chiark
/
gitweb
/
~mdw
/
storin
/ commitdiff
commit
grep
author
committer
pickaxe
?
search:
re
summary
|
shortlog
|
log
|
commit
| commitdiff |
tree
raw
|
patch
|
inline
| side by side (parent:
e6e0e33
)
Fix a couple of typos.
1.0.0
author
Mark Wooding
<mdw@distorted.org.uk>
Sun, 21 May 2000 21:43:26 +0000
(21:43 +0000)
committer
Mark Wooding
<mdw@distorted.org.uk>
Sun, 21 May 2000 21:43:26 +0000
(21:43 +0000)
storin.tex
patch
|
blob
|
blame
|
history
diff --git
a/storin.tex
b/storin.tex
index 3b66411744415c4a368d0c52a092087809f3ca86..d9cb84cfe3f470cfce1e51d757894db5e55e27d4 100644
(file)
--- a/
storin.tex
+++ b/
storin.tex
@@
-1,6
+1,6
@@
%%% -*-latex-*-
%%%
%%% -*-latex-*-
%%%
-%%% $Id: storin.tex,v 1.
1 2000/05/21 11:28:30
mdw Exp $
+%%% $Id: storin.tex,v 1.
2 2000/05/21 21:43:26
mdw Exp $
%%%
%%% Definition of the cipher
%%%
%%%
%%% Definition of the cipher
%%%
@@
-10,6
+10,9
@@
%%%----- Revision history ---------------------------------------------------
%%%
%%% $Log: storin.tex,v $
%%%----- Revision history ---------------------------------------------------
%%%
%%% $Log: storin.tex,v $
+%%% Revision 1.2 2000/05/21 21:43:26 mdw
+%%% Fix a couple of typos.
+%%%
%%% Revision 1.1 2000/05/21 11:28:30 mdw
%%% Initial check-in.
%%%
%%% Revision 1.1 2000/05/21 11:28:30 mdw
%%% Initial check-in.
%%%
@@
-81,13
+84,13
@@
\ar `r "d"+(0, 0.5); p+(1, 0) "x" \ar "x"; "d"%
}
\ar `r "d"+(0, 0.5); p+(1, 0) "x" \ar "x"; "d"%
}
-\def\figstart{%
+\def\figstart
#1
{%
\POS 0;<1cm,0cm>:%
\turnradius{4pt}%
\POS 0;<1cm,0cm>:%
\turnradius{4pt}%
- \ar @{-} (0, 0) *+{a}; p-(0, 0.5) ="a"
- \ar @{-} (2, 0) *+{b}; p-(0, 0.5) ="b"
- \ar @{-} (4, 0) *+{c}; p-(0, 0.5) ="c"
- \ar @{-} (6, 0) *+{d}; p-(0, 0.5) ="d"
+ \ar @{-} (0, 0) *+{a
#1
}; p-(0, 0.5) ="a"
+ \ar @{-} (2, 0) *+{b
#1
}; p-(0, 0.5) ="b"
+ \ar @{-} (4, 0) *+{c
#1
}; p-(0, 0.5) ="c"
+ \ar @{-} (6, 0) *+{d
#1
}; p-(0, 0.5) ="d"
}
\def\figround#1#2#3#4#5{%
}
\def\figround#1#2#3#4#5{%
@@
-123,14
+126,14
@@
\ar @{--} "d"; "d"-(0, 2) ="d"
}
\ar @{--} "d"; "d"-(0, 2) ="d"
}
-\def\figwhite#1#2#3#4{%
+\def\figwhite#1#2#3#4
#5
{%
\ar @{.} "a"-(0.5, 0); p+(8, 0)
\POS "a"+(8, -1)*[r]\txt{Postwhitening}
\figkeymix{#1}{#2}{#3}{#4}
\ar @{.} "a"-(0.5, 0); p+(8, 0)
\POS "a"+(8, -1)*[r]\txt{Postwhitening}
\figkeymix{#1}{#2}{#3}{#4}
- \ar "a"; p-(0, 1) *+{a
'
}
- \ar "b"; p-(0, 1) *+{
c'
}
- \ar "c"; p-(0, 1) *+{
b'
}
- \ar "d"; p-(0, 1) *+{d
'
}
+ \ar "a"; p-(0, 1) *+{a
#5
}
+ \ar "b"; p-(0, 1) *+{
b#5
}
+ \ar "c"; p-(0, 1) *+{
c#5
}
+ \ar "d"; p-(0, 1) *+{d
#5
}
}
\begin{document}
}
\begin{document}
@@
-183,11
+186,11
@@
The cipher structure is shown diagrammatically in figure~\ref{fig:cipher}.
\leavevmode
\begin{xy}
\xycompile{
\leavevmode
\begin{xy}
\xycompile{
- \figstart
+ \figstart
{}
\figround{0}{1}{2}{3}{Round 1}
\figround{4}{5}{6}{7}{Round 2}
\figgap
\figround{0}{1}{2}{3}{Round 1}
\figround{4}{5}{6}{7}{Round 2}
\figgap
- \figwhite{32}{33}{34}{35}}
+ \figwhite{32}{33}{34}{35}
{'}
}
\end{xy}
\caption{The Storin encryption function}
\label{fig:cipher}
\end{xy}
\caption{The Storin encryption function}
\label{fig:cipher}
@@
-207,11
+210,11
@@
diagrammatically in figure~\ref{fig:decipher}.
\leavevmode
\begin{xy}
\xycompile{
\leavevmode
\begin{xy}
\xycompile{
- \figstart
+ \figstart
{'}
\figiround{32}{33}{34}{35}{Round 1}
\figiround{28}{29}{30}{31}{Round 2}
\figgap
\figiround{32}{33}{34}{35}{Round 1}
\figiround{28}{29}{30}{31}{Round 2}
\figgap
- \figwhite{0}{1}{2}{3}}
+ \figwhite{0}{1}{2}{3}
{}
}
\end{xy}
\caption{The Storin decryption function}
\label{fig:decipher}
\end{xy}
\caption{The Storin decryption function}
\label{fig:decipher}
@@
-362,7
+365,7
@@
The matrix $\mathbf{M}$ and its inverse $\mathbf{M}^{-1}$ are:
The initial objective was to produce a cipher which played to the particular
strengths of digital signal processors. DSPs tend to have good multipliers,
The initial objective was to produce a cipher which played to the particular
strengths of digital signal processors. DSPs tend to have good multipliers,
-and are particularly good at matrix multiplication. The decision use a
+and are particularly good at matrix multiplication. The decision
to
use a
matrix multiplication over $\mathbb{Z}_{2^{24}}$ seemed natural, given that
24 bits is a commonly offered word size.
matrix multiplication over $\mathbb{Z}_{2^{24}}$ seemed natural, given that
24 bits is a commonly offered word size.