[−][src]Struct slotmap::SlotMap
Slot map, storage with stable unique keys.
See crate documentation for more details.
Methods
impl<V: Slottable> SlotMap<DefaultKey, V>
[src]
pub fn new() -> Self
[src]
pub fn with_capacity(capacity: usize) -> Self
[src]
Creates an empty SlotMap
with the given capacity.
The slot map will not reallocate until it holds at least capacity
elements.
Examples
let mut sm: SlotMap<_, i32> = SlotMap::with_capacity(10);
impl<K: Key, V: Slottable> SlotMap<K, V>
[src]
pub fn with_key() -> Self
[src]
Constructs a new, empty SlotMap
with a custom key type.
Examples
new_key_type! { struct PositionKey; } let mut positions: SlotMap<PositionKey, i32> = SlotMap::with_key();
pub fn with_capacity_and_key(capacity: usize) -> Self
[src]
Creates an empty SlotMap
with the given capacity and a custom key
type.
The slot map will not reallocate until it holds at least capacity
elements.
Examples
new_key_type! { struct MessageKey; } let mut messages = SlotMap::with_capacity_and_key(3); let welcome: MessageKey = messages.insert("Welcome"); let good_day = messages.insert("Good day"); let hello = messages.insert("Hello");
pub fn len(&self) -> usize
[src]
Returns the number of elements in the slot map.
Examples
let mut sm = SlotMap::with_capacity(10); sm.insert("len() counts actual elements, not capacity"); let key = sm.insert("removed elements don't count either"); sm.remove(key); assert_eq!(sm.len(), 1);
pub fn is_empty(&self) -> bool
[src]
Returns if the slot map is empty.
Examples
let mut sm = SlotMap::new(); let key = sm.insert("dummy"); assert_eq!(sm.is_empty(), false); sm.remove(key); assert_eq!(sm.is_empty(), true);
pub fn capacity(&self) -> usize
[src]
Returns the number of elements the SlotMap
can hold without
reallocating.
Examples
let sm: SlotMap<_, f64> = SlotMap::with_capacity(10); assert_eq!(sm.capacity(), 10);
pub fn reserve(&mut self, additional: usize)
[src]
Reserves capacity for at least additional
more elements to be inserted
in the SlotMap
. The collection may reserve more space to
avoid frequent reallocations.
Panics
Panics if the new allocation size overflows usize
.
Examples
let mut sm = SlotMap::new(); sm.insert("foo"); sm.reserve(32); assert!(sm.capacity() >= 33);
pub fn contains_key(&self, key: K) -> bool
[src]
Returns true
if the slot map contains key
.
Examples
let mut sm = SlotMap::new(); let key = sm.insert(42); assert_eq!(sm.contains_key(key), true); sm.remove(key); assert_eq!(sm.contains_key(key), false);
pub fn insert(&mut self, value: V) -> K
[src]
Inserts a value into the slot map. Returns a unique key that can be used to access this value.
Panics
Panics if the number of elements in the slot map equals 232 - 2.
Examples
let mut sm = SlotMap::new(); let key = sm.insert(42); assert_eq!(sm[key], 42);
pub fn insert_with_key<F>(&mut self, f: F) -> K where
F: FnOnce(K) -> V,
[src]
F: FnOnce(K) -> V,
Inserts a value given by f
into the slot map. The key where the
value will be stored is passed into f
. This is useful to store values
that contain their own key.
Panics
Panics if the number of elements in the slot map equals 232 - 2.
Examples
let mut sm = SlotMap::new(); let key = sm.insert_with_key(|k| (k, 20)); assert_eq!(sm[key], (key, 20));
pub fn remove(&mut self, key: K) -> Option<V>
[src]
Removes a key from the slot map, returning the value at the key if the key was not previously removed.
Examples
let mut sm = SlotMap::new(); let key = sm.insert(42); assert_eq!(sm.remove(key), Some(42)); assert_eq!(sm.remove(key), None);
pub fn retain<F>(&mut self, f: F) where
F: FnMut(K, &mut V) -> bool,
[src]
F: FnMut(K, &mut V) -> bool,
Retains only the elements specified by the predicate.
In other words, remove all key-value pairs (k, v)
such that
f(k, &mut v)
returns false. This method invalidates any removed keys.
This function must iterate over all slots, empty or not. In the face of many deleted elements it can be inefficient.
Examples
let mut sm = SlotMap::new(); let k1 = sm.insert(0); let k2 = sm.insert(1); let k3 = sm.insert(2); sm.retain(|key, val| key == k1 || *val == 1); assert!(sm.contains_key(k1)); assert!(sm.contains_key(k2)); assert!(!sm.contains_key(k3)); assert_eq!(2, sm.len());
pub fn clear(&mut self)
[src]
Clears the slot map. Keeps the allocated memory for reuse.
This function must iterate over all slots, empty or not. In the face of many deleted elements it can be inefficient.
Examples
let mut sm = SlotMap::new(); for i in 0..10 { sm.insert(i); } assert_eq!(sm.len(), 10); sm.clear(); assert_eq!(sm.len(), 0);
pub fn drain(&mut self) -> Drain<K, V>
[src]
Clears the slot map, returning all key-value pairs in arbitrary order as an iterator. Keeps the allocated memory for reuse.
This function must iterate over all slots, empty or not. In the face of many deleted elements it can be inefficient.
Examples
let mut sm = SlotMap::new(); let k = sm.insert(0); let v: Vec<_> = sm.drain().collect(); assert_eq!(sm.len(), 0); assert_eq!(v, vec![(k, 0)]);
pub fn get(&self, key: K) -> Option<&V>
[src]
Returns a reference to the value corresponding to the key.
Examples
let mut sm = SlotMap::new(); let key = sm.insert("bar"); assert_eq!(sm.get(key), Some(&"bar")); sm.remove(key); assert_eq!(sm.get(key), None);
pub unsafe fn get_unchecked(&self, key: K) -> &V
[src]
Returns a reference to the value corresponding to the key without version or bounds checking.
Safety
This should only be used if contains_key(key)
is true. Otherwise it is
potentially unsafe.
Examples
let mut sm = SlotMap::new(); let key = sm.insert("bar"); assert_eq!(unsafe { sm.get_unchecked(key) }, &"bar"); sm.remove(key); // sm.get_unchecked(key) is now dangerous!
pub fn get_mut(&mut self, key: K) -> Option<&mut V>
[src]
Returns a mutable reference to the value corresponding to the key.
Examples
let mut sm = SlotMap::new(); let key = sm.insert(3.5); if let Some(x) = sm.get_mut(key) { *x += 3.0; } assert_eq!(sm[key], 6.5);
pub unsafe fn get_unchecked_mut(&mut self, key: K) -> &mut V
[src]
Returns a mutable reference to the value corresponding to the key without version or bounds checking.
Safety
This should only be used if contains_key(key)
is true. Otherwise it is
potentially unsafe.
Examples
let mut sm = SlotMap::new(); let key = sm.insert("foo"); unsafe { *sm.get_unchecked_mut(key) = "bar" }; assert_eq!(sm[key], "bar"); sm.remove(key); // sm.get_unchecked_mut(key) is now dangerous!
pub fn iter(&self) -> Iter<K, V>
[src]
An iterator visiting all key-value pairs in arbitrary order. The
iterator element type is (K, &'a V)
.
This function must iterate over all slots, empty or not. In the face of many deleted elements it can be inefficient.
Examples
let mut sm = SlotMap::new(); let k0 = sm.insert(0); let k1 = sm.insert(1); let k2 = sm.insert(2); for (k, v) in sm.iter() { println!("key: {:?}, val: {}", k, v); }
pub fn iter_mut(&mut self) -> IterMut<K, V>
[src]
An iterator visiting all key-value pairs in arbitrary order, with
mutable references to the values. The iterator element type is
(K, &'a mut V)
.
This function must iterate over all slots, empty or not. In the face of many deleted elements it can be inefficient.
Examples
let mut sm = SlotMap::new(); let k0 = sm.insert(10); let k1 = sm.insert(20); let k2 = sm.insert(30); for (k, v) in sm.iter_mut() { if k != k1 { *v *= -1; } } assert_eq!(sm[k0], -10); assert_eq!(sm[k1], 20); assert_eq!(sm[k2], -30);
pub fn keys(&self) -> Keys<K, V>
[src]
An iterator visiting all keys in arbitrary order. The iterator element
type is K
.
This function must iterate over all slots, empty or not. In the face of many deleted elements it can be inefficient.
Examples
let mut sm = SlotMap::new(); let k0 = sm.insert(10); let k1 = sm.insert(20); let k2 = sm.insert(30); let keys: HashSet<_> = sm.keys().collect(); let check: HashSet<_> = vec![k0, k1, k2].into_iter().collect(); assert_eq!(keys, check);
pub fn values(&self) -> Values<K, V>
[src]
An iterator visiting all values in arbitrary order. The iterator element
type is &'a V
.
This function must iterate over all slots, empty or not. In the face of many deleted elements it can be inefficient.
Examples
let mut sm = SlotMap::new(); let k0 = sm.insert(10); let k1 = sm.insert(20); let k2 = sm.insert(30); let values: HashSet<_> = sm.values().collect(); let check: HashSet<_> = vec![&10, &20, &30].into_iter().collect(); assert_eq!(values, check);
pub fn values_mut(&mut self) -> ValuesMut<K, V>
[src]
An iterator visiting all values mutably in arbitrary order. The iterator
element type is &'a mut V
.
This function must iterate over all slots, empty or not. In the face of many deleted elements it can be inefficient.
Examples
let mut sm = SlotMap::new(); sm.insert(1); sm.insert(2); sm.insert(3); sm.values_mut().for_each(|n| { *n *= 3 }); let values: HashSet<_> = sm.into_iter().map(|(_k, v)| v).collect(); let check: HashSet<_> = vec![3, 6, 9].into_iter().collect(); assert_eq!(values, check);
Trait Implementations
impl<K: Clone + Key, V: Clone + Slottable> Clone for SlotMap<K, V>
[src]
impl<K: Debug + Key, V: Debug + Slottable> Debug for SlotMap<K, V>
[src]
impl<K: Key, V: Slottable> Default for SlotMap<K, V>
[src]
impl<K: Key, V: Slottable> Index<K> for SlotMap<K, V>
[src]
impl<K: Key, V: Slottable> IndexMut<K> for SlotMap<K, V>
[src]
impl<'a, K: Key, V: Slottable> IntoIterator for &'a SlotMap<K, V>
[src]
type Item = (K, &'a V)
The type of the elements being iterated over.
type IntoIter = Iter<'a, K, V>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Self::IntoIter
[src]
impl<'a, K: Key, V: Slottable> IntoIterator for &'a mut SlotMap<K, V>
[src]
type Item = (K, &'a mut V)
The type of the elements being iterated over.
type IntoIter = IterMut<'a, K, V>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Self::IntoIter
[src]
impl<K: Key, V: Slottable> IntoIterator for SlotMap<K, V>
[src]
Auto Trait Implementations
impl<K, V> RefUnwindSafe for SlotMap<K, V> where
V: RefUnwindSafe,
V: RefUnwindSafe,
impl<K, V> Send for SlotMap<K, V> where
V: Send,
V: Send,
impl<K, V> Sync for SlotMap<K, V> where
V: Sync,
V: Sync,
impl<K, V> Unpin for SlotMap<K, V> where
V: Unpin,
V: Unpin,
impl<K, V> UnwindSafe for SlotMap<K, V> where
V: UnwindSafe,
V: UnwindSafe,
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<I> IntoIterator for I where
I: Iterator,
[src]
I: Iterator,
type Item = <I as Iterator>::Item
The type of the elements being iterated over.
type IntoIter = I
Which kind of iterator are we turning this into?
fn into_iter(self) -> I
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,