = snew(game_state);
965
966     ret->params = state->params;           /* structure copy */
967     ret->solid = state->solid;
968     ret->facecolours = snewn(ret->solid->nfaces, int);
969     memcpy(ret->facecolours, state->facecolours,
970            ret->solid->nfaces * sizeof(int));
971     ret->current = state->current;
972     ret->grid = state->grid;
973     ret->grid->refcount++;
974     ret->bluemask = snewn((ret->grid->nsquares + 31) / 32, unsigned long);
975     memcpy(ret->bluemask, state->bluemask, (ret->grid->nsquares + 31) / 32 *
976            sizeof(unsigned long));
977     ret->dpkey[0] = state->dpkey[0];
978     ret->dpkey[1] = state->dpkey[1];
979     ret->dgkey[0] = state->dgkey[0];
980     ret->dgkey[1] = state->dgkey[1];
981     ret->spkey[0] = state->spkey[0];
982     ret->spkey[1] = state->spkey[1];
983     ret->sgkey[0] = state->sgkey[0];
984     ret->sgkey[1] = state->sgkey[1];
985     ret->previous = state->previous;
986     ret->angle = state->angle;
987     ret->completed = state->completed;
988     ret->movecount = state->movecount;
989
990     return ret;
991 }
992
993 static void free_game(game_state *state)
994 {
995     if (--state->grid->refcount <= 0) {
996         sfree(state->grid->squares);
997         sfree(state->grid);
998     }
999     sfree(state->facecolours);
1000     sfree(state);
1001 }
1002
1003 static char *solve_game(game_state *state, game_state *currstate,
1004                         char *aux, char **error)
1005 {
1006     return NULL;
1007 }
1008
1009 static int game_can_format_as_text_now(game_params *params)
1010 {
1011     return TRUE;
1012 }
1013
1014 static char *game_text_format(game_state *state)
1015 {
1016     return NULL;
1017 }
1018
1019 static game_ui *new_ui(game_state *state)
1020 {
1021     return NULL;
1022 }
1023
1024 static void free_ui(game_ui *ui)
1025 {
1026 }
1027
1028 static char *encode_ui(game_ui *ui)
1029 {
1030     return NULL;
1031 }
1032
1033 static void decode_ui(game_ui *ui, char *encoding)
1034 {
1035 }
1036
1037 static void game_changed_state(game_ui *ui, game_state *oldstate,
1038                                game_state *newstate)
1039 {
1040 }
1041
1042 struct game_drawstate {
1043     float gridscale;
1044     int ox, oy;                        /* pixel position of float origin */
1045 };
1046
1047 /*
1048  * Code shared between interpret_move() and execute_move().
1049  */
1050 static int find_move_dest(game_state *from, int direction,
1051                           int *skey, int *dkey)
1052 {
1053     int mask, dest, i, j;
1054     float points[4];
1055
1056     /*
1057      * Find the two points in the current grid square which
1058      * correspond to this move.
1059      */
1060     mask = from->grid->squares[from->current].directions[direction];
1061     if (mask == 0)
1062         return -1;
1063     for (i = j = 0; i < from->grid->squares[from->current].npoints; i++)
1064         if (mask & (1 << i)) {
1065             points[j*2] = from->grid->squares[from->current].points[i*2];
1066             points[j*2+1] = from->grid->squares[from->current].points[i*2+1];
1067             skey[j] = i;
1068             j++;
1069         }
1070     assert(j == 2);
1071
1072     /*
1073      * Now find the other grid square which shares those points.
1074      * This is our move destination.
1075      */
1076     dest = -1;
1077     for (i = 0; i < from->grid->nsquares; i++)
1078         if (i != from->current) {
1079             int match = 0;
1080             float dist;
1081
1082             for (j = 0; j < from->grid->squares[i].npoints; j++) {
1083                 dist = (SQ(from->grid->squares[i].points[j*2] - points[0]) +
1084                         SQ(from->grid->squares[i].points[j*2+1] - points[1]));
1085                 if (dist < 0.1)
1086                     dkey[match++] = j;
1087                 dist = (SQ(from->grid->squares[i].points[j*2] - points[2]) +
1088                         SQ(from->grid->squares[i].points[j*2+1] - points[3]));
1089                 if (dist < 0.1)
1090                     dkey[match++] = j;
1091             }
1092
1093             if (match == 2) {
1094                 dest = i;
1095                 break;
1096             }
1097         }
1098
1099     return dest;
1100 }
1101
1102 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1103                             int x, int y, int button)
1104 {
1105     int direction, mask, i;
1106     int skey[2], dkey[2];
1107
1108     button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
1109
1110     /*
1111      * Moves can be made with the cursor keys or numeric keypad, or
1112      * alternatively you can left-click and the polyhedron will
1113      * move in the general direction of the mouse pointer.
1114      */
1115     if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
1116         direction = UP;
1117     else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
1118         direction = DOWN;
1119     else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
1120         direction = LEFT;
1121     else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
1122         direction = RIGHT;
1123     else if (button == (MOD_NUM_KEYPAD | '7'))
1124         direction = UP_LEFT;
1125     else if (button == (MOD_NUM_KEYPAD | '1'))
1126         direction = DOWN_LEFT;
1127     else if (button == (MOD_NUM_KEYPAD | '9'))
1128         direction = UP_RIGHT;
1129     else if (button == (MOD_NUM_KEYPAD | '3'))
1130         direction = DOWN_RIGHT;
1131     else if (button == LEFT_BUTTON) {
1132         /*
1133          * Find the bearing of the click point from the current
1134          * square's centre.
1135          */
1136         int cx, cy;
1137         double angle;
1138
1139         cx = (int)(state->grid->squares[state->current].x * GRID_SCALE) + ds->ox;
1140         cy = (int)(state->grid->squares[state->current].y * GRID_SCALE) + ds->oy;
1141
1142         if (x == cx && y == cy)
1143             return NULL;               /* clicked in exact centre!  */
1144         angle = atan2(y - cy, x - cx);
1145
1146         /*
1147          * There are three possibilities.
1148          * 
1149          *  - This square is a square, so we choose between UP,
1150          *    DOWN, LEFT and RIGHT by dividing the available angle
1151          *    at the 45-degree points.
1152          * 
1153          *  - This square is an up-pointing triangle, so we choose
1154          *    between DOWN, LEFT and RIGHT by dividing into
1155          *    120-degree arcs.
1156          * 
1157          *  - This square is a down-pointing triangle, so we choose
1158          *    between UP, LEFT and RIGHT in the inverse manner.
1159          * 
1160          * Don't forget that since our y-coordinates increase
1161          * downwards, `angle' is measured _clockwise_ from the
1162          * x-axis, not anticlockwise as most mathematicians would
1163          * instinctively assume.
1164          */
1165         if (state->grid->squares[state->current].npoints == 4) {
1166             /* Square. */
1167             if (fabs(angle) > 3*PI/4)
1168                 direction = LEFT;
1169             else if (fabs(angle) < PI/4)
1170                 direction = RIGHT;
1171             else if (angle > 0)
1172                 direction = DOWN;
1173             else
1174                 direction = UP;
1175         } else if (state->grid->squares[state->current].directions[UP] == 0) {
1176             /* Up-pointing triangle. */
1177             if (angle < -PI/2 || angle > 5*PI/6)
1178                 direction = LEFT;
1179             else if (angle > PI/6)
1180                 direction = DOWN;
1181             else
1182                 direction = RIGHT;
1183         } else {
1184             /* Down-pointing triangle. */
1185             assert(state->grid->squares[state->current].directions[DOWN] == 0);
1186             if (angle > PI/2 || angle < -5*PI/6)
1187                 direction = LEFT;
1188             else if (angle < -PI/6)
1189                 direction = UP;
1190             else
1191                 direction = RIGHT;
1192         }
1193     } else
1194         return NULL;
1195
1196     mask = state->grid->squares[state->current].directions[direction];
1197     if (mask == 0)
1198         return NULL;
1199
1200     /*
1201      * Translate diagonal directions into orthogonal ones.
1202      */
1203     if (direction > DOWN) {
1204         for (i = LEFT; i <= DOWN; i++)
1205             if (state->grid->squares[state->current].directions[i] == mask) {
1206                 direction = i;
1207                 break;
1208             }
1209         assert(direction <= DOWN);
1210     }
1211
1212     if (find_move_dest(state, direction, skey, dkey) < 0)
1213         return NULL;
1214
1215     if (direction == LEFT)  return dupstr("L");
1216     if (direction == RIGHT) return dupstr("R");
1217     if (direction == UP)    return dupstr("U");
1218     if (direction == DOWN)  return dupstr("D");
1219
1220     return NULL;                       /* should never happen */
1221 }
1222
1223 static game_state *execute_move(game_state *from, char *move)
1224 {
1225     game_state *ret;
1226     float angle;
1227     struct solid *poly;
1228     int pkey[2];
1229     int skey[2], dkey[2];
1230     int i, j, dest;
1231     int direction;
1232
1233     switch (*move) {
1234       case 'L': direction = LEFT; break;
1235       case 'R': direction = RIGHT; break;
1236       case 'U': direction = UP; break;
1237       case 'D': direction = DOWN; break;
1238       default: return NULL;
1239     }
1240
1241     dest = find_move_dest(from, direction, skey, dkey);
1242     if (dest < 0)
1243         return NULL;
1244
1245     ret = dup_game(from);
1246     ret->current = dest;
1247
1248     /*
1249      * So we know what grid square we're aiming for, and we also
1250      * know the two key points (as indices in both the source and
1251      * destination grid squares) which are invariant between source
1252      * and destination.
1253      * 
1254      * Next we must roll the polyhedron on to that square. So we
1255      * find the indices of the key points within the polyhedron's
1256      * vertex array, then use those in a call to transform_poly,
1257      * and align the result on the new grid square.
1258      */
1259     {
1260         int all_pkey[4];
1261         align_poly(from->solid, &from->grid->squares[from->current], all_pkey);
1262         pkey[0] = all_pkey[skey[0]];
1263         pkey[1] = all_pkey[skey[1]];
1264         /*
1265          * Now pkey[0] corresponds to skey[0] and dkey[0], and
1266          * likewise [1].
1267          */
1268     }
1269
1270     /*
1271      * Now find the angle through which to rotate the polyhedron.
1272      * Do this by finding the two faces that share the two vertices
1273      * we've found, and taking the dot product of their normals.
1274      */
1275     {
1276         int f[2], nf = 0;
1277         float dp;
1278
1279         for (i = 0; i < from->solid->nfaces; i++) {
1280             int match = 0;
1281             for (j = 0; j < from->solid->order; j++)
1282                 if (from->solid->faces[i*from->solid->order + j] == pkey[0] ||
1283                     from->solid->faces[i*from->solid->order + j] == pkey[1])
1284                     match++;
1285             if (match == 2) {
1286                 assert(nf < 2);
1287                 f[nf++] = i;
1288             }
1289         }
1290
1291         assert(nf == 2);
1292
1293         dp = 0;
1294         for (i = 0; i < 3; i++)
1295             dp += (from->solid->normals[f[0]*3+i] *
1296                    from->solid->normals[f[1]*3+i]);
1297         angle = (float)acos(dp);
1298     }
1299
1300     /*
1301      * Now transform the polyhedron. We aren't entirely sure
1302      * whether we need to rotate through angle or -angle, and the
1303      * simplest way round this is to try both and see which one
1304      * aligns successfully!
1305      * 
1306      * Unfortunately, _both_ will align successfully if this is a
1307      * cube, which won't tell us anything much. So for that
1308      * particular case, I resort to gross hackery: I simply negate
1309      * the angle before trying the alignment, depending on the
1310      * direction. Which directions work which way is determined by
1311      * pure trial and error. I said it was gross :-/
1312      */
1313     {
1314         int all_pkey[4];
1315         int success;
1316
1317         if (from->solid->order == 4 && direction == UP)
1318             angle = -angle;            /* HACK */
1319
1320         poly = transform_poly(from->solid,
1321                               from->grid->squares[from->current].flip,
1322                               pkey[0], pkey[1], angle);
1323         flip_poly(poly, from->grid->squares[ret->current].flip);
1324         success = align_poly(poly, &from->grid->squares[ret->current], all_pkey);
1325
1326         if (!success) {
1327             sfree(poly);
1328             angle = -angle;
1329             poly = transform_poly(from->solid,
1330                                   from->grid->squares[from->current].flip,
1331                                   pkey[0], pkey[1], angle);
1332             flip_poly(poly, from->grid->squares[ret->current].flip);
1333             success = align_poly(poly, &from->grid->squares[ret->current], all_pkey);
1334         }
1335
1336         assert(success);
1337     }
1338
1339     /*
1340      * Now we have our rotated polyhedron, which we expect to be
1341      * exactly congruent to the one we started with - but with the
1342      * faces permuted. So we map that congruence and thereby figure
1343      * out how to permute the faces as a result of the polyhedron
1344      * having rolled.
1345      */
1346     {
1347         int *newcolours = snewn(from->solid->nfaces, int);
1348
1349         for (i = 0; i < from->solid->nfaces; i++)
1350             newcolours[i] = -1;
1351
1352         for (i = 0; i < from->solid->nfaces; i++) {
1353             int nmatch = 0;
1354
1355             /*
1356              * Now go through the transformed polyhedron's faces
1357              * and figure out which one's normal is approximately
1358              * equal to this one.
1359              */
1360             for (j = 0; j < poly->nfaces; j++) {
1361                 float dist;
1362                 int k;
1363
1364                 dist = 0;
1365
1366                 for (k = 0; k < 3; k++)
1367                     dist += SQ(poly->normals[j*3+k] -
1368                                from->solid->normals[i*3+k]);
1369
1370                 if (APPROXEQ(dist, 0)) {
1371                     nmatch++;
1372                     newcolours[i] = ret->facecolours[j];
1373                 }
1374             }
1375
1376             assert(nmatch == 1);
1377         }
1378
1379         for (i = 0; i < from->solid->nfaces; i++)
1380             assert(newcolours[i] != -1);
1381
1382         sfree(ret->facecolours);
1383         ret->facecolours = newcolours;
1384     }
1385
1386     ret->movecount++;
1387
1388     /*
1389      * And finally, swap the colour between the bottom face of the
1390      * polyhedron and the face we've just landed on.
1391      * 
1392      * We don't do this if the game is already complete, since we
1393      * allow the user to roll the fully blue polyhedron around the
1394      * grid as a feeble reward.
1395      */
1396     if (!ret->completed) {
1397         i = lowest_face(from->solid);
1398         j = ret->facecolours[i];
1399         ret->facecolours[i] = GET_SQUARE(ret, ret->current);
1400         SET_SQUARE(ret, ret->current, j);
1401
1402         /*
1403          * Detect game completion.
1404          */
1405         j = 0;
1406         for (i = 0; i < ret->solid->nfaces; i++)
1407             if (ret->facecolours[i])
1408                 j++;
1409         if (j == ret->solid->nfaces)
1410             ret->completed = ret->movecount;
1411     }
1412
1413     sfree(poly);
1414
1415     /*
1416      * Align the normal polyhedron with its grid square, to get key
1417      * points for non-animated display.
1418      */
1419     {
1420         int pkey[4];
1421         int success;
1422
1423         success = align_poly(ret->solid, &ret->grid->squares[ret->current], pkey);
1424         assert(success);
1425
1426         ret->dpkey[0] = pkey[0];
1427         ret->dpkey[1] = pkey[1];
1428         ret->dgkey[0] = 0;
1429         ret->dgkey[1] = 1;
1430     }
1431
1432
1433     ret->spkey[0] = pkey[0];
1434     ret->spkey[1] = pkey[1];
1435     ret->sgkey[0] = skey[0];
1436     ret->sgkey[1] = skey[1];
1437     ret->previous = from->current;
1438     ret->angle = angle;
1439
1440     return ret;
1441 }
1442
1443 /* ----------------------------------------------------------------------
1444  * Drawing routines.
1445  */
1446
1447 struct bbox {
1448     float l, r, u, d;
1449 };
1450
1451 static void find_bbox_callback(void *ctx, struct grid_square *sq)
1452 {
1453     struct bbox *bb = (struct bbox *)ctx;
1454     int i;
1455
1456     for (i = 0; i < sq->npoints; i++) {
1457         if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2];
1458         if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2];
1459         if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1];
1460         if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1];
1461     }
1462 }
1463
1464 static struct bbox find_bbox(game_params *params)
1465 {
1466     struct bbox bb;
1467
1468     /*
1469      * These should be hugely more than the real bounding box will
1470      * be.
1471      */
1472     bb.l = 2.0F * (params->d1 + params->d2);
1473     bb.r = -2.0F * (params->d1 + params->d2);
1474     bb.u = 2.0F * (params->d1 + params->d2);
1475     bb.d = -2.0F * (params->d1 + params->d2);
1476     enum_grid_squares(params, find_bbox_callback, &bb);
1477
1478     return bb;
1479 }
1480
1481 #define XSIZE(gs, bb, solid) \
1482     ((int)(((bb).r - (bb).l + 2*(solid)->border) * gs))
1483 #define YSIZE(gs, bb, solid) \
1484     ((int)(((bb).d - (bb).u + 2*(solid)->border) * gs))
1485
1486 static void game_compute_size(game_params *params, int tilesize,
1487                               int *x, int *y)
1488 {
1489     struct bbox bb = find_bbox(params);
1490
1491     *x = XSIZE(tilesize, bb, solids[params->solid]);
1492     *y = YSIZE(tilesize, bb, solids[params->solid]);
1493 }
1494
1495 static void game_set_size(drawing *dr, game_drawstate *ds,
1496                           game_params *params, int tilesize)
1497 {
1498     struct bbox bb = find_bbox(params);
1499
1500     ds->gridscale = (float)tilesize;
1501     ds->ox = (int)(-(bb.l - solids[params->solid]->border) * ds->gridscale);
1502     ds->oy = (int)(-(bb.u - solids[params->solid]->border) * ds->gridscale);
1503 }
1504
1505 static float *game_colours(frontend *fe, int *ncolours)
1506 {
1507     float *ret = snewn(3 * NCOLOURS, float);
1508
1509     frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1510
1511     ret[COL_BORDER * 3 + 0] = 0.0;
1512     ret[COL_BORDER * 3 + 1] = 0.0;
1513     ret[COL_BORDER * 3 + 2] = 0.0;
1514
1515     ret[COL_BLUE * 3 + 0] = 0.0;
1516     ret[COL_BLUE * 3 + 1] = 0.0;
1517     ret[COL_BLUE * 3 + 2] = 1.0;
1518
1519     *ncolours = NCOLOURS;
1520     return ret;
1521 }
1522
1523 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1524 {
1525     struct game_drawstate *ds = snew(struct game_drawstate);
1526
1527     ds->ox = ds->oy = 0;
1528     ds->gridscale = 0.0F; /* not decided yet */
1529
1530     return ds;
1531 }
1532
1533 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1534 {
1535     sfree(ds);
1536 }
1537
1538 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1539                         game_state *state, int dir, game_ui *ui,
1540                         float animtime, float flashtime)
1541 {
1542     int i, j;
1543     struct bbox bb = find_bbox(&state->params);
1544     struct solid *poly;
1545     int *pkey, *gkey;
1546     float t[3];
1547     float angle;
1548     game_state *newstate;
1549     int square;
1550
1551     draw_rect(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid),
1552               YSIZE(GRID_SCALE, bb, state->solid), COL_BACKGROUND);
1553
1554     if (dir < 0) {
1555         game_state *t;
1556
1557         /*
1558          * This is an Undo. So reverse the order of the states, and
1559          * run the roll timer backwards.
1560          */
1561         assert(oldstate);
1562
1563         t = oldstate;
1564         oldstate = state;
1565         state = t;
1566
1567         animtime = ROLLTIME - animtime;
1568     }
1569
1570     if (!oldstate) {
1571         oldstate = state;
1572         angle = 0.0;
1573         square = state->current;
1574         pkey = state->dpkey;
1575         gkey = state->dgkey;
1576     } else {
1577         angle = state->angle * animtime / ROLLTIME;
1578         square = state->previous;
1579         pkey = state->spkey;
1580         gkey = state->sgkey;
1581     }
1582     newstate = state;
1583     state = oldstate;
1584
1585     for (i = 0; i < state->grid->nsquares; i++) {
1586         int coords[8];
1587
1588         for (j = 0; j < state->grid->squares[i].npoints; j++) {
1589             coords[2*j] = ((int)(state->grid->squares[i].points[2*j] * GRID_SCALE)
1590                            + ds->ox);
1591             coords[2*j+1] = ((int)(state->grid->squares[i].points[2*j+1]*GRID_SCALE)
1592                              + ds->oy);
1593         }
1594
1595         draw_polygon(dr, coords, state->grid->squares[i].npoints,
1596                      GET_SQUARE(state, i) ? COL_BLUE : COL_BACKGROUND,
1597                      COL_BORDER);
1598     }
1599
1600     /*
1601      * Now compute and draw the polyhedron.
1602      */
1603     poly = transform_poly(state->solid, state->grid->squares[square].flip,
1604                           pkey[0], pkey[1], angle);
1605
1606     /*
1607      * Compute the translation required to align the two key points
1608      * on the polyhedron with the same key points on the current
1609      * face.
1610      */
1611     for (i = 0; i < 3; i++) {
1612         float tc = 0.0;
1613
1614         for (j = 0; j < 2; j++) {
1615             float grid_coord;
1616
1617             if (i < 2) {
1618                 grid_coord =
1619                     state->grid->squares[square].points[gkey[j]*2+i];
1620             } else {
1621                 grid_coord = 0.0;
1622             }
1623
1624             tc += (grid_coord - poly->vertices[pkey[j]*3+i]);
1625         }
1626
1627         t[i] = tc / 2;
1628     }
1629     for (i = 0; i < poly->nvertices; i++)
1630         for (j = 0; j < 3; j++)
1631             poly->vertices[i*3+j] += t[j];
1632
1633     /*
1634      * Now actually draw each face.
1635      */
1636     for (i = 0; i < poly->nfaces; i++) {
1637         float points[8];
1638         int coords[8];
1639
1640         for (j = 0; j < poly->order; j++) {
1641             int f = poly->faces[i*poly->order + j];
1642             points[j*2] = (poly->vertices[f*3+0] -
1643                            poly->vertices[f*3+2] * poly->shear);
1644             points[j*2+1] = (poly->vertices[f*3+1] -
1645                              poly->vertices[f*3+2] * poly->shear);
1646         }
1647
1648         for (j = 0; j < poly->order; j++) {
1649             coords[j*2] = (int)floor(points[j*2] * GRID_SCALE) + ds->ox;
1650             coords[j*2+1] = (int)floor(points[j*2+1] * GRID_SCALE) + ds->oy;
1651         }
1652
1653         /*
1654          * Find out whether these points are in a clockwise or
1655          * anticlockwise arrangement. If the latter, discard the
1656          * face because it's facing away from the viewer.
1657          *
1658          * This would involve fiddly winding-number stuff for a
1659          * general polygon, but for the simple parallelograms we'll
1660          * be seeing here, all we have to do is check whether the
1661          * corners turn right or left. So we'll take the vector
1662          * from point 0 to point 1, turn it right 90 degrees,
1663          * and check the sign of the dot product with that and the
1664          * next vector (point 1 to point 2).
1665          */
1666         {
1667             float v1x = points[2]-points[0];
1668             float v1y = points[3]-points[1];
1669             float v2x = points[4]-points[2];
1670             float v2y = points[5]-points[3];
1671             float dp = v1x * v2y - v1y * v2x;
1672
1673             if (dp <= 0)
1674                 continue;
1675         }
1676
1677         draw_polygon(dr, coords, poly->order,
1678                      state->facecolours[i] ? COL_BLUE : COL_BACKGROUND,
1679                      COL_BORDER);
1680     }
1681     sfree(poly);
1682
1683     draw_update(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid),
1684                 YSIZE(GRID_SCALE, bb, state->solid));
1685
1686     /*
1687      * Update the status bar.
1688      */
1689     {
1690         char statusbuf[256];
1691
1692         sprintf(statusbuf, "%sMoves: %d",
1693                 (state->completed ? "COMPLETED! " : ""),
1694                 (state->completed ? state->completed : state->movecount));
1695
1696         status_bar(dr, statusbuf);
1697     }
1698 }
1699
1700 static float game_anim_length(game_state *oldstate,
1701                               game_state *newstate, int dir, game_ui *ui)
1702 {
1703     return ROLLTIME;
1704 }
1705
1706 static float game_flash_length(game_state *oldstate,
1707                                game_state *newstate, int dir, game_ui *ui)
1708 {
1709     return 0.0F;
1710 }
1711
1712 static int game_timing_state(game_state *state, game_ui *ui)
1713 {
1714     return TRUE;
1715 }
1716
1717 static void game_print_size(game_params *params, float *x, float *y)
1718 {
1719 }
1720
1721 static void game_print(drawing *dr, game_state *state, int tilesize)
1722 {
1723 }
1724
1725 #ifdef COMBINED
1726 #define thegame cube
1727 #endif
1728
1729 const struct game thegame = {
1730     "Cube", "games.cube", "cube",
1731     default_params,
1732     game_fetch_preset,
1733     decode_params,
1734     encode_params,
1735     free_params,
1736     dup_params,
1737     TRUE, game_configure, custom_params,
1738     validate_params,
1739     new_game_desc,
1740     validate_desc,
1741     new_game,
1742     dup_game,
1743     free_game,
1744     FALSE, solve_game,
1745     FALSE, game_can_format_as_text_now, game_text_format,
1746     new_ui,
1747     free_ui,
1748     encode_ui,
1749     decode_ui,
1750     game_changed_state,
1751     interpret_move,
1752     execute_move,
1753     PREFERRED_GRID_SCALE, game_compute_size, game_set_size,
1754     game_colours,
1755     game_new_drawstate,
1756     game_free_drawstate,
1757     game_redraw,
1758     game_anim_length,
1759     game_flash_length,
1760     FALSE, FALSE, game_print_size, game_print,
1761     TRUE,                              /* wants_statusbar */
1762     FALSE, game_timing_state,
1763     0,                                 /* flags */
1764 };