3 %%% C language utilities
5 %%% (c) 2015 Straylight/Edgeware
8 %%%----- Licensing notice ---------------------------------------------------
10 %%% This file is part of the Sensble Object Design, an object system for C.
12 %%% SOD is free software; you can redistribute it and/or modify
13 %%% it under the terms of the GNU General Public License as published by
14 %%% the Free Software Foundation; either version 2 of the License, or
15 %%% (at your option) any later version.
17 %%% SOD is distributed in the hope that it will be useful,
18 %%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19 %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 %%% GNU General Public License for more details.
22 %%% You should have received a copy of the GNU General Public License
23 %%% along with SOD; if not, write to the Free Software Foundation,
24 %%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 \chapter{C language utilities} \label{ch:clang}
28 %%%--------------------------------------------------------------------------
29 \section{C type representation} \label{sec:clang.c-types}
31 \subsection{Overview} \label{sec:clang.c-types.over}
33 The Sod translator represents C types in a fairly simple and direct way.
34 However, because it spends a fair amount of its time dealing with C types, it
35 provides a number of useful operations and macros.
37 The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
39 \begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
45 @|tagged-c-type| \\ \ind
49 @|c-pointer-type| \- \\
53 \caption{Classes representing C types}
54 \label{fig:codegen.c-types.classes}
57 C type objects are immutable unless otherwise specified.
59 \subsubsection{Constructing C type objects}
60 There is a constructor function for each non-abstract class of C type object.
61 Note, however, that constructor functions need not generate a fresh type
62 object if a previously existing type object is suitable. In this case, we
63 say that the objects are \emph{interned}. Some constructor functions are
64 specified to return interned objects: programs may rely on receiving the same
65 (@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
66 not specified, clients may still not rely on receiving fresh objects.
68 A convenient S-expression notation is provided by the @|c-type| macro. Use
69 of this macro is merely an abbreviation for corresponding use of the various
70 constructor functions, and therefore interns type objects in the same manner.
71 The syntax accepted by the macro can be extended in order to support new
72 classes: see @|defctype|, @|c-type-alias| and @|define-c-type-syntax|.
74 The descriptions of each of the various classes include descriptions of the
75 initargs which may be passed to @|make-instance| when constructing a new
76 instance of the class. However, the constructor functions and S-expression
77 syntax are strongly recommended over direct use of @|make-instance|.
79 \subsubsection{Printing}
80 There are two protocols for printing C types. Unfortunately they have
83 \item The @|print-c-type| function prints a C type value using the
84 S-expression notation. It is mainly useful for diagnostic purposes.
85 \item The @|pprint-c-type| function prints a C type as a C-syntax
88 Neither generic function defines a default primary method; subclasses of
89 @|c-type| must define their own methods in order to print correctly.
91 \subsection{The C type root class} \label{sec:clang.c-types.root}
93 \begin{describe}{cls}{c-type ()}
94 The class @|c-type| marks the root of the built-in C type hierarchy.
96 Users may define subclasses of @|c-type|. All non-abstract subclasses must
97 have a primary method defined on @|pprint-c-type|; unless instances of the
98 subclass are interned, a method on @|c-type-equal-p| is also required.
100 The class @|c-type| is abstract.
103 \subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
105 The S-expression representation of a type is described syntactically as a
106 type specifier. Type specifiers fit into two syntactic categories.
108 \item A \emph{symbolic type specifier} consists of a symbol. It has a
109 single, fixed meaning: if @<name> is a symbolic type specifier, then each
110 use of @<name> in a type specifier evaluates to the same (@|eq|) type
111 object, until the @<name> is redefined.
112 \item A \emph{type operator} is a symbol; the corresponding specifier is a
113 list whose @|car| is the operator. The remaining items in the list are
114 arguments to the type operator.
117 \begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
118 Evaluates to a C type object, as described by the type specifier
122 \begin{describe}{mac}
123 {defctype @{ @<name> @! (@<name> @<nickname>^*) @} @<type-spec>
125 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
126 given, then all are defined in the same way. The type constructed by using
127 any of the @<name>s is as described by the type specifier @<type-spec>.
129 The resulting type object is constructed once, at the time that the macro
130 expansion is evaluated; the same (@|eq|) value is used each time any
131 @<name> is used in a type specifier.
134 \begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
135 Defines each @<alias> as being a type operator identical in behaviour to
136 @<original>. If @<original> is later redefined then the behaviour of the
137 @<alias>es changes too.
140 \begin{describe}{mac}
141 {define-c-type-syntax @<name> @<lambda-list> @<form>^* @> @<name>}
142 Defines the symbol @<name> as a new type operator. When a list of the form
143 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
144 are bound to fresh variables according to @<lambda-list> (a destructuring
145 lambda-list) and the @<form>s evaluated in order in the resulting lexical
146 environment as an implicit @|progn|. The value should be a Lisp form which
147 will evaluate to the type specified by the arguments.
149 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
150 type specifiers among its arguments.
153 \begin{describe}{fun}{expand-c-type-spec @<type-spec> @> @<form>}
154 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
158 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
159 Print the C type object @<type> to @<stream> in S-expression form. The
160 @<colon> and @<atsign> arguments may be interpreted in any way which seems
161 appropriate: they are provided so that @|print-c-type| may be called via
162 @|format|'s @|\char`\~/\dots/| command; they are not set when
163 @|print-c-type| is called by Sod functions.
165 There should be a method defined for every C type class; there is no
169 \subsection{Comparing C types} \label{sec:clang.c-types.cmp}
171 It is necessary to compare C types for equality, for example when checking
172 argument lists for methods. This is done by @|c-type-equal-p|.
175 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
176 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
177 @<c-type>_2 for equality; it returns true if the two types are equal and
178 false if they are not.
180 Two types are equal if they are structurally similar, where this property
181 is defined by methods for each individual class; see the descriptions of
182 the classes for the details.
184 The generic function @|c-type-equal-p| uses the @|and| method combination.
186 \begin{describe}{meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
187 A default primary method for @|c-type-equal-p| is defined. It simply
188 returns @|nil|. This way, methods can specialize on both arguments
189 without fear that a call will fail because no methods are applicable.
191 \begin{describe}{ar-meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
192 A default around-method for @|c-type-equal-p| is defined. It returns
193 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
194 the primary methods. Since several common kinds of C types are interned,
195 this is a common case worth optimizing.
199 \subsection{Outputting C types} \label{sec:clang.c-types.output}
201 \begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
202 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
203 declaration of an object or function of type @<c-type>. The result is
204 written to @<stream>.
206 A C declaration has two parts: a sequence of \emph{declaration specifiers}
207 and a \emph{declarator}. The declarator syntax involves parentheses and
208 operators, in order to reflect the operators applicable to the declared
209 variable. For example, the name of a pointer variable is preceded by @`*';
210 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
212 The @<kernel> argument must be a function designator (though see the
213 standard around-method); it is invoked as
214 \begin{quote} \codeface
215 (funcall @<kernel> @<stream> @<priority> @<spacep>)
217 It should write to @<stream> -- which may not be the same stream originally
218 passed into the generic function -- the `kernel' of the declarator, i.e.,
219 the part to which prefix and/or postfix operators are attached to form the
222 The methods on @|pprint-c-type| specialized for compound types work by
223 recursively calling @|pprint-c-type| on the subtype, passing down a closure
224 which prints the necessary additional declarator operators before calling
225 the original @<kernel> function. The additional arguments @<priority> and
226 @<spacep> support this implementation technique.
228 The @<priority> argument describes the surrounding operator context. It is
229 zero if no type operators are directly attached to the kernel (i.e., there
230 are no operators at all, or the kernel is enclosed in parentheses), one if
231 a prefix operator is directly attached, or two if a postfix operator is
232 directly attached. If the @<kernel> function intends to provide its own
233 additional declarator operators, it should check the @<priority> in order
234 to determine whether parentheses are necessary. See also the
235 @|maybe-in-parens| macro (page~\pageref{mac:maybe-in-parens}).
237 The @<spacep> argument indicates whether a space needs to be printed in
238 order to separate the declarator from the declaration specifiers. A kernel
239 which contains an identifier should insert a space before the identifier
240 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
241 declarator (one that specifies no name), looks more pleasing without a
242 trailing space. See also the @|c-type-space| function
243 (page~\pageref{fun:c-type-space}).
245 Every concrete subclass of @|c-type| is expected to provide a primary
246 method on this function. There is no default primary method.
248 \begin{describe}{ar-meth}{pprint-c-type @<c-type> @<stream> @<kernel>}
249 A default around method is defined on @|pprint-c-type| which `canonifies'
250 non-function @<kernel> arguments. In particular:
252 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
253 with a @<kernel> function that does nothing; and
254 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
255 called recursively with a @<kernel> function that prints the object as
256 if by @|princ|, preceded if necessary by space using @|c-type-space|.
261 \begin{describe}{fun}{c-type-space @<stream>}
262 Writes a space and other pretty-printing instructions to @<stream> in order
263 visually to separate a declarator from the preceding declaration
264 specifiers. The precise details are subject to change.
267 \begin{describe}{mac}
268 {maybe-in-parens (@<stream-var> @<guard-form>) @<form>^*}
269 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
270 sequence within a pretty-printer logical block writing to the stream named
271 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
272 the logical block has empty prefix and suffix strings; if it evaluates to a
273 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
276 Note that this may cause @<stream> to be bound to a different stream object
280 \subsection{Type qualifiers and qualifiable types}
281 \label{sec:clang.ctypes.qual}
283 \begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
284 The class @|qualifiable-c-type| describes C types which can bear
285 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
286 @|restrict| and @|volatile|.
288 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
289 @|:volatile|. There is no built-in limitation to these particular
290 qualifiers; others keywords may be used, though this isn't recommended.
292 Two qualifiable types are equal only if they have \emph{matching
293 qualifiers}: i.e., every qualifier attached to one is also attached to
294 the other: order is not significant, and neither is multiplicity.
296 The class @|qualifiable-c-type| is abstract.
299 \begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
300 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
304 \begin{describe}{fun}{qualify-type @<c-type> @<qualifiers> @> @<c-type>}
305 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
306 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
307 keywords. The result is a C type object like @<c-type> except that it
308 bears the given @<qualifiers>.
310 The @<c-type> is not modified. If @<c-type> is interned, then the returned
311 type will be interned.
314 \begin{describe}{fun}{format-qualifiers @<qualifiers>}
315 Returns a string containing the qualifiers listed in @<qualifiers> in C
316 syntax, with a space after each. In particular, if @<qualifiers> is
317 non-null then the final character of the returned string will be a space.
320 \subsection{Leaf types} \label{sec:clang.c-types.leaf}
322 A \emph{leaf type} is a type which is not defined in terms of another type.
323 In Sod, the leaf types are
325 \item \emph{simple types}, including builtin types like @|int| and @|char|,
326 as well as type names introduced by @|typename|, because Sod isn't
327 interested in what the type name means, merely that it names a type; and
328 \item \emph{tagged types}, i.e., enum, struct and union types which are named
329 by a keyword identifying the kind of type, and a \emph{tag}.
332 \begin{describe}{cls}{simple-c-type (qualifiable-c-type)
333 \&key :qualifiers :name}
334 The class of `simple types'; an instance denotes the type @<qualifiers>
337 A simple type object maintains a \emph{name}, which is a string whose
338 contents are the C name for the type. The initarg @|:name| may be used to
339 provide this name when calling @|make-instance|.
341 Two simple type objects are equal if and only if they have @|string=| names
342 and matching qualifiers.
344 A number of symbolic type specifiers for builtin types are predefined as
345 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
346 @|define-simple-c-type|, so can be used to construct qualified types.
350 \begin{tabular}[C]{ll} \hlx*{hv}
351 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
352 @|void| & @|void| \\ \hlx{v}
353 @|char| & @|char| \\ \hlx{v}
354 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{}
355 @|signed char| & @|signed-char|, @|schar| \\ \hlx{v}
356 @|short| & @|short|, @|signed-short|, @|short-int|,
357 @|signed-short-int| @|sshort| \\ \hlx{}
358 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
360 @|int| & @|int|, @|signed|, @|signed-int|,
362 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
363 @|long| & @|long|, @|signed-long|, @|long-int|,
364 @|signed-long-int|, @|slong| \\ \hlx{}
365 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
367 @|long long| & @|long-long|, @|signed-long-long|,
369 & \qquad @|signed-long-long-int|,
370 @|llong|, @|sllong| \\ \hlx{v}
371 @|unsigned long long|
372 & @|unsigned-long-long|, @|unsigned-long-long-int|,
374 @|float| & @|float| \\ \hlx{}
375 @|double| & @|double| \\ \hlx{v}
376 @|va_list| & @|va-list| \\ \hlx{v}
377 @|size_t| & @|size-t| \\ \hlx{v}
378 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx*{vh}
380 \caption{Builtin symbolic type specifiers for simple C types}
381 \label{tab:codegen.c-types.simple}
384 \begin{describe}{fun}
385 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
386 Return the (unique interned) simple C type object for the C type whose name
387 is @<name> (a string) and which has the given @<qualifiers> (a list of
391 \begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
392 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
396 \begin{describe}{mac}
397 {define-simple-c-type @{ @<name> @! (@<name>^*) @} @<string> @> @<name>}
398 Define type specifiers for a new simple C type. Each symbol @<name> is
399 defined as a symbolic type specifier for the (unique interned) simple C
400 type whose name is the value of @<string>. Further, each @<name> is
401 defined to be a type operator: the type specifier @|(@<name>
402 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
403 name is @<string> and which has the @<qualifiers> (which are evaluated).
406 \begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
407 \&key :qualifiers :tag}
408 Provides common behaviour for C tagged types. A @<tag> is a string
409 containing a C identifier.
411 Two tagged types are equal if and only if they have the same class, their
412 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
413 subclasses may have additional methods on @|c-type-equal-p| which impose
414 further restrictions.)
417 Sod maintains distinct namespaces for the three kinds of tagged types. In
418 C, there is only one namespace for tags which is shared between enums,
422 \begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
423 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
424 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
425 should return their own classification symbols. It is intended that
426 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
428 Alas, C doesn't provide a syntactic category for these keywords;
429 \Cplusplus\ calls them a @<class-key>.} %
430 There is a method defined for each of the built-in tagged type classes
431 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
434 \begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
435 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
436 naming a kind of tagged type, return the name of the corresponding C
437 type class as a symbol.
440 \begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
441 Represents a C enumerated type. An instance denotes the C type @|enum|
442 @<tag>. See the direct superclass @|tagged-c-type| for details.
444 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
445 interned) enumerated type with the given @<tag> and @<qualifier>s (all
448 \begin{describe}{fun}
449 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
450 Return the (unique interned) C type object for the enumerated C type whose
451 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
455 \begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
456 Represents a C structured type. An instance denotes the C type @|struct|
457 @<tag>. See the direct superclass @|tagged-c-type| for details.
459 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
460 interned) structured type with the given @<tag> and @<qualifier>s (all
463 \begin{describe}{fun}
464 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
465 Return the (unique interned) C type object for the structured C type whose
466 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
470 \begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
471 Represents a C union type. An instance denotes the C type @|union|
472 @<tag>. See the direct superclass @|tagged-c-type|
475 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
476 interned) union type with the given @<tag> and @<qualifier>s (all
479 \begin{describe}{fun}
480 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
481 Return the (unique interned) C type object for the union C type whose tag
482 is @<tag> (a string) and which has the given @<qualifiers> (a list of
486 \subsection{Compound C types} \label{sec:code.c-types.compound}
488 Some C types are \emph{compound types}: they're defined in terms of existing
489 types. The classes which represent compound types implement a common
492 \begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
493 Returns the underlying type of a compound type @<c-type>. Precisely what
494 this means depends on the class of @<c-type>.
497 \subsection{Pointer types} \label{sec:clang.c-types.pointer}
499 Pointers compound types. The subtype of a pointer type is the type it points
502 \begin{describe}{cls}
503 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
504 Represents a C pointer type. An instance denotes the C type @<subtype>
507 The @<subtype> may be any C type. Two pointer types are equal if and only
508 if their subtypes are equal and they have matching qualifiers.
510 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
511 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
512 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
513 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
516 The symbol @|string| is a type specifier for the type pointer to
517 characters; the symbol @|const-string| is a type specifier for the type
518 pointer to constant characters.
521 \begin{describe}{fun}
522 {make-pointer-type @<c-type> \&optional @<qualifiers>
523 @> @<c-pointer-type>}
524 Return an object describing the type qualified pointer to @<subtype>.
525 If @<subtype> is interned, then the returned pointer type object is
529 \subsection{Array types} \label{sec:clang.c-types.array}
531 Arrays implement the compound-type protocol. The subtype of an array type is
532 the array element type.
534 \begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
535 Represents a multidimensional C array type. The @<dimensions> are a list
536 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
537 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
538 individual dimension specifier is either a string containing a C integral
539 constant expression, or nil which is equivalent to an empty string. Only
540 the first (outermost) dimension $d_0$ should be empty.
542 C doesn't actually have multidimensional arrays as a primitive notion;
543 rather, it permits an array (with known extent) to be the element type of
544 an array, which achieves an equivalent effect. C arrays are stored in
545 row-major order: i.e., if we write down the indices of the elements of an
546 array in order of ascending address, the rightmost index varies fastest;
547 hence, the type constructed is more accurately an array of $d_0$ arrays of
548 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
549 continue to abuse terminology and refer to multidimensional arrays.
551 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
552 multidimensional array with the given @<dimension>s whose elements have the
553 type specified by @<type-spec>. If no dimensions are given then a
554 single-dimensional array with unspecified extent. The synonyms @|array|
555 and @|vector| may be used in place of the brackets @`[]'.
558 \begin{describe}{fun}
559 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
560 Return an object describing the type of arrays with given @<dimensions> and
561 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
562 argument is a list whose elements are strings or nil; see the description
563 of the class @|c-array-type| above for details.
566 \begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
567 Returns the dimensions of @<c-type>, an array type, as an immutable list.
570 \subsection{Function types} \label{sec:clang.c-types.fun}
572 Function types implement the compound-type protocol. The subtype of a
573 function type is the type of the function's return value.
575 \begin{describe}{cls}{argument}
576 Represents an ordinary function argument.
579 \begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
580 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
584 \begin{describe}{fun}{make-argument @<name> @<c-type> @> @<argument>}
585 Construct and a return a new @<argument> object. The argument has type
586 @<c-type>, which must be a @|c-type| object, and is named @<name>.
588 The @<name> may be nil to indicate that the argument has no name: in this
589 case the argument will be formatted as an abstract declarator, which is not
590 suitable for function definitions. If @<name> is not nil, then the
591 @<name>'s print representation, with @|*print-escape*| nil, is used as the
595 \begin{describe}{fun}{argument-name @<argument> @> @<name>}
596 Return the name of the @<argument>, as it was supplied to @|make-argument|.
599 \begin{describe}{fun}{argument-type @<argument> @> @<c-type>}
600 Return the type of the @<argument>, as it was supplied to @|make-argument|.
604 {commentify-argument-name @<name> @> @<commentified-name>}
605 Convert the argument name @<name> so that it's suitable to declare the
606 function in a header file.
608 Robust header files shouldn't include literal argument names in
609 declarations of functions or function types, since this restricts the
610 including file from defining such names as macros. This generic function
611 is used to convert names into a safe form.
613 \begin{describe}{meth}{commentify-argument-name (@<name> null) @> nil}
614 Returns nil: if the argument name is already omitted, it's safe for use
617 \begin{describe}{meth}{commentify-argument-name (@<name> t) @> @<string>}
618 Returns the print form of @<name> wrapped in a C comment, as
623 \begin{describe}{fun}
624 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
625 Convert the @<arguments> list so that it's suitable for use in a header
628 The @<arguments> list should be a list whose items are @|argument| objects
629 or the keyword @|:ellipsis|. The return value is a list constructed as
630 follows. For each @|argument| object in the input list, there is a
631 corresponding @|argument| object in the returned list, with the same type,
632 and whose name is the result of @|commentify-argument-name| applied to the
633 input argument name; an @|:ellipsis| in the input list is passed through
637 \begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
638 Represents C function types. An instance denotes the type of a C
639 function which accepts the @<arguments> and returns @<subtype>.
641 The @<arguments> are a possibly empty list. All but the last element of
642 the list must be @|argument| objects; the final element may instead be the
643 keyword @|:ellipsis|, which denotes a variable argument list.
645 An @<arguments> list consisting of a single argument with type @|void| is
646 converted into an empty list. On output as C code, an empty argument list
647 is written as @|void|. It is not possible to represent a pre-ANSI C
648 function without prototypes.
650 Two function types are considered to be the same if their return types are
651 the same, and their argument lists consist of arguments with the same type,
652 in the same order, and either both or neither argument list ends with
653 @|:ellipsis|; argument names are not compared.
655 The type specifier @|(fun @<return-type> @{ (@<arg-name> @<arg-type>) @}^*
656 @[:ellipsis @! . @<form> @])| constructs a function type. The function has
657 the subtype @<return-type>. The remaining items in the type-specifier list
658 are used to construct the argument list. The argument items are a possibly
659 improper list, beginning with zero or more \emph{explicit arguments}:
660 two-item @<arg-name>/@<arg-type> lists. For each such list, an @|argument|
661 object is constructed with the given name (evaluated) and type. Following
662 the explicit arguments, there may be
664 \item nothing, in which case the function's argument list consists only of
665 the explicit arguments;
666 \item the keyword @|:ellipsis|, as the final item in the type-specifier
667 list, indicating a variable argument list may follow the explicit
669 \item a possibly-improper list tail, beginning with an atom either as a
670 list item or as the final list cdr, indicating that the entire list tail
671 is Lisp expression which is to be evaluated to compute the remaining
674 A tail expression may return a list of @|argument| objects, optionally
675 followed by an @|:ellipsis|.
679 (c-type (fun \=(lisp (c-type-subtype other-func)) \+ \\
680 ("first" int) . (c-function-arguments other-func))
682 evaluates to a function type like @|other-func|, only with an additional
683 argument of type @|int| added to the front of its argument list. This
684 could also have been written
686 (let (\=(args (c-function-arguments other-func)) \+ \\
687 (ret (c-type-subtype other-func))) \- \\ \ind
688 (c-type (fun \=(lisp ret) ("first" int) . args)
692 \begin{describe}{fun}
693 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
694 Construct and return a new function type, returning @<subtype> and
695 accepting the @<arguments>.
699 {c-function-arguments @<c-function-type> @> @<arguments>}
700 Return the arguments list of the @<c-function-type>.
703 \begin{describe}{fun}
704 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
705 Return a commentified version of the @<c-function-type>.
707 The returned type has the same subtype as the given type, and the argument
708 list of the returned type is the result of applying
709 @|commentify-argument-names| to the argument list of the given type.
712 \subsection{Parsing C types} \label{sec:clang.c-types.parsing}
714 %%%--------------------------------------------------------------------------
715 \section{Generating C code} \label{sec:clang.codegen}
717 This section deals with Sod's facilities for constructing and manipulating C
718 expressions, declarations, instructions and definitions.
720 \subsection{Temporary names} \label{sec:clang.codegen.temporaries}
722 Many C-level objects, especially ones with external linkage or inclusion in a
723 header file, are assigned names which are simple strings, perhaps fixed ones,
724 perhaps constructed. Other objects don't need meaningful names, and
725 suitably unique constructed names would be tedious and most likely rather
726 opaque. Therefore Sod has an ability to construct \emph{temporary names}.
728 These aren't temporary in the sense that they name C objects which have
729 limited lifetimes at runtime. Rather, the idea is that the names be
730 significant only to small pieces of Lisp code, which will soon forget about
733 \subsubsection{The temporary name protocol}
734 Temporary names are represented by objects which implement a simple protocol.
736 \begin{describe}{gf}{format-temporary-name @<var> @<stream>}
740 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
741 \dhead[setf var-in-use-p]
742 {gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
745 \subsubsection{Temporary name objects}
747 \begin{describe}{cls}{temporary-name () \&key :tag}
748 A temporary name object. This is the root of a small collection of
749 subclasses, but is also usable on its own.
752 \begin{describe}{meth}
753 {commentify-argument-name (@<name> temporary-name) @> nil}
757 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
758 \thd{\textbf{Class}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
759 temporary-name & @<tag> \\
760 temporary-argument & sod__a@<tag> \\
761 temporary-function & sod__f@<tag> \\
762 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
764 \caption{Temporary name formats}
765 \label{tab:codegen.codegen.temps-format}
768 \begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
771 \begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
774 \begin{describe}{fun}{temporary-function @> @<name>}
777 \begin{describe}{cls}
778 {temporary-variable (temporary-name) \&key :tag :in-use-p}
781 \subsubsection{Well-known `temporary' names}
784 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
785 \thd{\textbf{Variable}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
786 {}*sod-ap* & sod__ap \\
787 {}*sod-master-ap* & sod__master_ap \\
788 {}*sod-tmp-ap* & sod__tmp_ap \\ \hlx*{vh}
790 \caption{Well-known temporary names}
791 \label{tab:codegen.codegen.well-known-temps}
794 \subsection{Instructions} \label{sec:clang.codegen.insts}
796 \begin{describe}{cls}{inst () \&key}
799 \begin{describe}{gf}{inst-metric @<inst>}
802 \begin{describe}{mac}
803 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*)
807 \begin{describe}{mac}
808 {format-compound-statement (@<stream> @<child> \&optional @<morep>)
813 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
816 \thd{Output format} \\ \hlx{vhv}
817 @|var| & @<name> @<type> @<init> & @<type> @<name> @[= @<init>@];
819 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
820 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
822 @|return| & @<expr> & return @[@<expr>@];
824 @|break| & --- & break; \\ \hlx{v}
825 @|continue| & --- & continue; \\ \hlx{v}
826 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
827 @|call| & @<func> @<args> & @<func>(@<arg>_1,
830 @|va-start| & @<ap> @<arg> & va_start(@<ap>, @<arg>);
832 @|va-copy| & @<to> @<from> & va_copy(@<to>, @<from>);
834 @|va-end| & @<ap> & va_end(@<ap>); \\ \hlx{vhv}
835 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
837 @|if| & @<cond> @<conseq> @<alt> & if (@<cond>) @<conseq>
838 @[else @<alt>@] \\ \hlx{v}
839 @|while| & @<cond> @<body> & while (@<cond>) @<body>
841 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
843 @|function| & @<name> @<type> @<body> &
844 @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
845 @<type>_n @<arg>_n @[, \dots@])
848 \caption{Instruction classes}
849 \label{tab:codegen.codegen.insts}
852 \subsection{Code generation} \label{sec:clang.codegen.codegen}
854 \begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
858 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
861 \begin{describe}{gf}{emit-inst @<codegen> @<inst>}
864 \begin{describe}{gf}{emit-insts @<codegen> @<insts>}
867 \begin{describe}{gf}{emit-decl @<codegen> @<decl>}
870 \begin{describe}{gf}{emit-declss @<codegen> @<decls>}
873 \begin{describe}{gf}{codegen-push @<codegen>}
876 \begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
879 \begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
883 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
886 \begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
889 \begin{describe}{fun}
890 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
894 \begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
897 \begin{describe}{mac}
898 {with-temporary-var (@<codegen> @<var> @<type>) @<body-form>^*
902 \begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
905 \begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
908 \begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
911 %%%--------------------------------------------------------------------------
912 \section{Literal C code fragments} \label{sec:clang.fragment}
914 \begin{describe}{cls}{c-fragment () \&key :location :text}
917 \begin{describe}{gf}{c-fragment-text @<fragment> @> @<string>}
920 \begin{describe}{fun}
921 {scan-c-fragment @<scanner> @<end-chars>
922 @> @<result> @<success-flag> @<consumed-flag>}
925 \begin{describe}{fun}
926 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
927 \nlret @<result> @<success-flag> @<consumed-flag>}
931 %%%----- That's all, folks --------------------------------------------------
935 %%% TeX-master: "sod.tex"