3 %%% C language utilities
5 %%% (c) 2015 Straylight/Edgeware
8 %%%----- Licensing notice ---------------------------------------------------
10 %%% This file is part of the Sensible Object Design, an object system for C.
12 %%% SOD is free software; you can redistribute it and/or modify
13 %%% it under the terms of the GNU General Public License as published by
14 %%% the Free Software Foundation; either version 2 of the License, or
15 %%% (at your option) any later version.
17 %%% SOD is distributed in the hope that it will be useful,
18 %%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19 %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 %%% GNU General Public License for more details.
22 %%% You should have received a copy of the GNU General Public License
23 %%% along with SOD; if not, write to the Free Software Foundation,
24 %%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 \chapter{C language utilities} \label{ch:clang}
28 %%%--------------------------------------------------------------------------
29 \section{C type representation} \label{sec:clang.c-types}
31 \subsection{Overview} \label{sec:clang.c-types.over}
33 The Sod translator represents C types in a fairly simple and direct way.
34 However, because it spends a fair amount of its time dealing with C types, it
35 provides a number of useful operations and macros.
37 The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
39 \begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
45 @|tagged-c-type| \\ \ind
50 @|c-pointer-type| \-\\
52 @|c-function-type| \\ \ind
53 @|c-keyword-function-type| \-
55 \caption{Classes representing C types}
56 \label{fig:codegen.c-types.classes}
59 C type objects are immutable unless otherwise specified.
61 \subsubsection{Constructing C type objects}
62 There is a constructor function for each non-abstract class of C type object.
63 Note, however, that constructor functions need not generate a fresh type
64 object if a previously existing type object is suitable. In this case, we
65 say that the objects are \emph{interned}. Some constructor functions are
66 specified to return interned objects: programs may rely on receiving the same
67 (@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
68 not specified, clients may still not rely on receiving fresh objects.
70 A convenient S-expression notation is provided by the
71 \descref{mac}{c-type}[macro]. Use of this macro is merely an abbreviation
72 for corresponding use of the various constructor functions, and therefore
73 interns type objects in the same manner. The syntax accepted by the macro
74 can be extended in order to support new classes: see \descref{mac}{defctype},
75 \descref{mac}{c-type-alias} and \descref{mac}{define-c-type-syntax}.
77 The descriptions of each of the various classes include descriptions of the
78 initargs which may be passed to @|make-instance| when constructing a new
79 instance of the class. However, the constructor functions and S-expression
80 syntax are strongly recommended over direct use of @|make-instance|.
82 \subsubsection{Printing}
83 There are two protocols for printing C types. Unfortunately they have
86 \item The \descref{gf}{print-c-type}[function] prints a C type value using
87 the S-expression notation. It is mainly useful for diagnostic purposes.
88 \item The \descref{gf}{pprint-c-type}[function] prints a C type as a
91 Neither generic function defines a default primary method; subclasses of
92 @|c-type| must define their own methods in order to print correctly.
94 \begin{describe}{fun}{c-name-case @<name> @> @<string>}
98 \subsection{The C type root class} \label{sec:clang.c-types.root}
100 \begin{describe}{cls}{c-type ()}
101 The class @|c-type| marks the root of the built-in C type hierarchy.
103 Users may define subclasses of @|c-type|. All non-abstract subclasses must
104 have a primary method defined on @|pprint-c-type|; unless instances of the
105 subclass are interned, a method on @|c-type-equal-p| is also required.
107 The class @|c-type| is abstract.
111 \subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
113 The S-expression representation of a type is described syntactically as a
114 type specifier. Type specifiers fit into two syntactic categories.
116 \item A \emph{symbolic type specifier} consists of a symbol. It has a
117 single, fixed meaning: if @<name> is a symbolic type specifier, then each
118 use of @<name> in a type specifier evaluates to the same (@|eq|) type
119 object, until the @<name> is redefined.
120 \item A \emph{type operator} is a symbol; the corresponding specifier is a
121 list whose @|car| is the operator. The remaining items in the list are
122 arguments to the type operator.
125 \begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
126 Evaluates to a C type object, as described by the type specifier
130 \begin{describe}{mac}
131 {defctype \=@{ @<name> @! (@<name>^+) @} @<type-spec> \+\\
132 @[[ @|:export| @<export-flag> @]]^*
134 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
135 given, then all are defined in the same way. The type constructed by using
136 any of the @<name>s is as described by the type specifier @<type-spec>.
138 The resulting type object is constructed once, at the time that the macro
139 expansion is evaluated; the same (@|eq|) value is used each time any
140 @<name> is used in a type specifier.
142 A variable named @|c-type-@<name>|, for the first @<name> only, is defined
143 and initialized to contain the C type object so constructed. Altering or
144 binding this name is discouraged.
146 If @<export-flag> is true, then the variable name, and all of the @<name>s,
147 are exported from the current package.
150 \begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
151 Defines each @<alias> as being a type operator identical in behaviour to
152 @<original>. If @<original> is later redefined then the behaviour of the
153 @<alias>es changes too.
156 \begin{describe}{mac}
157 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
158 @[[ @<declaration>^* @! @<doc-string> @]] \\
161 Defines the symbol @<name> as a new type operator. When a list of the form
162 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
163 are bound to fresh variables according to @<lambda-list> (a destructuring
164 lambda-list) and the @<form>s evaluated in order in the resulting lexical
165 environment as an implicit @|progn|. The value should be a Lisp form which
166 will evaluate to the type specified by the arguments.
168 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
169 type specifiers among its arguments.
172 \begin{describe}{gf}{expand-c-type-spec @<type-spec> @> @<form>}
173 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
175 If @<type-spec> is a list, then \descref{gf}{expand-c-type-form} is
179 \begin{describe}{gf}{expand-c-type-form @<head> @<tail> @> @<form>}
180 Returns the Lisp form that @|(c-type (@<head> . @<tail>))| would expand
184 \begin{describe}{cty}{lisp @<form>^*}
185 Evaluates the @<form>s as an implicit @|progn|, and returns the value(s) of
186 the final @<form> as a C type.
190 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
191 Print the C type object @<type> to @<stream> in S-expression form. The
192 @<colon> and @<atsign> arguments may be interpreted in any way which seems
193 appropriate: they are provided so that @|print-c-type| may be called via
194 @|format|'s @|\char`\~/\dots/| command; they are not set when
195 @|print-c-type| is called by Sod functions.
197 There should be a method defined for every C type class; there is no
203 \dhead{meth}{symbol,(eql 'c-type)}
204 {documentation (@<symbol> symbol)
205 (@<doc-type> (eql 'c-type))}
206 \dhead{meth}{symbol,(eql 'c-type)}
207 {setf \=(documentation (@<symbol> symbol)
208 (@<doc-type> (eql 'c-type))) \\
213 {\dhead{sym}{c-type-form}
214 \dhead{meth}{symbol,(eql 'c-type-form)}
215 {documentation (@<symbol> symbol)
216 (@<doc-type> (eql 'c-type-form))}
217 \dhead{meth}{symbol,(eql 'c-type-form)}
218 {setf \=(documentation (@<symbol> symbol)
219 (@<doc-type> (eql 'c-type-form))) \\
224 \subsection{Comparing C types} \label{sec:clang.c-types.cmp}
226 It is necessary to compare C types for equality, for example when checking
227 argument lists for methods. This is done by @|c-type-equal-p|.
230 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
231 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
232 @<c-type>_2 for equality; it returns true if the two types are equal and
233 false if they are not.
235 Two types are equal if they are structurally similar, where this property
236 is defined by methods for each individual class; see the descriptions of
237 the classes for the details.
239 The generic function @|c-type-equal-p| uses the @|and| method combination.
241 \begin{describe}{meth}{t,t}{c-type-equal-p @<c-type>_1 @<c-type>_2}
242 A default primary method for @|c-type-equal-p| is defined. It simply
243 returns @|nil|. This way, methods can specialize on both arguments
244 without fear that a call will fail because no methods are applicable.
246 \begin{describe}{ar-meth}{}{c-type-equal-p @<c-type>_1 @<c-type>_2}
247 A default around-method for @|c-type-equal-p| is defined. It returns
248 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
249 the primary methods. Since several common kinds of C types are interned,
250 this is a common case worth optimizing.
255 \subsection{Outputting C types} \label{sec:clang.c-types.output}
257 \begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
258 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
259 declaration of an object or function of type @<c-type>. The result is
260 written to @<stream>.
262 A C declaration has two parts: a sequence of \emph{declaration specifiers}
263 and a \emph{declarator}. The declarator syntax involves parentheses and
264 operators, in order to reflect the operators applicable to the declared
265 variable. For example, the name of a pointer variable is preceded by @`*';
266 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
268 The @<kernel> argument must be a function designator (though see the
269 standard around-method); it is invoked as
270 \begin{quote} \codeface
271 (funcall @<kernel> @<stream> @<priority> @<spacep>)
273 It should write to @<stream> -- which may not be the same stream originally
274 passed into the generic function -- the `kernel' of the declarator, i.e.,
275 the part to which prefix and/or postfix operators are attached to form the
278 The methods on @|pprint-c-type| specialized for compound types work by
279 recursively calling @|pprint-c-type| on the subtype, passing down a closure
280 which prints the necessary additional declarator operators before calling
281 the original @<kernel> function. The additional arguments @<priority> and
282 @<spacep> support this implementation technique.
284 The @<priority> argument describes the surrounding operator context. It is
285 zero if no type operators are directly attached to the kernel (i.e., there
286 are no operators at all, or the kernel is enclosed in parentheses), one if
287 a prefix operator is directly attached, or two if a postfix operator is
288 directly attached. If the @<kernel> function intends to provide its own
289 additional declarator operators, it should check the @<priority> in order
290 to determine whether parentheses are necessary. See also the
291 \descref{mac}{maybe-in-parens}[macro].
293 The @<spacep> argument indicates whether a space needs to be printed in
294 order to separate the declarator from the declaration specifiers. A kernel
295 which contains an identifier should insert a space before the identifier
296 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
297 declarator (one that specifies no name), looks more pleasing without a
298 trailing space. See also the \descref{fun}{c-type-space}[function].
300 Every concrete subclass of @|c-type| is expected to provide a primary
301 method on this function. There is no default primary method.
303 \begin{describe}{ar-meth}{}{pprint-c-type @<c-type> @<stream> @<kernel>}
304 A default around method is defined on @|pprint-c-type| which `canonifies'
305 non-function @<kernel> arguments. In particular:
307 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
308 with a @<kernel> function that does nothing; and
309 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
310 called recursively with a @<kernel> function that prints the object as
311 if by @|princ|, preceded if necessary by space using @|c-type-space|.
316 \begin{describe}{fun}{c-type-space @<stream>}
317 Writes a space and other pretty-printing instructions to @<stream> in order
318 visually to separate a declarator from the preceding declaration
319 specifiers. The precise details are subject to change.
322 \begin{describe}{mac}
323 {maybe-in-parens (@<stream-var> @<guard-form>)
326 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
327 sequence within a pretty-printer logical block writing to the stream named
328 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
329 the logical block has empty prefix and suffix strings; if it evaluates to a
330 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
333 Note that this may cause @<stream> to be bound to a different stream object
338 \subsection{Type qualifiers and qualifiable types}
339 \label{sec:clang.ctypes.qual}
341 Qualifiers -- @|const|, @|volatile|, and so on -- are represented as lists of
342 keywords attached to types. Not all C types can carry qualifiers: notably,
343 function and array types cannot be qualified.
345 For the most part, the C qualifier keywords correspond to like-named Lisp
346 keywords, only the Lisp keyword names are in uppercase. The correspondence
347 is shown in \xref{tab:clang.ctypes.qual}.
350 \begin{tabular}[C]{*2{>{\codeface}l}l} \hlx*{hv}
351 \thd{C name} & \thd{Lisp name} \\ \hlx{vhv}
354 restrict & :restrict \\
355 volatile & :volatile \\ \hlx*{vh}
357 \caption{C and Lisp qualifier names} \label{tab:clang.ctypes.qual}
360 The default behaviour, on output, is to convert keywords to lowercase and
361 hope for the best: special cases can be dealt with by adding appropriate
362 methods to \descref{gf}{c-qualifier-keyword}.
364 \begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
365 The class @|qualifiable-c-type| describes C types which can bear
366 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
367 @|restrict| and @|volatile|.
369 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
370 @|:volatile|. There is no built-in limitation to these particular
371 qualifiers; others keywords may be used, though this isn't recommended.
373 Two qualifiable types are equal only if they have \emph{matching
374 qualifiers}: i.e., every qualifier attached to one is also attached to the
375 other: order is not significant, and neither is multiplicity.
377 The class @|qualifiable-c-type| is abstract.
380 \begin{describe}{fun}
381 {canonify-qualifiers @<qualifiers> @> @<canonfied-qualifiers>}
384 \begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
385 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
389 \begin{describe}{fun}{qualify-c-type @<c-type> @<qualifiers> @> @<c-type>}
390 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
391 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
392 keywords. The result is a C type object like @<c-type> except that it
393 bears the given @<qualifiers>.
395 The @<c-type> is not modified. If @<c-type> is interned, then the returned
396 type will be interned.
399 \begin{describe}{fun}{format-qualifiers @<qualifiers> @> @<string>}
400 Returns a string containing the qualifiers listed in @<qualifiers> in C
401 syntax, with a space after each. In particular, if @<qualifiers> is
402 non-null then the final character of the returned string will be a space.
405 \begin{describe}{gf}{c-qualifier-keyword @<qualifier> @> @<string>}
406 Return, as a string, the C keyword corresponding to the Lisp @<qualifier>.
408 There is a standard method, which deals with many qualifiers. Additional
409 methods exist for qualifier keywords which need special handling, such as
410 @|:atomic|; they are not listed here explicitly.
412 \begin{describe}{meth}{keyword}
413 {c-qualifier-keyword @<keyword> @> @<string>}
414 Returns the @<keyword>'s print-name, in lower case. This is sufficient
415 for the standard qualifiers @|:const|, @|:restrict|, and @|:volatile|.
419 \begin{describe}{fun}{c-type-qualifier-keywords @<c-type> @> @<list>}
420 Return the @<c-type>'s qualifiers, as a list of C keyword names.
424 \subsection{Storage specifiers} \label{sec:clang.ctypes.specs}
426 Some declaration specifiers, mostly to do with how to store the specific
427 object in question, are determinedly `top level', and, unlike qualifiers,
428 don't stay attached to the base type when acted on by declarator operators.
429 Sod calls these `storage specifiers', though no such category exists in the C
430 standard. They have their own protocol, which is similar in many ways to
433 Every Lisp keyword is potentially a storage specifier, which simply maps to
434 its lower-case print name in C; but other storage specifiers may be more
438 {\dhead{cls}{c-storage-specifiers-type (c-type)
439 \&key :subtype :specifiers}
440 \dhead{cty}{specs @<subtype> @<specifier>^*}}
441 A type which carries storage specifiers. The @<subtype> is the actual
442 type, and may be any C type; the @<specifiers> are a list of
443 storage-specifier objects.
445 The type specifier @|specs| wraps the @<subtype> in a
446 @|c-storage-specifiers-type|, carrying the @<specifier>s, which are a list
447 of storage specifiers in S-expression notation.
450 \begin{describe}{fun}{c-type-specifiers @<type> @> @<list>}
451 Returns the list of type specifiers attached to the @<type> object, which
452 must be a @|c-storage-specifiers-type|.
455 \begin{describe}{mac}
456 {define-c-storage-specifier-syntax @<name> @<lambda-list> \\ \ind
457 @[[ @<declaration>^* @! @<doc-string> @]] \\
461 Defines the symbol @<name> as a new storage-specifier operator. When a
462 list of the form @|(@<name> @<argument>^*)| is used as a storage specifier,
463 the @<argument>s are bound to fresh variables according to the
464 @<lambda-list> (a destructuring lambda-list) and the @<form>s evaluated in
465 order in the resulting lexical environment as an implicit @<progn>. The
466 value should be a Lisp form which will evaluate to the storage-specifier
467 object described by the arguments.
469 The @<form>s may call @|expand-c-storage-specifier| in order to recursively
470 expand storage specifiers among its arguments.
473 \begin{describe}{gf}{expand-c-storage-specifier @<spec> @> @<form>}
474 Returns the Lisp form that @<spec> expands to within @|(c-type (specs
475 @<subtype> @<spec>))|.
477 If @<spec> is a list, then \descref{gf}{expand-c-storage-specifier-form} is
481 \begin{describe}{gf}{expand-c-storage-specifier-form @<spec> @> @<form>}
482 Returns the Lisp form that @|(@<head> . @<tail>)| expands to within
483 @|(c-type (specs @<subtype> (@<head> . @<tail>)))|.
486 \begin{describe}{cstg}{lisp @<form>^*}
487 Evaluates the @<form>s as an implicit @|progn|, and returns the value(s) of
488 the final @<form> as a storage-specifier.
491 \begin{describe}{gf}{pprint-c-storage-specifier @<spec> @<stream>}
492 Prints the storage-specifier @<spec> to @<stream>, in C syntax.
496 {print-c-storage-specifier @<stream> @<spec>
497 \&optional @<colon> @<atsign>}
500 \begin{describe}{fun}{wrap-c-type @<func> @<base-type> @> @<c-type>}
501 Apply @<func> to the underlying C type of @<base-type> to create a new
502 `wrapped' type, and attach the storage specifiers of @<base-type> to the
505 If @<base-type> is \emph{not} a @|c-storage-specifiers-type|, then return
506 @|(funcall @<func> @<base-type>)|. Otherwise, return a new
507 @|c-storage-specifiers-type|, with the same specifiers, but whose subtype
508 is the result of applying @<func> to the subtype of the original
513 {\dhead{cls}{alignas-storage-specifier () \&key :alignment}
514 \dhead{cstg}{alignas @<alignment>}}
515 The class of \mbox{@|_Alignas|} storage specifiers; an instance denotes the
516 specifier \mbox{@|_Alignas(@<alignment>)|}. The @<alignment> parameter may
517 be any printable object, but is usually a string or C fragment.
519 The storage specifier form @|alignas| returns a storage specifier
520 \mbox{@|_Alignas(@<alignment>)|}, where @<alignment> is evaluated.
524 \subsection{Leaf types} \label{sec:clang.c-types.leaf}
526 A \emph{leaf type} is a type which is not defined in terms of another type.
527 In Sod, the leaf types are
529 \item \emph{simple types}, including builtin types like @|int| and @|char|,
530 as well as type names introduced by @|typename|, because Sod isn't
531 interested in what the type name means, merely that it names a type; and
532 \item \emph{tagged types}, i.e., enum, struct and union types which are named
533 by a keyword identifying the kind of type, and a \emph{tag}.
536 \begin{describe}{cls}{simple-c-type (qualifiable-c-type)
537 \&key :qualifiers :name}
538 The class of `simple types'; an instance denotes the type @<qualifiers>
541 A simple type object maintains a \emph{name}, which is a string whose
542 contents are the C name for the type. The initarg @|:name| may be used to
543 provide this name when calling @|make-instance|.
545 Two simple type objects are equal if and only if they have @|string=| names
546 and matching qualifiers.
548 \def\x#1{\desclabel{cty}{#1}}
549 \def\y#1{\desclabel{const}{c-type-#1}\x{#1}}
551 \y{int} \x{signed} \y{unsigned} \y{signed-char}
552 \crossproduct\y{{{}{unsigned-}}{{char}{short}{long}{long-long}}}
553 \crossproduct\x{{{}{signed-}{unsigned-}}{{short}{long}{long-long}}{{-int}}}
554 \crossproduct\x{{{signed-}{unsigned-}}{{int}}}
555 \crossproduct\x{{{signed-}}{{short}{int}{long}{long-long}}}
556 \crossproduct\x{{{s}{u}}{{char}{short}{int}{long}{llong}}} \x{llong}
557 \y{size-t} \y{ptrdiff-t} \y{float}
558 \y{double} \y{long-double} \y{float-imaginary} \y{double-imaginary}
559 \y{long-double-imaginary} \y{float-complex} \y{double-complex}
560 \y{long-double-complex} \y{va-list} \y{void}
561 \crossproduct\y{{{int}{uint}}{{}{-least}{-fast}}{{8}{16}{32}{64}}{{-t}}}
562 \crossproduct\y{{{int}{uint}}{{ptr}{max}}{{-t}}}
564 A number of symbolic type specifiers for builtin types are predefined as
565 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
566 @|define-simple-c-type|, so can be used to construct qualified types.
570 \begin{tabular}[C]{ll} \hlx*{hv}
571 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
572 @|void| & @|void| \\ \hlx{v}
573 @|_Bool| & @|bool| \\ \hlx{v}
574 @|char| & @|char| \\ \hlx{}
575 @|wchar_t| & @|wchar-t| \\ \hlx{v}
576 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
577 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
578 @|short| & @|short|, @|signed-short|, @|short-int|,
579 @|signed-short-int| @|sshort| \\ \hlx{}
580 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
582 @|int| & @|int|, @|signed|, @|signed-int|,
584 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
585 @|long| & @|long|, @|signed-long|, @|long-int|,
586 @|signed-long-int|, @|slong| \\ \hlx{}
587 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
589 @|long long| & @|long-long|, @|signed-long-long|,
590 @|long-long-int|, \\ \hlx{}
591 & \qquad @|signed-long-long-int|,
592 @|llong|, @|sllong| \\ \hlx{v}
593 @|unsigned long long|
594 & @|unsigned-long-long|, @|unsigned-long-long-int|,
596 @|size_t| & @|size-t| \\ \hlx{}
597 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
598 @|int$n$_t| & @|int$n$-t|
599 (for $n \in \{ @|8|, @|16|, @|32|, @|64| \}$)
601 @|uint$n$_t| & @|uint$n$-t| \\ \hlx{}
602 @|int_least$n$_t| & @|int_least$n$-t| \\ \hlx{}
603 @|uint_least$n$_t| & @|uint_least$n$-t| \\ \hlx{}
604 @|int_fast$n$_t| & @|int_fast$n$-t| \\ \hlx{}
605 @|uint_fast$n$_t| & @|uint_fast$n$-t| \\ \hlx{v}
606 @|intptr_t| & @|intptr-t| \\ \hlx{}
607 @|uintptr_t| & @|uintptr-t| \\ \hlx{}
608 @|intmax_t| & @|intmax-t| \\ \hlx{}
609 @|uintmax_t| & @|uintmax-t| \\ \hlx{v}
610 @|float| & @|float| \\ \hlx{}
611 @|double| & @|double| \\ \hlx{}
612 @|long double| & @|long-double| \\ \hlx{v}
613 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
614 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
615 @|long double _Imaginary|
616 & @|long-double-imaginary| \\ \hlx{v}
617 @|float _Complex| & @|float-complex| \\ \hlx{}
618 @|double _Complex| & @|double-complex| \\ \hlx{}
619 @|long double _Complex|
620 & @|long-double-complex| \\ \hlx{v}
621 @|va_list| & @|va-list| \\ \hlx*{vh}
623 \caption{Builtin symbolic type specifiers for simple C types}
624 \label{tab:codegen.c-types.simple}
627 \begin{describe}{fun}
628 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
629 Return the (unique interned) simple C type object for the C type whose name
630 is @<name> (a string) and which has the given @<qualifiers> (a list of
634 \begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
635 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
639 \begin{describe}{mac}
640 {define-simple-c-type
641 \=@{ @<name> @! (@<name>^+) @}
642 @{ @<string> @! (@<string>^*) @} \+\\
643 @[[ @|:export| @<export-flag> @]]
645 Define type specifiers for a new simple C type. Each symbol @<name> is
646 defined as a symbolic type specifier for the (unique interned) simple C
647 type whose name is the value of (the first) @<string>. Further, each
648 @<name> is defined to be a type operator: the type specifier @|(@<name>
649 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
650 name is (the first) @<string> and which has the @<qualifiers> (which are
653 Each of the @<string>s is associated with the resulting type for retrieval
654 by \descref{fun}{find-simple-c-type}. Furthermore, a variable
655 @|c-type-@<name>| is defined, for the first @<name> only, and initialized
656 with the newly constructed C type object.
658 If @<export-flag> is true, then the @|c-type-@<name>| variable name, and
659 all of the @<name>s, are exported from the current package.
662 \begin{describe}{fun}
663 {find-simple-c-type @<string> @> @{ @<simple-c-type> @! @|nil| @}}
664 If @<string> is the name of a simple C type, as established by the
665 \descref{mac}{define-simple-c-type}[macro], then return the corresponding
666 @|simple-c-type| object; otherwise, return @|nil|.
669 \begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
670 \&key :qualifiers :tag}
671 Provides common behaviour for C tagged types. A @<tag> is a string
672 containing a C identifier.
674 Two tagged types are equal if and only if they have the same class, their
675 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
676 subclasses may have additional methods on @|c-type-equal-p| which impose
677 further restrictions.)
680 Sod maintains distinct namespaces for the three kinds of tagged types. In
681 C, there is only one namespace for tags which is shared between enums,
685 \begin{describe}{gf}{c-type-tag @<c-type> @> @<keyword>}
688 \begin{describe}{fun}
689 {make-c-tagged-type @<kind> @<tag> \&optional @<qualifiers>
693 \begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
694 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
695 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
696 should return their own classification symbols. It is intended that
697 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
699 Alas, C doesn't provide a syntactic category for these keywords;
700 \Cplusplus\ calls them a @<class-key>.} %
701 There is a method defined for each of the built-in tagged type classes
702 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
705 \begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
706 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
707 naming a kind of tagged type, return the name of the corresponding C
708 type class as a symbol.
712 {\dhead{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
713 \dhead{cty}{enum @<tag> @<qualifier>^*}}
714 Represents a C enumerated type. An instance denotes the C type @|enum|
715 @<tag>. See the direct superclass @|tagged-c-type| for details.
717 The type specifier @|enum| returns the (unique interned) enumerated type
718 with the given @<tag> and @<qualifier>s (all evaluated).
721 \begin{describe}{fun}
722 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
723 Return the (unique interned) C type object for the enumerated C type whose
724 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
729 {\dhead{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
730 \dhead{cty}{struct @<tag> @<qualifier>^*}}
731 Represents a C structured type. An instance denotes the C type @|struct|
732 @<tag>. See the direct superclass @|tagged-c-type| for details.
734 The type specifier @|struct| returns the (unique interned) structured type
735 with the given @<tag> and @<qualifier>s (all evaluated).
738 \begin{describe}{fun}
739 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
740 Return the (unique interned) C type object for the structured C type whose
741 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
746 {\dhead{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
747 \dhead{cty}{union @<tag> @<qualifier>^*}}
748 Represents a C union type. An instance denotes the C type @|union|
749 @<tag>. See the direct superclass @|tagged-c-type|
752 The type specifier @|union| returns the (unique interned) union type with
753 the given @<tag> and @<qualifier>s (all evaluated).
756 \begin{describe}{fun}
757 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
758 Return the (unique interned) C type object for the union C type whose tag
759 is @<tag> (a string) and which has the given @<qualifiers> (a list of
764 \subsection{Compound C types} \label{sec:code.c-types.compound}
766 Some C types are \emph{compound types}: they're defined in terms of existing
767 types. The classes which represent compound types implement a common
770 \begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
771 Returns the underlying type of a compound type @<c-type>. Precisely what
772 this means depends on the class of @<c-type>.
776 \subsection{Atomic types} \label{sec:clang.c-types.atomic}
778 Atomic types are compound types. The subtype of an atomic type is simply the
779 underlying type of the object. Note that, as far as Sod is concerned, atomic
780 types are not the same as atomic-qualified types: you must be consistent
784 {\dhead{cls}{c-atomic-type (qualifiable-c-type)
785 \&key :qualifiers :subtype}
786 \dhead{cty}{atomic @<type-spec> @<qualifier>^*}}
787 Represents an atomic type. An instance denotes the C type
788 @|_Atomic(@<subtype>)|.
790 The @<subtype> may be any C type.\footnote{%
791 C does not permit atomic function or array types.} %
792 Two atomic types are equal if and only if their subtypes are equal and they
793 have matching qualifiers. It is possible, though probably not useful, to
794 have an atomic-qualified atomic type.
796 The type specifier @|atomic| returns a type qualified atomic @<subtype>,
797 where @<subtype> is the type specified by @<type-spec> and the
798 @<qualifier>s are qualifier keywords (which are evaluated).
801 \begin{describe}{fun}
802 {make-atomic-type @<c-type> \&optional @<qualifiers> @> @<c-atomic-type>}
803 Return an object describing the type qualified atomic @<subtype>. If
804 @<subtype> is interned, then the returned atomic type object is interned
809 \subsection{Pointer types} \label{sec:clang.c-types.pointer}
811 Pointers are compound types. The subtype of a pointer type is the type it
815 {\dhead{cls}{c-pointer-type (qualifiable-c-type)
816 \&key :qualifiers :subtype}
817 \dhead{cty}{* @<type-spec> @<qualifier>^*}
819 \dhead{cty}{const-string}}
820 Represents a C pointer type. An instance denotes the C type @<subtype>
823 The @<subtype> may be any C type. Two pointer types are equal if and only
824 if their subtypes are equal and they have matching qualifiers.
827 \desclabel{cty}{pointer}
828 The type specifier @|*| returns a type qualified pointer-to-@<subtype>,
829 where @<subtype> is the type specified by @<type-spec> and the
830 @<qualifier>s are qualifier keywords (which are evaluated). The synonyms
831 @|ptr| and @|pointer| may be used in place of the star @`*'.
833 The symbol @|string| is a type specifier for the type pointer to
834 characters; the symbol @|const-string| is a type specifier for the type
835 pointer to constant characters.
838 \begin{describe}{fun}
839 {make-pointer-type @<c-type> \&optional @<qualifiers>
840 @> @<c-pointer-type>}
841 Return an object describing the type qualified pointer to @<subtype>.
842 If @<subtype> is interned, then the returned pointer type object is
847 \subsection{Array types} \label{sec:clang.c-types.array}
849 Arrays implement the compound-type protocol. The subtype of an array type is
850 the array element type.
853 {\dhead{cls}{c-array-type (c-type) \&key :subtype :dimensions}
854 \dhead{cty}{[] @<type-spec> @<dimension>^*}}
855 \desclabel{cty}{array}[|(]
856 \desclabel{cty}{vec}[|(]
857 Represents a multidimensional C array type. The @<dimensions> are a list
858 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
859 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
860 individual dimension specifier is either a string containing a C integral
861 constant expression, or nil which is equivalent to an empty string. Only
862 the first (outermost) dimension $d_0$ should be empty.
864 C doesn't actually have multidimensional arrays as a primitive notion;
865 rather, it permits an array (with known extent) to be the element type of
866 an array, which achieves an equivalent effect. C arrays are stored in
867 row-major order: i.e., if we write down the indices of the elements of an
868 array in order of ascending address, the rightmost index varies fastest;
869 hence, the type constructed is more accurately an array of $d_0$ arrays of
870 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
871 continue to abuse terminology and refer to multidimensional arrays.
873 The type specifier @|[]| constructs a multidimensional array with the given
874 @<dimension>s whose elements have the type specified by @<type-spec>. If
875 no dimensions are given then a single-dimensional array with unspecified
876 extent. The synonyms @|array| and @|vec| may be used in place of the
879 \desclabel{cty}{array}[|)]
880 \desclabel{cty}{vec}[|)]
883 \begin{describe}{fun}
884 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
885 Return an object describing the type of arrays with given @<dimensions> and
886 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
887 argument is a list whose elements are strings or nil; see the description
888 of the class @|c-array-type| above for details.
891 \begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
892 Returns the dimensions of @<c-type>, an array type, as an immutable list.
896 \subsection{Function types} \label{sec:clang.c-types.fun}
898 Function types implement the compound-type protocol. The subtype of a
899 function type is the type of the function's return value.
901 \begin{describe}{cls}{argument}
902 Represents an ordinary function argument.
905 \begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
906 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
910 \begin{describe}{fun}
911 {make-argument @<name> @<c-type> \&optional @<default> @> @<argument>}
912 Construct and a return a new @<argument> object. The argument has type
913 @<c-type>, which must be a @|c-type| object, and is named @<name>.
915 The @<name> may be nil to indicate that the argument has no name: in this
916 case the argument will be formatted as an abstract declarator, which is not
917 suitable for function definitions. If @<name> is not nil, then the
918 @<name>'s print representation, with @|*print-escape*| nil, is used as the
921 A @<default> may be supplied. If the argument is used in a
922 keyword-argument list (e.g., in a \descref{cls}{c-keyword-function-type}
923 [object]), and the @<default> value is provided and non-nil, then its
924 (unescaped) printed representation is used to provide a default value if
925 the keyword argument is not supplied by the caller.
929 {\dhead{fun}{argument-name @<argument> @> @<name>}
930 \dhead{fun}{argument-type @<argument> @> @<c-type>}
931 \dhead{fun}{argument-default @<argument> @> @<default>}}
932 Accessor functions for @|argument| objects. They return the appropriate
933 component of the object, as set by to @|make-argument|. The @<default> is
934 nil if no default was provided to @|make-argument|.
938 {commentify-argument-name @<name> @> @<commentified-name>}
939 Convert the argument name @<name> so that it's suitable to declare the
940 function in a header file.
942 Robust header files shouldn't include literal argument names in
943 declarations of functions or function types, since this restricts the
944 including file from defining such names as macros. This generic function
945 is used to convert names into a safe form.
947 \begin{describe}{meth}{null}
948 {commentify-argument-name (@<name> null) @> nil}
949 Returns nil: if the argument name is already omitted, it's safe for use
952 \begin{describe}{meth}{t}
953 {commentify-argument-name (@<name> t) @> @<string>}
954 Returns the print form of @<name> wrapped in a C comment, as
959 \begin{describe}{fun}
960 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
961 Convert the @<arguments> list so that it's suitable for use in a header
964 The @<arguments> list should be a list whose items are @|argument| objects
965 or the keyword @|:ellipsis|. The return value is a list constructed as
966 follows. For each @|argument| object in the input list, there is a
967 corresponding @|argument| object in the returned list, with the same type,
968 and whose name is the result of @|commentify-argument-name| applied to the
969 input argument name; an @|:ellipsis| in the input list is passed through
974 {\dhead{cls}{c-function-type (c-type) \&key :subtype :arguments}
975 \dhead*{cty}{fun @<return-type>
976 @{ (@<arg-name> @<arg-type>) @}^*
977 @[:ellipsis @! . @<form>@]}}
978 \desclabel{cty}{()}[|(]
979 \desclabel{cty}{fn}[|(]
980 \desclabel{cty}{func}[|(]
981 \desclabel{cty}{function}[|(]
982 \descindex{cty}{fun}[|(]
983 Represents C function types. An instance denotes the type of a C
984 function which accepts the @<arguments> and returns @<subtype>.
986 The @<arguments> are a possibly empty list. All but the last element of
987 the list must be @|argument| objects; the final element may instead be the
988 keyword @|:ellipsis|, which denotes a variable argument list.
990 An @<arguments> list consisting of a single argument with type @|void| is
991 converted into an empty list. On output as C code, an empty argument list
992 is written as @|void|. It is not possible to represent a pre-ANSI C
993 function without prototypes.
995 Two function types are considered to be the same if their return types are
996 the same, and their argument lists consist of arguments with the same type,
997 in the same order, and either both or neither argument list ends with
998 @|:ellipsis|; argument names are not compared.
1000 The type specifier @|fun| constructs a function type. The function has the
1001 subtype @<return-type>. The remaining items in the type-specifier list are
1002 used to construct the argument list. The argument items are a possibly
1003 improper list, beginning with zero or more \emph{explicit arguments}:
1004 two-item @<arg-name>/@<arg-type> lists. For each such list, an @|argument|
1005 object is constructed with the given name (evaluated) and type. Following
1006 the explicit arguments, there may be
1008 \item nothing, in which case the function's argument list consists only of
1009 the explicit arguments;
1010 \item the keyword @|:ellipsis|, as the final item in the type-specifier
1011 list, indicating a variable argument list may follow the explicit
1013 \item a possibly-improper list tail, beginning with an atom either as a
1014 list item or as the final list cdr, indicating that the entire list tail
1015 is a Lisp expression which is to be evaluated to compute the remaining
1018 A tail expression may return a list of @|argument| objects, optionally
1019 followed by an @|:ellipsis|.
1023 (c-type (fun \=(lisp (c-type-subtype other-func)) \+\\
1024 ("first" int) . (c-function-arguments other-func))
1026 evaluates to a function type like @|other-func|, only with an additional
1027 argument of type @|int| added to the front of its argument list. This
1028 could also have been written
1030 (let (\=(args (c-function-arguments other-func)) \+\\
1031 (ret (c-type-subtype other-func))) \-\\ \ind
1032 (c-type (fun \=(lisp ret) ("first" int) . args)
1034 \descindex{cty}{fun}[|)]
1038 {\dhead{cls}{c-keyword-function-type (c-function-type)
1039 \&key :subtype :arguments :keywords}
1040 \dhead{cty}{fun \=@<return-type>
1041 @{ (@<arg-name> @<arg-type>) @}^* \+\\
1042 @{ \=:keys @{ (@<kw-name> @<kw-type>
1043 @[@<kw-default>@]) @}^*
1044 @[. @<form>@] @! \+\\
1046 Represents `functions' which accept keyword arguments. Of course, actual C
1047 functions can't accept keyword arguments directly, but this type is useful
1048 for describing messages and methods which deal with keyword arguments.
1050 An instance denotes the type of C function which accepts the position
1051 argument list @<arguments>, and keyword arguments from the @<keywords>
1052 list, and returns @<subtype>. Either or both of the @<arguments> and
1053 @<keywords> lists may be empty. (It is important to note the distinction
1054 between a function which doesn't accept keyword arguments, and one which
1055 does but for which no keyword arguments are defined. In particular, the
1056 latter function can be changed later to accept a keyword argument without
1057 breaking compatibility with old code.) The @<arguments> and @<keywords>
1058 lists must \emph{not} contain @|:ellipsis| markers: a function can accept
1059 keywords, or a variable-length argument tail, but not both.
1061 Keyword arguments may (but need not) have a \emph{default value} which is
1062 supplied to the function body if the keyword is omitted.
1064 Keyword functions are never considered to be the same as ordinary
1065 functions. Two keyword function types are considered to be the same if
1066 their return types are the same, and their positional argument lists
1067 consist of arguments with the same type, in the same order: the keyword
1068 arguments accepted by the functions is not significant.
1070 Keyword functions are constructed using an extended version of the @|fun|
1071 specifier (or any of its synonyms) used for ordinary C function types.
1072 Either the symbol @|:keys| must appear literally in the specifier, or the
1073 @<form> must evaluate to a list containing the symbol @|:keys|. (If
1074 neither of these circumstances obtains, then the specifier constructs an
1075 ordinary function type.)
1077 See the description of \descref{cls}{c-function-type} for how a trailing
1080 The list of @<arg-name>s and @<arg-type>s describes the positional
1081 arguments. The list of @<kw-name>s, @<kw-type>s and @<kw-defaults>s
1082 describes the keyword arguments.
1084 \descindex{cty}{()}[|)]
1085 \descindex{cty}{fn}[|)]
1086 \descindex{cty}{func}[|)]
1087 \descindex{cty}{function}[|)]
1090 \begin{describe}{fun}
1091 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
1092 Construct and return a new function type, returning @<subtype> and
1093 accepting the @<arguments>.
1095 If the @<arguments> list contains a @|:keys| marker, then a
1096 \descref{cls}{c-keyword-function-type}[object] is returned: those arguments
1097 preceding the @|:keys| marker form the positional argument list, and those
1098 following the marker form the list of keyword arguments.
1101 \begin{describe}{fun}
1102 {make-keyword-function-type @<subtype> @<arguments> @<keywords>
1103 \nlret @<c-keyword-function-type>}
1104 Construct and return a new keyword-function type, returning @<subtype> and
1105 accepting the @<arguments> and @<keywords>.
1108 \begin{describe}{gf}
1109 {c-function-arguments @<c-function-type> @> @<arguments>}
1110 Return the (non-keyword) argument list of the @<c-function-type>.
1113 \begin{describe}{gf}
1114 {c-function-keywords @<c-function-type> @> @<keywords>}
1115 Return the keyword-argument list of the @<c-function-type>.
1118 \begin{describe}{fun}
1119 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
1120 Return a commentified version of the @<c-function-type>.
1122 The returned type has the same subtype as the given type, and the argument
1123 list of the returned type is the result of applying
1124 @|commentify-argument-names| to the argument list of the given type.
1127 \begin{describe}{fun}{reify-variable-argument-tail @<arguments> @> @<list>}
1128 If the @<argument> list contains an @|:ellipsis| marker, then replace it
1129 with a @|va_list|. The name for the new argument, if any, is taken from
1130 the \descref{var}{*sod-ap*}[variable]. The new list is returned; the
1131 original list is not modified, but may share structure with the new list.
1134 \begin{describe}{fun}
1135 {merge-keyword-lists @<what-function> @<lists> @> @<list>}
1136 Merge a number of keyword-argument lists together and return the result.
1138 The @<what-function> is either nil or a function designator; see below.
1140 The @<lists> parameter is a list consisting of a number of
1141 @|(@<report-function> . @<args>)| pairs: in each pair, @<report-function>
1142 is either nil or a function designator, and @<args> is a list of
1143 \descref{cls}{argument} objects.
1145 The resulting list contains exactly one argument for each distinct argument
1146 name appearing in the input @<lists>; this argument will contain the
1147 default value from the earliest occurrence in the input @<lists> of an
1148 argument with that name.
1150 If the same name appears multiple times with different types, a continuable
1151 error will be signalled, and one of the conflicting argument types will be
1152 chosen arbitrarily. The @<what-function> will be called to establish
1153 information which will be reported to the user. It will be called with no
1154 arguments and is expected to return two values:
1156 \item a file location @<floc> or other object acceptable to
1157 \descref{gf}{file-location}, to be used as the location of the main
1159 \item an object @<what>, whose printed representation should be a noun
1160 phrase describing the object for which the argument lists are being
1163 The phrasing of the error message is `type mismatch in @<what>'. Either,
1164 or both, of @<floc> and @<what> may be nil, though this is considered poor
1165 practice; if @<what-function> is nil, this is equivalent to a function
1166 which returns two nil values. Following the error, the @<report-function>s
1167 for the @<args> lists containing the conflicting argument objects are
1168 called, in an arbitrary order, with a single argument which is the
1169 offending @|argument| object; the function is expected to issue information
1170 messages (see \descref{fun}{info}) to give more detail for diagnosing the
1171 conflict. If a @<report-function> is nil, then nothing happens; this is
1172 considered poor practice.
1175 \begin{describe}{fun}
1176 {pprint-c-function-type @<return-type> @<stream>
1177 @<print-args> @<print-kernel>}
1178 Provides the top-level structure for printing C function types.
1180 Output is written to @<stream> to describe a function type returning
1181 @<return-type>, whose declarator kernel (containing the name, and any
1182 further type operands) will be printed by @<print-kernel>, and whose
1183 arguments, if any, will be printed by @<print-args>.
1185 The @<print-kernel> function is a standard kernel-printing function
1186 following the \descref{gf}{pprint-c-type}[protocol].
1188 The @<print-args> function is given a single argument, which is the
1189 @<stream> to print on. It should not print the surrounding parentheses.
1191 The output written to @<stream> looks approximately like
1193 @<return-type> @<kernel>(@<args>)
1197 \begin{describe}{fun}{pprint-argument-list @<args> @<stream> @> @<flag>}
1198 Print an argument list to @<stream>.
1200 The @<args> is a list of \descref{cls}{argument}[objects], optionally
1201 containing an @|:ellipsis| marker. The function returns true if any
1202 arguments were actually printed.
1206 \subsection{Parsing C types} \label{sec:clang.c-types.parsing}
1208 \begin{describe}{fun}
1209 {parse-c-type @<scanner>
1210 @> @<result> @<success-flag> @<consumed-flag>}
1213 \begin{describe}{fun}
1214 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
1215 \nlret @<result> @<success-flag> @<consumed-flag>}
1219 \subsection{Class types} \label{sec:clang.c-types.class}
1222 {\dhead{cls}{c-class-type (simple-c-type)
1223 \&key :class :tag :qualifiers :name}
1224 \dhead{cty}{class @<name> @<qualifier>^*}}
1228 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
1229 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
1232 \begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
1235 \begin{describe}{fun}
1236 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
1239 \begin{describe}{fun}{find-sod-class @<name> @> @<class>}
1242 \begin{describe}{fun}{record-sod-class @<class>}
1245 %%%--------------------------------------------------------------------------
1246 \section{Generating C code} \label{sec:clang.codegen}
1248 This section deals with Sod's facilities for constructing and manipulating C
1249 expressions, declarations, instructions and definitions.
1252 \subsection{Temporary names} \label{sec:clang.codegen.temporaries}
1254 Many C-level objects, especially ones with external linkage or inclusion in a
1255 header file, are assigned names which are simple strings, perhaps fixed ones,
1256 perhaps constructed. Other objects don't need meaningful names, and
1257 suitably unique constructed names would be tedious and most likely rather
1258 opaque. Therefore Sod has an ability to construct \emph{temporary names}.
1260 These aren't temporary in the sense that they name C objects which have
1261 limited lifetimes at runtime. Rather, the idea is that the names be
1262 significant only to small pieces of Lisp code, which will soon forget about
1265 \subsubsection{The temporary name protocol}
1266 Temporary names are represented by objects which implement a simple protocol.
1268 \begin{describe}{gf}{format-temporary-name @<var> @<stream>}
1272 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
1273 \dhead{gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
1276 \subsubsection{Temporary name objects}
1278 \begin{describe}{cls}{temporary-name () \&key :tag}
1279 A temporary name object. This is the root of a small collection of
1280 subclasses, but is also usable on its own.
1283 \begin{describe}{gf}{temp-tag @<name> @> @<tag>}
1286 \begin{describe}{meth}{temporary-name}
1287 {commentify-argument-name (@<name> temporary-name) @> nil}
1291 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1292 \thd{Class} & \thd{Name format} \\ \hlx{vhv}
1293 temporary-name & @<tag> \\
1294 temporary-argument & sod__a@<tag> \\
1295 temporary-function & sod__f@<tag> \\
1296 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
1298 \caption{Temporary name formats}
1299 \label{tab:codegen.codegen.temps-format}
1302 \begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
1305 \begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
1308 \begin{describe}{fun}{temporary-function @> @<name>}
1311 \begin{describe}{cls}
1312 {temporary-variable (temporary-name) \&key :tag :in-use-p}
1315 \subsubsection{Well-known `temporary' names}
1318 \def\x#1{\desclabel{var}{#1}}
1319 \x{*sod-ap*} \x{*sod-master-ap*} \x{*null-pointer*}
1320 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1321 \thd{Variable} & \thd{Name format} \\ \hlx{vhv}
1322 {}*sod-ap* & sod__ap \\
1323 {}*sod-master-ap* & sod__master_ap \\
1324 {}*null-pointer* & NULL \\ \hlx*{vh}
1326 \caption{Well-known temporary names}
1327 \label{tab:codegen.codegen.well-known-temps}
1331 \subsection{Instructions} \label{sec:clang.codegen.insts}
1333 \begin{describe}{cls}{inst () \&key}
1336 \begin{describe}{gf}{inst-metric @<inst>}
1339 \begin{describe}{mac}
1340 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
1341 @[[ @<declaration>^* @! @<doc-string> @]] \\
1346 \begin{describe}{mac}
1347 {format-compound-statement
1348 (@<stream> @<child> \&optional @<morep>) \\ \ind
1353 \begin{describe}{fun}
1354 {format-banner-comment @<stream> @<control> \&rest @<args>}
1358 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
1361 \thd{Output format}\\ \hlx{vhv}
1362 @|var| & @<name> @<type> @|\&optional| @<init>
1363 & @<type> @<name> @[= @<init>@];
1365 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
1366 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
1368 @|cond| & @<cond> @<conseq> @<alt> & @<cond> ? @<conseq> : @<alt>
1370 @|return| & @<expr> & return @[@<expr>@];
1372 @|break| & --- & break; \\ \hlx{v}
1373 @|continue| & --- & continue; \\ \hlx{v}
1374 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
1375 @|call| & @<func> @|\&rest| @<args>
1378 @<arg>_n) \\ \hlx{v}
1379 @|banner| & @<control> @|\&rest| @<args>
1380 & /* @<banner> */ \\ \hlx{vhv}
1381 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
1383 @|if| & @<cond> @<conseq> @|\&optional| @<alt>
1384 & if (@<cond>) @<conseq>
1385 @[else @<alt>@] \\ \hlx{v}
1386 @|for| & @<init> @<cond> @<update> @<body> &
1387 for (@<init>; @<cond>; @<update>) @<body> \\ \hlx{v}
1388 @|while| & @<cond> @<body> & while (@<cond>) @<body>
1390 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
1393 \vtop{\hbox{\strut @<name> @<type> @<body>}
1394 \hbox{\strut \quad @|\&optional @<banner>|}
1395 \hbox{\strut \quad @|\&rest| @<banner-args>}} &
1396 \vtop{\hbox{\strut @[/* @<banner> */@]}
1397 \hbox{\strut @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
1398 @<type>_n @<arg>_n @[, \dots@])}
1399 \hbox{\strut \quad @<body>}} \\ \hlx*{vh}
1401 \caption{Instruction classes}
1402 \label{tab:codegen.codegen.insts}
1406 {\dhead*{cls}{@<code>-inst (inst) \&key \dots}
1407 \dhead*{fun}{make-@<code>-inst \dots}
1408 \dhead*{gf}{inst-@<slot> @<inst> @> @<value>}}
1409 \def\instclass#1#2#3{%
1410 #1{cls}{#3-inst}[#2]%
1411 #1{fun}{make-#3-inst}[#2]%
1413 \def\instslot#1#2#3{#1{gf}{inst-#3}[#2]}
1414 \def\makelabels#1#2{%
1415 \def\x{\instclass{#1}{#2}}
1416 \x{var} \x{set} \x{update} \x{cond} \x{return} \x{break} \x{continue}
1417 \x{expr} \x{call} \x{banner} \x{block} \x{if} \x{for} \x{while}
1418 \x{do-while} \x{function}
1419 \def\x{\instslot{#1}{#2}}
1420 \x{name} \x{type} \x{init} \x{var} \x{expr} \x{op} \x{cond} \x{conseq}
1421 \x{alt} \x{func} \x{args} \x{control} \x{decls} \x{body} \x{update}
1422 \x{banner} \x{banner-args}
1424 \makelabels{\desclabel}{|(}
1426 Sod provides a number of built-in instruction types generated by
1427 \descref{mac}{definst}: see \xref{tab:codegen.codegen.insts}.
1429 \makelabels{\descindex}{|)}
1433 \subsection{Code generation} \label{sec:clang.codegen.codegen}
1435 \begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
1438 \begin{describe}{gf}
1439 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
1442 \begin{describe}{gf}{emit-inst @<codegen> @<inst>}
1445 \begin{describe}{gf}{emit-insts @<codegen> @<insts>}
1448 \begin{describe}{gf}{emit-decl @<codegen> @<decl>}
1451 \begin{describe}{gf}{emit-decls @<codegen> @<decls>}
1454 \begin{describe}{fun}{emit-banner @<codegen> @<control> \&rest @<args>}
1457 \begin{describe}{gf}{codegen-push @<codegen>}
1460 \begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
1463 \begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
1466 \begin{describe}{gf}
1467 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
1470 \begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
1473 \begin{describe}{fun}
1474 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
1478 \begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
1481 \begin{describe}{mac}
1482 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
1485 \-\nlret @<value>^*}
1488 \begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
1491 \begin{describe}{fun}
1492 {deliver-call @<codegen> @<target> @<func> \&rest @<args>}
1495 \begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
1498 \begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
1501 %%%--------------------------------------------------------------------------
1502 \section{Literal C code fragments} \label{sec:clang.fragment}
1504 \begin{describe}{cls}{c-fragment () \&key :location :text}
1508 {\dhead{gf}{c-fragment-text @<fragment> @> @<string>}
1509 \dhead{meth}{c-fragment}
1510 {file-location (@<fragment> c-fragment) @> @<floc>}}
1513 \begin{describe}{fun}
1514 {scan-c-fragment @<scanner> @<end-chars>
1515 @> @<result> @<success-flag> @<consumed-flag>}
1518 \begin{describe}{fun}
1519 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
1520 \nlret @<result> @<success-flag> @<consumed-flag>}
1523 %%%----- That's all, folks --------------------------------------------------
1525 %%% Local variables:
1527 %%% TeX-master: "sod.tex"