3 %%% C language utilities
5 %%% (c) 2015 Straylight/Edgeware
8 %%%----- Licensing notice ---------------------------------------------------
10 %%% This file is part of the Sensible Object Design, an object system for C.
12 %%% SOD is free software; you can redistribute it and/or modify
13 %%% it under the terms of the GNU General Public License as published by
14 %%% the Free Software Foundation; either version 2 of the License, or
15 %%% (at your option) any later version.
17 %%% SOD is distributed in the hope that it will be useful,
18 %%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19 %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 %%% GNU General Public License for more details.
22 %%% You should have received a copy of the GNU General Public License
23 %%% along with SOD; if not, write to the Free Software Foundation,
24 %%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 \chapter{C language utilities} \label{ch:clang}
28 %%%--------------------------------------------------------------------------
29 \section{C type representation} \label{sec:clang.c-types}
31 \subsection{Overview} \label{sec:clang.c-types.over}
33 The Sod translator represents C types in a fairly simple and direct way.
34 However, because it spends a fair amount of its time dealing with C types, it
35 provides a number of useful operations and macros.
37 The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
39 \begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
45 @|tagged-c-type| \\ \ind
50 @|c-pointer-type| \- \\
54 \caption{Classes representing C types}
55 \label{fig:codegen.c-types.classes}
58 C type objects are immutable unless otherwise specified.
60 \subsubsection{Constructing C type objects}
61 There is a constructor function for each non-abstract class of C type object.
62 Note, however, that constructor functions need not generate a fresh type
63 object if a previously existing type object is suitable. In this case, we
64 say that the objects are \emph{interned}. Some constructor functions are
65 specified to return interned objects: programs may rely on receiving the same
66 (@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
67 not specified, clients may still not rely on receiving fresh objects.
69 A convenient S-expression notation is provided by the
70 \descref{c-type}[macro]{mac}. Use of this macro is merely an abbreviation
71 for corresponding use of the various constructor functions, and therefore
72 interns type objects in the same manner. The syntax accepted by the macro
73 can be extended in order to support new classes: see \descref{defctype}{mac},
74 \descref{c-type-alias}{mac} and \descref{define-c-type-syntax}{mac}.
76 The descriptions of each of the various classes include descriptions of the
77 initargs which may be passed to @|make-instance| when constructing a new
78 instance of the class. However, the constructor functions and S-expression
79 syntax are strongly recommended over direct use of @|make-instance|.
81 \subsubsection{Printing}
82 There are two protocols for printing C types. Unfortunately they have
85 \item The \descref{print-c-type}[function]{gf} prints a C type value using
86 the S-expression notation. It is mainly useful for diagnostic purposes.
87 \item The \descref{pprint-c-type}[function]{gf} prints a C type as a
90 Neither generic function defines a default primary method; subclasses of
91 @|c-type| must define their own methods in order to print correctly.
94 \subsection{The C type root class} \label{sec:clang.c-types.root}
96 \begin{describe}{cls}{c-type ()}
97 The class @|c-type| marks the root of the built-in C type hierarchy.
99 Users may define subclasses of @|c-type|. All non-abstract subclasses must
100 have a primary method defined on @|pprint-c-type|; unless instances of the
101 subclass are interned, a method on @|c-type-equal-p| is also required.
103 The class @|c-type| is abstract.
107 \subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
109 The S-expression representation of a type is described syntactically as a
110 type specifier. Type specifiers fit into two syntactic categories.
112 \item A \emph{symbolic type specifier} consists of a symbol. It has a
113 single, fixed meaning: if @<name> is a symbolic type specifier, then each
114 use of @<name> in a type specifier evaluates to the same (@|eq|) type
115 object, until the @<name> is redefined.
116 \item A \emph{type operator} is a symbol; the corresponding specifier is a
117 list whose @|car| is the operator. The remaining items in the list are
118 arguments to the type operator.
121 \begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
122 Evaluates to a C type object, as described by the type specifier
126 \begin{describe}{mac}
127 {defctype \=@{ @<name> @! (@<name>^+) @} @<type-spec> \+ \\
128 @[[ @|:export| @<export-flag> @]]^* \-
130 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
131 given, then all are defined in the same way. The type constructed by using
132 any of the @<name>s is as described by the type specifier @<type-spec>.
134 The resulting type object is constructed once, at the time that the macro
135 expansion is evaluated; the same (@|eq|) value is used each time any
136 @<name> is used in a type specifier.
138 A variable named @|c-type-@<name>|, for the first @<name> only, is defined
139 and initialized to contain the C type object so constructed. Altering or
140 binding this name is discouraged.
142 If @<export-flag> is true, then the variable name, and all of the @<name>s,
143 are exported from the current package.
146 \begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
147 Defines each @<alias> as being a type operator identical in behaviour to
148 @<original>. If @<original> is later redefined then the behaviour of the
149 @<alias>es changes too.
152 \begin{describe}{mac}
153 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
154 @[[ @<declaration>^* @! @<doc-string> @]] \\
157 Defines the symbol @<name> as a new type operator. When a list of the form
158 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
159 are bound to fresh variables according to @<lambda-list> (a destructuring
160 lambda-list) and the @<form>s evaluated in order in the resulting lexical
161 environment as an implicit @|progn|. The value should be a Lisp form which
162 will evaluate to the type specified by the arguments.
164 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
165 type specifiers among its arguments.
168 \begin{describe}{gf}{expand-c-type-spec @<type-spec> @> @<form>}
169 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
171 If @<type-spec> is a list, then \descref{expand-c-type-form}{fun} is
175 \begin{describe}{gf}{expand-c-type-form @<head> @<tail> @> @<form>}
176 Returns the Lisp form that @|(c-type (@<head> . @<tail>)| would expand
181 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
182 Print the C type object @<type> to @<stream> in S-expression form. The
183 @<colon> and @<atsign> arguments may be interpreted in any way which seems
184 appropriate: they are provided so that @|print-c-type| may be called via
185 @|format|'s @|\char`\~/\dots/| command; they are not set when
186 @|print-c-type| is called by Sod functions.
188 There should be a method defined for every C type class; there is no
193 \subsection{Comparing C types} \label{sec:clang.c-types.cmp}
195 It is necessary to compare C types for equality, for example when checking
196 argument lists for methods. This is done by @|c-type-equal-p|.
199 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
200 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
201 @<c-type>_2 for equality; it returns true if the two types are equal and
202 false if they are not.
204 Two types are equal if they are structurally similar, where this property
205 is defined by methods for each individual class; see the descriptions of
206 the classes for the details.
208 The generic function @|c-type-equal-p| uses the @|and| method combination.
210 \begin{describe}{meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
211 A default primary method for @|c-type-equal-p| is defined. It simply
212 returns @|nil|. This way, methods can specialize on both arguments
213 without fear that a call will fail because no methods are applicable.
215 \begin{describe}{ar-meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
216 A default around-method for @|c-type-equal-p| is defined. It returns
217 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
218 the primary methods. Since several common kinds of C types are interned,
219 this is a common case worth optimizing.
224 \subsection{Outputting C types} \label{sec:clang.c-types.output}
226 \begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
227 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
228 declaration of an object or function of type @<c-type>. The result is
229 written to @<stream>.
231 A C declaration has two parts: a sequence of \emph{declaration specifiers}
232 and a \emph{declarator}. The declarator syntax involves parentheses and
233 operators, in order to reflect the operators applicable to the declared
234 variable. For example, the name of a pointer variable is preceded by @`*';
235 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
237 The @<kernel> argument must be a function designator (though see the
238 standard around-method); it is invoked as
239 \begin{quote} \codeface
240 (funcall @<kernel> @<stream> @<priority> @<spacep>)
242 It should write to @<stream> -- which may not be the same stream originally
243 passed into the generic function -- the `kernel' of the declarator, i.e.,
244 the part to which prefix and/or postfix operators are attached to form the
247 The methods on @|pprint-c-type| specialized for compound types work by
248 recursively calling @|pprint-c-type| on the subtype, passing down a closure
249 which prints the necessary additional declarator operators before calling
250 the original @<kernel> function. The additional arguments @<priority> and
251 @<spacep> support this implementation technique.
253 The @<priority> argument describes the surrounding operator context. It is
254 zero if no type operators are directly attached to the kernel (i.e., there
255 are no operators at all, or the kernel is enclosed in parentheses), one if
256 a prefix operator is directly attached, or two if a postfix operator is
257 directly attached. If the @<kernel> function intends to provide its own
258 additional declarator operators, it should check the @<priority> in order
259 to determine whether parentheses are necessary. See also the
260 \descref{maybe-in-parens}[macro]{mac}.
262 The @<spacep> argument indicates whether a space needs to be printed in
263 order to separate the declarator from the declaration specifiers. A kernel
264 which contains an identifier should insert a space before the identifier
265 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
266 declarator (one that specifies no name), looks more pleasing without a
267 trailing space. See also the \descref{c-type-space}[function]{fun}.
269 Every concrete subclass of @|c-type| is expected to provide a primary
270 method on this function. There is no default primary method.
272 \begin{describe}{ar-meth}{pprint-c-type @<c-type> @<stream> @<kernel>}
273 A default around method is defined on @|pprint-c-type| which `canonifies'
274 non-function @<kernel> arguments. In particular:
276 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
277 with a @<kernel> function that does nothing; and
278 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
279 called recursively with a @<kernel> function that prints the object as
280 if by @|princ|, preceded if necessary by space using @|c-type-space|.
285 \begin{describe}{fun}{c-type-space @<stream>}
286 Writes a space and other pretty-printing instructions to @<stream> in order
287 visually to separate a declarator from the preceding declaration
288 specifiers. The precise details are subject to change.
291 \begin{describe}{mac}
292 {maybe-in-parens (@<stream-var> @<guard-form>)
295 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
296 sequence within a pretty-printer logical block writing to the stream named
297 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
298 the logical block has empty prefix and suffix strings; if it evaluates to a
299 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
302 Note that this may cause @<stream> to be bound to a different stream object
307 \subsection{Type qualifiers and qualifiable types}
308 \label{sec:clang.ctypes.qual}
310 Qualifiers -- @|const|, @|volatile|, and so on -- are represented as lists of
311 keywords attached to types. Not all C types can carry qualifiers: notably,
312 function and array types cannot be qualified.
314 For the most part, the C qualifier keywords correspond to like-named Lisp
315 keywords, only the Lisp keyword names are in uppercase. The correspondence
316 is shown in \xref{tab:clang.ctypes.qual}.
319 \begin{tabular}[C]{*2{>{\codeface}l}l} \hlx*{hv}
320 \thd{\textbf{C name}} & \thd{\textbf{Lisp name}} \\ \hlx{vhv}
323 restrict & :restrict \\
324 volatile & :volatile \\ \hlx*{vh}
326 \caption{C and Lisp qualifier names} \label{tab:clang.ctypes.qual}
329 The default behaviour, on output, is to convert keywords to lowercase and
330 hope for the best: special cases can be dealt with by adding appropriate
331 methods to \descref{c-qualifier-keyword}{gf}.
333 \begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
334 The class @|qualifiable-c-type| describes C types which can bear
335 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
336 @|restrict| and @|volatile|.
338 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
339 @|:volatile|. There is no built-in limitation to these particular
340 qualifiers; others keywords may be used, though this isn't recommended.
342 Two qualifiable types are equal only if they have \emph{matching
343 qualifiers}: i.e., every qualifier attached to one is also attached to the
344 other: order is not significant, and neither is multiplicity.
346 The class @|qualifiable-c-type| is abstract.
349 \begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
350 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
354 \begin{describe}{fun}{qualify-type @<c-type> @<qualifiers> @> @<c-type>}
355 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
356 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
357 keywords. The result is a C type object like @<c-type> except that it
358 bears the given @<qualifiers>.
360 The @<c-type> is not modified. If @<c-type> is interned, then the returned
361 type will be interned.
364 \begin{describe}{fun}{format-qualifiers @<qualifiers> @> @<string>}
365 Returns a string containing the qualifiers listed in @<qualifiers> in C
366 syntax, with a space after each. In particular, if @<qualifiers> is
367 non-null then the final character of the returned string will be a space.
370 \begin{describe}{gf}{c-qualifier-keyword @<qualifier> @> @<string>}
371 Return, as a string, the C keyword corresponding to the Lisp @<qualifier>.
373 There is a standard method, which deals with many qualifiers. Additional
374 methods exist for qualifier keywords which need special handling, such as
375 @|:atomic|; they are not listed here explicitly.
377 \begin{describe}{meth}{c-qualifier-keyword @<keyword> @> @<string>}
378 Returns the @<keyword>'s print-name, in lower case. This is sufficient
379 for the standard qualifiers @|:const|, @|:restrict|, and @|:volatile|.
383 \begin{describe}{fun}{c-type-qualifier-keywords @<c-type> @> @<list>}
384 Return the @<c-type>'s qualifiers, as a list of C keyword names.
388 \subsection{Storage specifiers} \label{sec:clang.ctypes.specs}
390 Some declaration specifiers, mostly to do with how to store the specific
391 object in question, are determinedly `top level', and, unlike qualifiers,
392 don't stay attached to the base type when acted on by declarator operators.
393 Sod calls these `storage specifiers', though no such category exists in the C
394 standard. They have their own protocol, which is similar in many ways to
397 Every Lisp keyword is potentially a storage specifier, which simply maps to
398 its lower-case print name in C; but other storage specifiers may be more
401 \begin{describe}{cls}
402 {c-storage-specifiers-type (c-type) \&key :subtype :specifiers}
403 A type which carries storage specifiers. The @<subtype> is the actual
404 type, and may be any C type; the @<specifiers> are a list of
405 storage-specifier objects.
407 The type specifier @|(specs @<subtype> @<specifier>^*)| wraps the
408 @<subtype> in a @|c-storage-specifiers-type|, carrying the @<specifier>s,
409 which are a list of storage specifiers in S-expression notation.
412 \begin{describe}{fun}{c-type-specifiers @<type> @> @<list>}
413 Returns the list of type specifiers attached to the @<type> object, which
414 must be a @|c-storage-specifiers-type|.
417 \begin{describe}{mac}
418 {define-c-storage-specifier-syntax @<name> @<lambda-list> \\ \ind
419 @[[ @<declaration>^* @! @<doc-string> @]] \\
423 Defines the symbol @<name> as a new storage-specifier operator. When a
424 list of the form @|(@<name> @<argument>^*)| is used as a storage specifier,
425 the @<argument>s are bound to fresh variables according to the
426 @<lambda-list> (a destructuring lambda-list) and the @<form>s evaluated in
427 order in the resulting lexical environment as an implicit @<progn>. The
428 value should be a Lisp form which will evaluate to the storage-specifier
429 object described by the arguments.
431 The @<form>s may call @|expand-c-storage-specifier| in order to recursively
432 expand storage specifiers among its arguments.
435 \begin{describe}{gf}{expand-c-storage-specifier @<spec> @> @<form>}
436 Returns the Lisp form that @<spec> expands to within @|(c-type (specs
437 @<subtype> @<spec>))|.
439 If @<spec> is a list, then \descref{expand-c-storage-specifier-form} is
443 \begin{describe}{gf}{expand-c-storage-specifier-form @<spec> @> @<form>}
444 Returns the Lisp form that @|(@<head> . @<tail>)| expands to within
445 @|(c-type (specs @<subtype> (@<head> . @<tail>)))|.
448 \begin{describe}{gf}{pprint-c-storage-specifier @<spec> @<stream>}
452 {print-c-storage-specifier @<stream> @<spec>
453 \&optional @<colon> @<atsign>}
456 \begin{describe}{fun}{wrap-c-type @<func> @<base-type> @> @<c-type>}
457 Apply @<func> to the underlying C type of @<base-type> to create a new
458 `wrapped' type, and attach the storage specifiers of @<base-type> to the
461 If @<base-type> is \emph{not} a @|c-storage-specifiers-type|, then return
462 @|(funcall @<func> @<base-type>)|. Otherwise, return a new
463 @|c-storage-specifiers-type|, with the same specifiers, but whose subtype
464 is the result of applying @<func> to the subtype of the original
468 \begin{describe}{cls}{alignas-storage-specifier () \&key :alignment}
469 The class of @|_Alignas| storage specifiers; an instance denotes the
470 specifier @|_Alignas(@<alignment>)|. The @<alignment> parameter may be any
471 printable object, but is usually a string or C fragment.
473 The storage specifier form @|(alignas @<alignment>)| returns a storage
474 specifier @|_Alignas(@<alignment>)|, where @<alignment> is evaluated.
478 \subsection{Leaf types} \label{sec:clang.c-types.leaf}
480 A \emph{leaf type} is a type which is not defined in terms of another type.
481 In Sod, the leaf types are
483 \item \emph{simple types}, including builtin types like @|int| and @|char|,
484 as well as type names introduced by @|typename|, because Sod isn't
485 interested in what the type name means, merely that it names a type; and
486 \item \emph{tagged types}, i.e., enum, struct and union types which are named
487 by a keyword identifying the kind of type, and a \emph{tag}.
490 \begin{describe}{cls}{simple-c-type (qualifiable-c-type)
491 \&key :qualifiers :name}
492 The class of `simple types'; an instance denotes the type @<qualifiers>
495 A simple type object maintains a \emph{name}, which is a string whose
496 contents are the C name for the type. The initarg @|:name| may be used to
497 provide this name when calling @|make-instance|.
499 Two simple type objects are equal if and only if they have @|string=| names
500 and matching qualifiers.
502 A number of symbolic type specifiers for builtin types are predefined as
503 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
504 @|define-simple-c-type|, so can be used to construct qualified types.
508 \begin{tabular}[C]{ll} \hlx*{hv}
509 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
510 @|void| & @|void| \\ \hlx{v}
511 @|_Bool| & @|bool| \\ \hlx{v}
512 @|char| & @|char| \\ \hlx{}
513 @|wchar_t| & @|wchar-t| \\ \hlx{v}
514 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
515 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
516 @|short| & @|short|, @|signed-short|, @|short-int|,
517 @|signed-short-int| @|sshort| \\ \hlx{}
518 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
520 @|int| & @|int|, @|signed|, @|signed-int|,
522 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
523 @|long| & @|long|, @|signed-long|, @|long-int|,
524 @|signed-long-int|, @|slong| \\ \hlx{}
525 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
527 @|long long| & @|long-long|, @|signed-long-long|,
528 @|long-long-int|, \\ \hlx{}
529 & \qquad @|signed-long-long-int|,
530 @|llong|, @|sllong| \\ \hlx{v}
531 @|unsigned long long|
532 & @|unsigned-long-long|, @|unsigned-long-long-int|,
534 @|size_t| & @|size-t| \\ \hlx{}
535 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
536 @|float| & @|float| \\ \hlx{}
537 @|double| & @|double| \\ \hlx{}
538 @|long double| & @|long-double| \\ \hlx{v}
539 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
540 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
541 @|long double _Imaginary|
542 & @|long-double-imaginary| \\ \hlx{v}
543 @|float _Complex| & @|float-complex| \\ \hlx{}
544 @|double _Complex| & @|double-complex| \\ \hlx{}
545 @|long double _Complex|
546 & @|long-double-complex| \\ \hlx{v}
547 @|va_list| & @|va-list| \\ \hlx*{vh}
549 \caption{Builtin symbolic type specifiers for simple C types}
550 \label{tab:codegen.c-types.simple}
553 \begin{describe}{fun}
554 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
555 Return the (unique interned) simple C type object for the C type whose name
556 is @<name> (a string) and which has the given @<qualifiers> (a list of
560 \begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
561 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
565 \begin{describe}{mac}
566 {define-simple-c-type \=@{ @<name> @! (@<name>^+) @} @<string> \+ \\
567 @[[ @|:export| @<export-flag> @]] \-
569 Define type specifiers for a new simple C type. Each symbol @<name> is
570 defined as a symbolic type specifier for the (unique interned) simple C
571 type whose name is the value of @<string>. Further, each @<name> is
572 defined to be a type operator: the type specifier @|(@<name>
573 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
574 name is @<string> and which has the @<qualifiers> (which are evaluated).
576 Furthermore, a variable @|c-type-@<name>| is defined, for the first @<name>
577 only, and initialized with the newly constructed C type object.
579 If @<export-flag> is true, then the @|c-type-@<name>| variable name, and
580 all of the @<name>s, are exported from the current package.
583 \begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
584 \&key :qualifiers :tag}
585 Provides common behaviour for C tagged types. A @<tag> is a string
586 containing a C identifier.
588 Two tagged types are equal if and only if they have the same class, their
589 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
590 subclasses may have additional methods on @|c-type-equal-p| which impose
591 further restrictions.)
594 Sod maintains distinct namespaces for the three kinds of tagged types. In
595 C, there is only one namespace for tags which is shared between enums,
599 \begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
600 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
601 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
602 should return their own classification symbols. It is intended that
603 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
605 Alas, C doesn't provide a syntactic category for these keywords;
606 \Cplusplus\ calls them a @<class-key>.} %
607 There is a method defined for each of the built-in tagged type classes
608 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
611 \begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
612 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
613 naming a kind of tagged type, return the name of the corresponding C
614 type class as a symbol.
617 \begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
618 Represents a C enumerated type. An instance denotes the C type @|enum|
619 @<tag>. See the direct superclass @|tagged-c-type| for details.
621 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
622 interned) enumerated type with the given @<tag> and @<qualifier>s (all
625 \begin{describe}{fun}
626 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
627 Return the (unique interned) C type object for the enumerated C type whose
628 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
632 \begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
633 Represents a C structured type. An instance denotes the C type @|struct|
634 @<tag>. See the direct superclass @|tagged-c-type| for details.
636 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
637 interned) structured type with the given @<tag> and @<qualifier>s (all
640 \begin{describe}{fun}
641 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
642 Return the (unique interned) C type object for the structured C type whose
643 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
647 \begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
648 Represents a C union type. An instance denotes the C type @|union|
649 @<tag>. See the direct superclass @|tagged-c-type|
652 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
653 interned) union type with the given @<tag> and @<qualifier>s (all
656 \begin{describe}{fun}
657 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
658 Return the (unique interned) C type object for the union C type whose tag
659 is @<tag> (a string) and which has the given @<qualifiers> (a list of
664 \subsection{Compound C types} \label{sec:code.c-types.compound}
666 Some C types are \emph{compound types}: they're defined in terms of existing
667 types. The classes which represent compound types implement a common
670 \begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
671 Returns the underlying type of a compound type @<c-type>. Precisely what
672 this means depends on the class of @<c-type>.
676 \subsection{Atomic types} \label{sec:clang.c-types.atomic}
678 Atomic types are compound types. The subtype of an atomic type is simply the
679 underlying type of the object. Note that, as far as Sod is concerned, atomic
680 types are not the same as atomic-qualified types: you must be consistent
683 \begin{describe}{cls}
684 {c-atomic-type (qualifiable-c-type) \&key :qualifiers :subtype}
685 Represents an atomic type. An instance denotes the C type
686 @|_Atomic(@<subtype>)|.
688 The @<subtype> may be any C type.\footnote{%
689 C does not permit atomic function or array types.} %
690 Two atomic types are equal if and only if their subtypes are equal and they
691 have matching qualifiers. It is possible, though probably not useful, to
692 have an atomic-qualified atomic type.
694 The type specifier @|(atomic @<type-spec> @<qualifier>^*)| returns a type
695 qualified atomic @<subtype>, where @<subtype> is the type specified by
696 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
700 \begin{describe}{fun}
701 {make-atomic-type @<c-type> \&optional @<qualifiers> @> @<c-atomic-type>}
702 Return an object describing the type qualified atomic @<subtype>. If
703 @<subtype> is interned, then the returned atomic type object is interned
708 \subsection{Pointer types} \label{sec:clang.c-types.pointer}
710 Pointers are compound types. The subtype of a pointer type is the type it
713 \begin{describe}{cls}
714 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
715 Represents a C pointer type. An instance denotes the C type @<subtype>
718 The @<subtype> may be any C type. Two pointer types are equal if and only
719 if their subtypes are equal and they have matching qualifiers.
721 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
722 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
723 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
724 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
727 The symbol @|string| is a type specifier for the type pointer to
728 characters; the symbol @|const-string| is a type specifier for the type
729 pointer to constant characters.
732 \begin{describe}{fun}
733 {make-pointer-type @<c-type> \&optional @<qualifiers>
734 @> @<c-pointer-type>}
735 Return an object describing the type qualified pointer to @<subtype>.
736 If @<subtype> is interned, then the returned pointer type object is
741 \subsection{Array types} \label{sec:clang.c-types.array}
743 Arrays implement the compound-type protocol. The subtype of an array type is
744 the array element type.
746 \begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
747 Represents a multidimensional C array type. The @<dimensions> are a list
748 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
749 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
750 individual dimension specifier is either a string containing a C integral
751 constant expression, or nil which is equivalent to an empty string. Only
752 the first (outermost) dimension $d_0$ should be empty.
754 C doesn't actually have multidimensional arrays as a primitive notion;
755 rather, it permits an array (with known extent) to be the element type of
756 an array, which achieves an equivalent effect. C arrays are stored in
757 row-major order: i.e., if we write down the indices of the elements of an
758 array in order of ascending address, the rightmost index varies fastest;
759 hence, the type constructed is more accurately an array of $d_0$ arrays of
760 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
761 continue to abuse terminology and refer to multidimensional arrays.
763 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
764 multidimensional array with the given @<dimension>s whose elements have the
765 type specified by @<type-spec>. If no dimensions are given then a
766 single-dimensional array with unspecified extent. The synonyms @|array|
767 and @|vector| may be used in place of the brackets @`[]'.
770 \begin{describe}{fun}
771 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
772 Return an object describing the type of arrays with given @<dimensions> and
773 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
774 argument is a list whose elements are strings or nil; see the description
775 of the class @|c-array-type| above for details.
778 \begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
779 Returns the dimensions of @<c-type>, an array type, as an immutable list.
783 \subsection{Function types} \label{sec:clang.c-types.fun}
785 Function types implement the compound-type protocol. The subtype of a
786 function type is the type of the function's return value.
788 \begin{describe}{cls}{argument}
789 Represents an ordinary function argument.
792 \begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
793 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
797 \begin{describe}{fun}{make-argument @<name> @<c-type> @> @<argument>}
798 Construct and a return a new @<argument> object. The argument has type
799 @<c-type>, which must be a @|c-type| object, and is named @<name>.
801 The @<name> may be nil to indicate that the argument has no name: in this
802 case the argument will be formatted as an abstract declarator, which is not
803 suitable for function definitions. If @<name> is not nil, then the
804 @<name>'s print representation, with @|*print-escape*| nil, is used as the
809 {\dhead{fun}{argument-name @<argument> @> @<name>}
810 \dhead{fun}{argument-type @<argument> @> @<c-type>}}
811 Accessor functions for @|argument| objects. They return the name (for
812 @|argument-name|) or type (for @|argument-type|) from the object, as passed
817 {commentify-argument-name @<name> @> @<commentified-name>}
818 Convert the argument name @<name> so that it's suitable to declare the
819 function in a header file.
821 Robust header files shouldn't include literal argument names in
822 declarations of functions or function types, since this restricts the
823 including file from defining such names as macros. This generic function
824 is used to convert names into a safe form.
826 \begin{describe}{meth}{commentify-argument-name (@<name> null) @> nil}
827 Returns nil: if the argument name is already omitted, it's safe for use
830 \begin{describe}{meth}{commentify-argument-name (@<name> t) @> @<string>}
831 Returns the print form of @<name> wrapped in a C comment, as
836 \begin{describe}{fun}
837 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
838 Convert the @<arguments> list so that it's suitable for use in a header
841 The @<arguments> list should be a list whose items are @|argument| objects
842 or the keyword @|:ellipsis|. The return value is a list constructed as
843 follows. For each @|argument| object in the input list, there is a
844 corresponding @|argument| object in the returned list, with the same type,
845 and whose name is the result of @|commentify-argument-name| applied to the
846 input argument name; an @|:ellipsis| in the input list is passed through
850 \begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
851 Represents C function types. An instance denotes the type of a C
852 function which accepts the @<arguments> and returns @<subtype>.
854 The @<arguments> are a possibly empty list. All but the last element of
855 the list must be @|argument| objects; the final element may instead be the
856 keyword @|:ellipsis|, which denotes a variable argument list.
858 An @<arguments> list consisting of a single argument with type @|void| is
859 converted into an empty list. On output as C code, an empty argument list
860 is written as @|void|. It is not possible to represent a pre-ANSI C
861 function without prototypes.
863 Two function types are considered to be the same if their return types are
864 the same, and their argument lists consist of arguments with the same type,
865 in the same order, and either both or neither argument list ends with
866 @|:ellipsis|; argument names are not compared.
871 @{ (@<arg-name> @<arg-type>) @}^*
872 @[:ellipsis @! . @<form>@])
874 constructs a function type. The function has the subtype @<return-type>.
875 The remaining items in the type-specifier list are used to construct the
876 argument list. The argument items are a possibly improper list, beginning
877 with zero or more \emph{explicit arguments}: two-item
878 @<arg-name>/@<arg-type> lists. For each such list, an @|argument| object
879 is constructed with the given name (evaluated) and type. Following the
880 explicit arguments, there may be
882 \item nothing, in which case the function's argument list consists only of
883 the explicit arguments;
884 \item the keyword @|:ellipsis|, as the final item in the type-specifier
885 list, indicating a variable argument list may follow the explicit
887 \item a possibly-improper list tail, beginning with an atom either as a
888 list item or as the final list cdr, indicating that the entire list tail
889 is Lisp expression which is to be evaluated to compute the remaining
892 A tail expression may return a list of @|argument| objects, optionally
893 followed by an @|:ellipsis|.
897 (c-type (fun \=(lisp (c-type-subtype other-func)) \+ \\
898 ("first" int) . (c-function-arguments other-func))
900 evaluates to a function type like @|other-func|, only with an additional
901 argument of type @|int| added to the front of its argument list. This
902 could also have been written
904 (let (\=(args (c-function-arguments other-func)) \+ \\
905 (ret (c-type-subtype other-func))) \- \\ \ind
906 (c-type (fun \=(lisp ret) ("first" int) . args)
910 \begin{describe}{fun}
911 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
912 Construct and return a new function type, returning @<subtype> and
913 accepting the @<arguments>.
917 {c-function-arguments @<c-function-type> @> @<arguments>}
918 Return the arguments list of the @<c-function-type>.
921 \begin{describe}{fun}
922 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
923 Return a commentified version of the @<c-function-type>.
925 The returned type has the same subtype as the given type, and the argument
926 list of the returned type is the result of applying
927 @|commentify-argument-names| to the argument list of the given type.
931 \subsection{Parsing C types} \label{sec:clang.c-types.parsing}
933 \begin{describe}{fun}
934 {parse-c-type @<scanner>
935 @> @<result> @<success-flag> @<consumed-flag>}
938 \begin{describe}{fun}
939 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
940 \nlret @<result> @<success-flag> @<consumed-flag>}
944 \subsection{Class types} \label{sec:clang.c-types.class}
946 \begin{describe}{cls}
947 {c-class-type (simple-c-type) \&key :class :tag :qualifiers :name}
951 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
952 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
955 \begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
958 \begin{describe}{fun}
959 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
962 \begin{describe}{fun}
963 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
966 \begin{describe}{fun}{find-sod-class @<name> @> @<class>}
969 \begin{describe}{fun}{record-sod-class @<class>}
972 %%%--------------------------------------------------------------------------
973 \section{Generating C code} \label{sec:clang.codegen}
975 This section deals with Sod's facilities for constructing and manipulating C
976 expressions, declarations, instructions and definitions.
979 \subsection{Temporary names} \label{sec:clang.codegen.temporaries}
981 Many C-level objects, especially ones with external linkage or inclusion in a
982 header file, are assigned names which are simple strings, perhaps fixed ones,
983 perhaps constructed. Other objects don't need meaningful names, and
984 suitably unique constructed names would be tedious and most likely rather
985 opaque. Therefore Sod has an ability to construct \emph{temporary names}.
987 These aren't temporary in the sense that they name C objects which have
988 limited lifetimes at runtime. Rather, the idea is that the names be
989 significant only to small pieces of Lisp code, which will soon forget about
992 \subsubsection{The temporary name protocol}
993 Temporary names are represented by objects which implement a simple protocol.
995 \begin{describe}{gf}{format-temporary-name @<var> @<stream>}
999 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
1000 \dhead[setf var-in-use-p]
1001 {gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
1004 \subsubsection{Temporary name objects}
1006 \begin{describe}{cls}{temporary-name () \&key :tag}
1007 A temporary name object. This is the root of a small collection of
1008 subclasses, but is also usable on its own.
1011 \begin{describe}{meth}
1012 {commentify-argument-name (@<name> temporary-name) @> nil}
1016 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1017 \thd{\textbf{Class}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1018 temporary-name & @<tag> \\
1019 temporary-argument & sod__a@<tag> \\
1020 temporary-function & sod__f@<tag> \\
1021 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
1023 \caption{Temporary name formats}
1024 \label{tab:codegen.codegen.temps-format}
1027 \begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
1030 \begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
1033 \begin{describe}{fun}{temporary-function @> @<name>}
1036 \begin{describe}{cls}
1037 {temporary-variable (temporary-name) \&key :tag :in-use-p}
1040 \subsubsection{Well-known `temporary' names}
1043 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1044 \thd{\textbf{Variable}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1045 {}*sod-ap* & sod__ap \\
1046 {}*sod-master-ap* & sod__master_ap \\
1047 {}*null-pointer* & NULL \\ \hlx*{vh}
1049 \caption{Well-known temporary names}
1050 \label{tab:codegen.codegen.well-known-temps}
1054 \subsection{Instructions} \label{sec:clang.codegen.insts}
1056 \begin{describe}{cls}{inst () \&key}
1059 \begin{describe}{gf}{inst-metric @<inst>}
1062 \begin{describe}{mac}
1063 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
1064 @[[ @<declaration>^* @! @<doc-string> @]] \\
1069 \begin{describe}{mac}
1070 {format-compound-statement
1071 (@<stream> @<child> \&optional @<morep>) \\ \ind
1077 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
1080 \thd{Output format} \\ \hlx{vhv}
1081 @|var| & @<name> @<type> @|\&optional| @<init>
1082 & @<type> @<name> @[= @<init>@];
1084 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
1085 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
1087 @|return| & @<expr> & return @[@<expr>@];
1089 @|break| & --- & break; \\ \hlx{v}
1090 @|continue| & --- & continue; \\ \hlx{v}
1091 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
1092 @|call| & @<func> @|\&rest| @<args>
1095 @<arg>_n) \\ \hlx{vhv}
1096 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
1098 @|if| & @<cond> @<conseq> @|\&optional| @<alt>
1099 & if (@<cond>) @<conseq>
1100 @[else @<alt>@] \\ \hlx{v}
1101 @|while| & @<cond> @<body> & while (@<cond>) @<body>
1103 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
1105 @|function| & @<name> @<type> @<body> &
1106 \vtop{\hbox{\strut @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
1107 @<type>_n @<arg>_n @[, \dots@])}
1108 \hbox{\strut \quad @<body>}} \\ \hlx*{vh}
1110 \caption{Instruction classes}
1111 \label{tab:codegen.codegen.insts}
1115 \subsection{Code generation} \label{sec:clang.codegen.codegen}
1117 \begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
1120 \begin{describe}{gf}
1121 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
1124 \begin{describe}{gf}{emit-inst @<codegen> @<inst>}
1127 \begin{describe}{gf}{emit-insts @<codegen> @<insts>}
1130 \begin{describe}{gf}{emit-decl @<codegen> @<decl>}
1133 \begin{describe}{gf}{emit-decls @<codegen> @<decls>}
1136 \begin{describe}{gf}{codegen-push @<codegen>}
1139 \begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
1142 \begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
1145 \begin{describe}{gf}
1146 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
1149 \begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
1152 \begin{describe}{fun}
1153 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
1157 \begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
1160 \begin{describe}{mac}
1161 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
1167 \begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
1170 \begin{describe}{fun}
1171 {deliver-call @<codegen> @<target> @<func> \&rest @<args>}
1174 \begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
1177 \begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
1180 %%%--------------------------------------------------------------------------
1181 \section{Literal C code fragments} \label{sec:clang.fragment}
1183 \begin{describe}{cls}{c-fragment () \&key :location :text}
1186 \begin{describe}{gf}{c-fragment-text @<fragment> @> @<string>}
1189 \begin{describe}{fun}
1190 {scan-c-fragment @<scanner> @<end-chars>
1191 @> @<result> @<success-flag> @<consumed-flag>}
1194 \begin{describe}{fun}
1195 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
1196 \nlret @<result> @<success-flag> @<consumed-flag>}
1199 %%%----- That's all, folks --------------------------------------------------
1201 %%% Local variables:
1203 %%% TeX-master: "sod.tex"