3 %%% C language utilities
5 %%% (c) 2015 Straylight/Edgeware
8 %%%----- Licensing notice ---------------------------------------------------
10 %%% This file is part of the Sensible Object Design, an object system for C.
12 %%% SOD is free software; you can redistribute it and/or modify
13 %%% it under the terms of the GNU General Public License as published by
14 %%% the Free Software Foundation; either version 2 of the License, or
15 %%% (at your option) any later version.
17 %%% SOD is distributed in the hope that it will be useful,
18 %%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19 %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 %%% GNU General Public License for more details.
22 %%% You should have received a copy of the GNU General Public License
23 %%% along with SOD; if not, write to the Free Software Foundation,
24 %%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 \chapter{C language utilities} \label{ch:clang}
28 %%%--------------------------------------------------------------------------
29 \section{C type representation} \label{sec:clang.c-types}
31 \subsection{Overview} \label{sec:clang.c-types.over}
33 The Sod translator represents C types in a fairly simple and direct way.
34 However, because it spends a fair amount of its time dealing with C types, it
35 provides a number of useful operations and macros.
37 The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
39 \begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
45 @|tagged-c-type| \\ \ind
50 @|c-pointer-type| \-\\
52 @|c-function-type| \\ \ind
53 @|c-keyword-function-type| \-
55 \caption{Classes representing C types}
56 \label{fig:codegen.c-types.classes}
59 C type objects are immutable unless otherwise specified.
61 \subsubsection{Constructing C type objects}
62 There is a constructor function for each non-abstract class of C type object.
63 Note, however, that constructor functions need not generate a fresh type
64 object if a previously existing type object is suitable. In this case, we
65 say that the objects are \emph{interned}. Some constructor functions are
66 specified to return interned objects: programs may rely on receiving the same
67 (@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
68 not specified, clients may still not rely on receiving fresh objects.
70 A convenient S-expression notation is provided by the
71 \descref{mac}{c-type}[macro]. Use of this macro is merely an abbreviation
72 for corresponding use of the various constructor functions, and therefore
73 interns type objects in the same manner. The syntax accepted by the macro
74 can be extended in order to support new classes: see \descref{mac}{defctype},
75 \descref{mac}{c-type-alias} and \descref{mac}{define-c-type-syntax}.
77 The descriptions of each of the various classes include descriptions of the
78 initargs which may be passed to @|make-instance| when constructing a new
79 instance of the class. However, the constructor functions and S-expression
80 syntax are strongly recommended over direct use of @|make-instance|.
82 \subsubsection{Printing}
83 There are two protocols for printing C types. Unfortunately they have
86 \item The \descref{gf}{print-c-type}[function] prints a C type value using
87 the S-expression notation. It is mainly useful for diagnostic purposes.
88 \item The \descref{gf}{pprint-c-type}[function] prints a C type as a
91 Neither generic function defines a default primary method; subclasses of
92 @|c-type| must define their own methods in order to print correctly.
94 \begin{describe}{fun}{c-name-case @<name> @> @<string>}
98 \subsection{The C type root class} \label{sec:clang.c-types.root}
100 \begin{describe}{cls}{c-type ()}
101 The class @|c-type| marks the root of the built-in C type hierarchy.
103 Users may define subclasses of @|c-type|. All non-abstract subclasses must
104 have a primary method defined on @|pprint-c-type|; unless instances of the
105 subclass are interned, a method on @|c-type-equal-p| is also required.
107 The class @|c-type| is abstract.
111 \subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
113 The S-expression representation of a type is described syntactically as a
114 type specifier. Type specifiers fit into two syntactic categories.
116 \item A \emph{symbolic type specifier} consists of a symbol. It has a
117 single, fixed meaning: if @<name> is a symbolic type specifier, then each
118 use of @<name> in a type specifier evaluates to the same (@|eq|) type
119 object, until the @<name> is redefined.
120 \item A \emph{type operator} is a symbol; the corresponding specifier is a
121 list whose @|car| is the operator. The remaining items in the list are
122 arguments to the type operator.
125 \begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
126 Evaluates to a C type object, as described by the type specifier
130 \begin{describe}{mac}
131 {defctype \=@{ @<name> @! (@<name>^+) @} @<type-spec> \+\\
132 @[[ @|:export| @<export-flag> @]]^*
134 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
135 given, then all are defined in the same way. The type constructed by using
136 any of the @<name>s is as described by the type specifier @<type-spec>.
138 The resulting type object is constructed once, at the time that the macro
139 expansion is evaluated; the same (@|eq|) value is used each time any
140 @<name> is used in a type specifier.
142 A variable named @|c-type-@<name>|, for the first @<name> only, is defined
143 and initialized to contain the C type object so constructed. Altering or
144 binding this name is discouraged.
146 If @<export-flag> is true, then the variable name, and all of the @<name>s,
147 are exported from the current package.
150 \begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
151 Defines each @<alias> as being a type operator identical in behaviour to
152 @<original>. If @<original> is later redefined then the behaviour of the
153 @<alias>es changes too.
156 \begin{describe}{mac}
157 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
158 @[[ @<declaration>^* @! @<doc-string> @]] \\
161 Defines the symbol @<name> as a new type operator. When a list of the form
162 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
163 are bound to fresh variables according to @<lambda-list> (a destructuring
164 lambda-list) and the @<form>s evaluated in order in the resulting lexical
165 environment as an implicit @|progn|. The value should be a Lisp form which
166 will evaluate to the type specified by the arguments.
168 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
169 type specifiers among its arguments.
172 \begin{describe}{gf}{expand-c-type-spec @<type-spec> @> @<form>}
173 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
175 If @<type-spec> is a list, then \descref{gf}{expand-c-type-form} is
179 \begin{describe}{gf}{expand-c-type-form @<head> @<tail> @> @<form>}
180 Returns the Lisp form that @|(c-type (@<head> . @<tail>))| would expand
185 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
186 Print the C type object @<type> to @<stream> in S-expression form. The
187 @<colon> and @<atsign> arguments may be interpreted in any way which seems
188 appropriate: they are provided so that @|print-c-type| may be called via
189 @|format|'s @|\char`\~/\dots/| command; they are not set when
190 @|print-c-type| is called by Sod functions.
192 There should be a method defined for every C type class; there is no
197 \subsection{Comparing C types} \label{sec:clang.c-types.cmp}
199 It is necessary to compare C types for equality, for example when checking
200 argument lists for methods. This is done by @|c-type-equal-p|.
203 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
204 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
205 @<c-type>_2 for equality; it returns true if the two types are equal and
206 false if they are not.
208 Two types are equal if they are structurally similar, where this property
209 is defined by methods for each individual class; see the descriptions of
210 the classes for the details.
212 The generic function @|c-type-equal-p| uses the @|and| method combination.
214 \begin{describe}{meth}{t,t}{c-type-equal-p @<c-type>_1 @<c-type>_2}
215 A default primary method for @|c-type-equal-p| is defined. It simply
216 returns @|nil|. This way, methods can specialize on both arguments
217 without fear that a call will fail because no methods are applicable.
219 \begin{describe}{ar-meth}{}{c-type-equal-p @<c-type>_1 @<c-type>_2}
220 A default around-method for @|c-type-equal-p| is defined. It returns
221 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
222 the primary methods. Since several common kinds of C types are interned,
223 this is a common case worth optimizing.
228 \subsection{Outputting C types} \label{sec:clang.c-types.output}
230 \begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
231 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
232 declaration of an object or function of type @<c-type>. The result is
233 written to @<stream>.
235 A C declaration has two parts: a sequence of \emph{declaration specifiers}
236 and a \emph{declarator}. The declarator syntax involves parentheses and
237 operators, in order to reflect the operators applicable to the declared
238 variable. For example, the name of a pointer variable is preceded by @`*';
239 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
241 The @<kernel> argument must be a function designator (though see the
242 standard around-method); it is invoked as
243 \begin{quote} \codeface
244 (funcall @<kernel> @<stream> @<priority> @<spacep>)
246 It should write to @<stream> -- which may not be the same stream originally
247 passed into the generic function -- the `kernel' of the declarator, i.e.,
248 the part to which prefix and/or postfix operators are attached to form the
251 The methods on @|pprint-c-type| specialized for compound types work by
252 recursively calling @|pprint-c-type| on the subtype, passing down a closure
253 which prints the necessary additional declarator operators before calling
254 the original @<kernel> function. The additional arguments @<priority> and
255 @<spacep> support this implementation technique.
257 The @<priority> argument describes the surrounding operator context. It is
258 zero if no type operators are directly attached to the kernel (i.e., there
259 are no operators at all, or the kernel is enclosed in parentheses), one if
260 a prefix operator is directly attached, or two if a postfix operator is
261 directly attached. If the @<kernel> function intends to provide its own
262 additional declarator operators, it should check the @<priority> in order
263 to determine whether parentheses are necessary. See also the
264 \descref{mac}{maybe-in-parens}[macro].
266 The @<spacep> argument indicates whether a space needs to be printed in
267 order to separate the declarator from the declaration specifiers. A kernel
268 which contains an identifier should insert a space before the identifier
269 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
270 declarator (one that specifies no name), looks more pleasing without a
271 trailing space. See also the \descref{fun}{c-type-space}[function].
273 Every concrete subclass of @|c-type| is expected to provide a primary
274 method on this function. There is no default primary method.
276 \begin{describe}{ar-meth}{}{pprint-c-type @<c-type> @<stream> @<kernel>}
277 A default around method is defined on @|pprint-c-type| which `canonifies'
278 non-function @<kernel> arguments. In particular:
280 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
281 with a @<kernel> function that does nothing; and
282 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
283 called recursively with a @<kernel> function that prints the object as
284 if by @|princ|, preceded if necessary by space using @|c-type-space|.
289 \begin{describe}{fun}{c-type-space @<stream>}
290 Writes a space and other pretty-printing instructions to @<stream> in order
291 visually to separate a declarator from the preceding declaration
292 specifiers. The precise details are subject to change.
295 \begin{describe}{mac}
296 {maybe-in-parens (@<stream-var> @<guard-form>)
299 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
300 sequence within a pretty-printer logical block writing to the stream named
301 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
302 the logical block has empty prefix and suffix strings; if it evaluates to a
303 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
306 Note that this may cause @<stream> to be bound to a different stream object
311 \subsection{Type qualifiers and qualifiable types}
312 \label{sec:clang.ctypes.qual}
314 Qualifiers -- @|const|, @|volatile|, and so on -- are represented as lists of
315 keywords attached to types. Not all C types can carry qualifiers: notably,
316 function and array types cannot be qualified.
318 For the most part, the C qualifier keywords correspond to like-named Lisp
319 keywords, only the Lisp keyword names are in uppercase. The correspondence
320 is shown in \xref{tab:clang.ctypes.qual}.
323 \begin{tabular}[C]{*2{>{\codeface}l}l} \hlx*{hv}
324 \thd{\textbf{C name}} & \thd{\textbf{Lisp name}} \\ \hlx{vhv}
327 restrict & :restrict \\
328 volatile & :volatile \\ \hlx*{vh}
330 \caption{C and Lisp qualifier names} \label{tab:clang.ctypes.qual}
333 The default behaviour, on output, is to convert keywords to lowercase and
334 hope for the best: special cases can be dealt with by adding appropriate
335 methods to \descref{gf}{c-qualifier-keyword}.
337 \begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
338 The class @|qualifiable-c-type| describes C types which can bear
339 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
340 @|restrict| and @|volatile|.
342 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
343 @|:volatile|. There is no built-in limitation to these particular
344 qualifiers; others keywords may be used, though this isn't recommended.
346 Two qualifiable types are equal only if they have \emph{matching
347 qualifiers}: i.e., every qualifier attached to one is also attached to the
348 other: order is not significant, and neither is multiplicity.
350 The class @|qualifiable-c-type| is abstract.
353 \begin{describe}{fun}
354 {canonify-qualifiers @<qualifiers> @> @<canonfied-qualifiers>}
357 \begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
358 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
362 \begin{describe}{fun}{qualify-c-type @<c-type> @<qualifiers> @> @<c-type>}
363 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
364 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
365 keywords. The result is a C type object like @<c-type> except that it
366 bears the given @<qualifiers>.
368 The @<c-type> is not modified. If @<c-type> is interned, then the returned
369 type will be interned.
372 \begin{describe}{fun}{format-qualifiers @<qualifiers> @> @<string>}
373 Returns a string containing the qualifiers listed in @<qualifiers> in C
374 syntax, with a space after each. In particular, if @<qualifiers> is
375 non-null then the final character of the returned string will be a space.
378 \begin{describe}{gf}{c-qualifier-keyword @<qualifier> @> @<string>}
379 Return, as a string, the C keyword corresponding to the Lisp @<qualifier>.
381 There is a standard method, which deals with many qualifiers. Additional
382 methods exist for qualifier keywords which need special handling, such as
383 @|:atomic|; they are not listed here explicitly.
385 \begin{describe}{meth}{keyword}
386 {c-qualifier-keyword @<keyword> @> @<string>}
387 Returns the @<keyword>'s print-name, in lower case. This is sufficient
388 for the standard qualifiers @|:const|, @|:restrict|, and @|:volatile|.
392 \begin{describe}{fun}{c-type-qualifier-keywords @<c-type> @> @<list>}
393 Return the @<c-type>'s qualifiers, as a list of C keyword names.
397 \subsection{Storage specifiers} \label{sec:clang.ctypes.specs}
399 Some declaration specifiers, mostly to do with how to store the specific
400 object in question, are determinedly `top level', and, unlike qualifiers,
401 don't stay attached to the base type when acted on by declarator operators.
402 Sod calls these `storage specifiers', though no such category exists in the C
403 standard. They have their own protocol, which is similar in many ways to
406 Every Lisp keyword is potentially a storage specifier, which simply maps to
407 its lower-case print name in C; but other storage specifiers may be more
410 \begin{describe}{cls}
411 {c-storage-specifiers-type (c-type) \&key :subtype :specifiers}
412 A type which carries storage specifiers. The @<subtype> is the actual
413 type, and may be any C type; the @<specifiers> are a list of
414 storage-specifier objects.
416 The type specifier @|(specs @<subtype> @<specifier>^*)| wraps the
417 @<subtype> in a @|c-storage-specifiers-type|, carrying the @<specifier>s,
418 which are a list of storage specifiers in S-expression notation.
421 \begin{describe}{fun}{c-type-specifiers @<type> @> @<list>}
422 Returns the list of type specifiers attached to the @<type> object, which
423 must be a @|c-storage-specifiers-type|.
426 \begin{describe}{mac}
427 {define-c-storage-specifier-syntax @<name> @<lambda-list> \\ \ind
428 @[[ @<declaration>^* @! @<doc-string> @]] \\
432 Defines the symbol @<name> as a new storage-specifier operator. When a
433 list of the form @|(@<name> @<argument>^*)| is used as a storage specifier,
434 the @<argument>s are bound to fresh variables according to the
435 @<lambda-list> (a destructuring lambda-list) and the @<form>s evaluated in
436 order in the resulting lexical environment as an implicit @<progn>. The
437 value should be a Lisp form which will evaluate to the storage-specifier
438 object described by the arguments.
440 The @<form>s may call @|expand-c-storage-specifier| in order to recursively
441 expand storage specifiers among its arguments.
444 \begin{describe}{gf}{expand-c-storage-specifier @<spec> @> @<form>}
445 Returns the Lisp form that @<spec> expands to within @|(c-type (specs
446 @<subtype> @<spec>))|.
448 If @<spec> is a list, then \descref{gf}{expand-c-storage-specifier-form} is
452 \begin{describe}{gf}{expand-c-storage-specifier-form @<spec> @> @<form>}
453 Returns the Lisp form that @|(@<head> . @<tail>)| expands to within
454 @|(c-type (specs @<subtype> (@<head> . @<tail>)))|.
457 \begin{describe}{gf}{pprint-c-storage-specifier @<spec> @<stream>}
461 {print-c-storage-specifier @<stream> @<spec>
462 \&optional @<colon> @<atsign>}
465 \begin{describe}{fun}{wrap-c-type @<func> @<base-type> @> @<c-type>}
466 Apply @<func> to the underlying C type of @<base-type> to create a new
467 `wrapped' type, and attach the storage specifiers of @<base-type> to the
470 If @<base-type> is \emph{not} a @|c-storage-specifiers-type|, then return
471 @|(funcall @<func> @<base-type>)|. Otherwise, return a new
472 @|c-storage-specifiers-type|, with the same specifiers, but whose subtype
473 is the result of applying @<func> to the subtype of the original
477 \begin{describe}{cls}{alignas-storage-specifier () \&key :alignment}
478 The class of @|_Alignas| storage specifiers; an instance denotes the
479 specifier @|_Alignas(@<alignment>)|. The @<alignment> parameter may be any
480 printable object, but is usually a string or C fragment.
482 The storage specifier form @|(alignas @<alignment>)| returns a storage
483 specifier @|_Alignas(@<alignment>)|, where @<alignment> is evaluated.
487 \subsection{Leaf types} \label{sec:clang.c-types.leaf}
489 A \emph{leaf type} is a type which is not defined in terms of another type.
490 In Sod, the leaf types are
492 \item \emph{simple types}, including builtin types like @|int| and @|char|,
493 as well as type names introduced by @|typename|, because Sod isn't
494 interested in what the type name means, merely that it names a type; and
495 \item \emph{tagged types}, i.e., enum, struct and union types which are named
496 by a keyword identifying the kind of type, and a \emph{tag}.
499 \begin{describe}{cls}{simple-c-type (qualifiable-c-type)
500 \&key :qualifiers :name}
501 The class of `simple types'; an instance denotes the type @<qualifiers>
504 A simple type object maintains a \emph{name}, which is a string whose
505 contents are the C name for the type. The initarg @|:name| may be used to
506 provide this name when calling @|make-instance|.
508 Two simple type objects are equal if and only if they have @|string=| names
509 and matching qualifiers.
511 \def\x#1{\desclabel{const}{#1}}
512 \x{c-type-bool} \x{c-type-char} \x{c-type-wchar-t} \x{c-type-signed-char}
513 \x{c-type-unsigned-char} \x{c-type-short} \x{c-type-unsigned-short}
514 \x{c-type-int} \x{c-type-unsigned} \x{c-type-long} \x{c-type-unsigned-long}
515 \x{c-type-long-long} \x{c-type-unsigned-long-long} \x{c-type-size-t}
516 \x{c-type-ptrdiff-t} \x{c-type-float} \x{c-type-double}
517 \x{c-type-long-double} \x{c-type-float-imaginary}
518 \x{c-type-double-imaginary} \x{c-type-long-double-imaginary}
519 \x{c-type-float-complex} \x{c-type-double-complex}
520 \x{c-type-long-double-complex} \x{c-type-va-list} \x{c-type-void}
521 A number of symbolic type specifiers for builtin types are predefined as
522 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
523 @|define-simple-c-type|, so can be used to construct qualified types.
527 \begin{tabular}[C]{ll} \hlx*{hv}
528 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
529 @|void| & @|void| \\ \hlx{v}
530 @|_Bool| & @|bool| \\ \hlx{v}
531 @|char| & @|char| \\ \hlx{}
532 @|wchar_t| & @|wchar-t| \\ \hlx{v}
533 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
534 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
535 @|short| & @|short|, @|signed-short|, @|short-int|,
536 @|signed-short-int| @|sshort| \\ \hlx{}
537 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
539 @|int| & @|int|, @|signed|, @|signed-int|,
541 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
542 @|long| & @|long|, @|signed-long|, @|long-int|,
543 @|signed-long-int|, @|slong| \\ \hlx{}
544 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
546 @|long long| & @|long-long|, @|signed-long-long|,
547 @|long-long-int|, \\ \hlx{}
548 & \qquad @|signed-long-long-int|,
549 @|llong|, @|sllong| \\ \hlx{v}
550 @|unsigned long long|
551 & @|unsigned-long-long|, @|unsigned-long-long-int|,
553 @|size_t| & @|size-t| \\ \hlx{}
554 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
555 @|float| & @|float| \\ \hlx{}
556 @|double| & @|double| \\ \hlx{}
557 @|long double| & @|long-double| \\ \hlx{v}
558 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
559 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
560 @|long double _Imaginary|
561 & @|long-double-imaginary| \\ \hlx{v}
562 @|float _Complex| & @|float-complex| \\ \hlx{}
563 @|double _Complex| & @|double-complex| \\ \hlx{}
564 @|long double _Complex|
565 & @|long-double-complex| \\ \hlx{v}
566 @|va_list| & @|va-list| \\ \hlx*{vh}
568 \caption{Builtin symbolic type specifiers for simple C types}
569 \label{tab:codegen.c-types.simple}
572 \begin{describe}{fun}
573 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
574 Return the (unique interned) simple C type object for the C type whose name
575 is @<name> (a string) and which has the given @<qualifiers> (a list of
579 \begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
580 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
584 \begin{describe}{mac}
585 {define-simple-c-type
586 \=@{ @<name> @! (@<name>^+) @}
587 @{ @<string> @! (@<string>^*) @} \+\\
588 @[[ @|:export| @<export-flag> @]]
590 Define type specifiers for a new simple C type. Each symbol @<name> is
591 defined as a symbolic type specifier for the (unique interned) simple C
592 type whose name is the value of (the first) @<string>. Further, each
593 @<name> is defined to be a type operator: the type specifier @|(@<name>
594 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
595 name is (the first) @<string> and which has the @<qualifiers> (which are
598 Each of the @<string>s is associated with the resulting type for retrieval
599 by \descref{fun}{find-simple-c-type}. Furthermore, a variable
600 @|c-type-@<name>| is defined, for the first @<name> only, and initialized
601 with the newly constructed C type object.
603 If @<export-flag> is true, then the @|c-type-@<name>| variable name, and
604 all of the @<name>s, are exported from the current package.
607 \begin{describe}{fun}
608 {find-simple-c-type @<string> @> @{ @<simple-c-type> @! @|nil| @}}
609 If @<string> is the name of a simple C type, as established by the
610 \descref{mac}{define-simple-c-type}[macro], then return the corresponding
611 @|simple-c-type| object; otherwise, return @|nil|.
614 \begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
615 \&key :qualifiers :tag}
616 Provides common behaviour for C tagged types. A @<tag> is a string
617 containing a C identifier.
619 Two tagged types are equal if and only if they have the same class, their
620 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
621 subclasses may have additional methods on @|c-type-equal-p| which impose
622 further restrictions.)
625 Sod maintains distinct namespaces for the three kinds of tagged types. In
626 C, there is only one namespace for tags which is shared between enums,
630 \begin{describe}{gf}{c-type-tag @<c-type> @> @<keyword>}
633 \begin{describe}{fun}
634 {make-c-tagged-type @<kind> @<tag> \&optional @<qualifiers>
638 \begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
639 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
640 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
641 should return their own classification symbols. It is intended that
642 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
644 Alas, C doesn't provide a syntactic category for these keywords;
645 \Cplusplus\ calls them a @<class-key>.} %
646 There is a method defined for each of the built-in tagged type classes
647 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
650 \begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
651 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
652 naming a kind of tagged type, return the name of the corresponding C
653 type class as a symbol.
656 \begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
657 Represents a C enumerated type. An instance denotes the C type @|enum|
658 @<tag>. See the direct superclass @|tagged-c-type| for details.
660 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
661 interned) enumerated type with the given @<tag> and @<qualifier>s (all
665 \begin{describe}{fun}
666 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
667 Return the (unique interned) C type object for the enumerated C type whose
668 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
672 \begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
673 Represents a C structured type. An instance denotes the C type @|struct|
674 @<tag>. See the direct superclass @|tagged-c-type| for details.
676 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
677 interned) structured type with the given @<tag> and @<qualifier>s (all
681 \begin{describe}{fun}
682 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
683 Return the (unique interned) C type object for the structured C type whose
684 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
688 \begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
689 Represents a C union type. An instance denotes the C type @|union|
690 @<tag>. See the direct superclass @|tagged-c-type|
693 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
694 interned) union type with the given @<tag> and @<qualifier>s (all
697 \begin{describe}{fun}
698 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
699 Return the (unique interned) C type object for the union C type whose tag
700 is @<tag> (a string) and which has the given @<qualifiers> (a list of
705 \subsection{Compound C types} \label{sec:code.c-types.compound}
707 Some C types are \emph{compound types}: they're defined in terms of existing
708 types. The classes which represent compound types implement a common
711 \begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
712 Returns the underlying type of a compound type @<c-type>. Precisely what
713 this means depends on the class of @<c-type>.
717 \subsection{Atomic types} \label{sec:clang.c-types.atomic}
719 Atomic types are compound types. The subtype of an atomic type is simply the
720 underlying type of the object. Note that, as far as Sod is concerned, atomic
721 types are not the same as atomic-qualified types: you must be consistent
724 \begin{describe}{cls}
725 {c-atomic-type (qualifiable-c-type) \&key :qualifiers :subtype}
726 Represents an atomic type. An instance denotes the C type
727 @|_Atomic(@<subtype>)|.
729 The @<subtype> may be any C type.\footnote{%
730 C does not permit atomic function or array types.} %
731 Two atomic types are equal if and only if their subtypes are equal and they
732 have matching qualifiers. It is possible, though probably not useful, to
733 have an atomic-qualified atomic type.
735 The type specifier @|(atomic @<type-spec> @<qualifier>^*)| returns a type
736 qualified atomic @<subtype>, where @<subtype> is the type specified by
737 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
741 \begin{describe}{fun}
742 {make-atomic-type @<c-type> \&optional @<qualifiers> @> @<c-atomic-type>}
743 Return an object describing the type qualified atomic @<subtype>. If
744 @<subtype> is interned, then the returned atomic type object is interned
749 \subsection{Pointer types} \label{sec:clang.c-types.pointer}
751 Pointers are compound types. The subtype of a pointer type is the type it
754 \begin{describe}{cls}
755 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
756 Represents a C pointer type. An instance denotes the C type @<subtype>
759 The @<subtype> may be any C type. Two pointer types are equal if and only
760 if their subtypes are equal and they have matching qualifiers.
762 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
763 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
764 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
765 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
768 The symbol @|string| is a type specifier for the type pointer to
769 characters; the symbol @|const-string| is a type specifier for the type
770 pointer to constant characters.
773 \begin{describe}{fun}
774 {make-pointer-type @<c-type> \&optional @<qualifiers>
775 @> @<c-pointer-type>}
776 Return an object describing the type qualified pointer to @<subtype>.
777 If @<subtype> is interned, then the returned pointer type object is
782 \subsection{Array types} \label{sec:clang.c-types.array}
784 Arrays implement the compound-type protocol. The subtype of an array type is
785 the array element type.
787 \begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
788 Represents a multidimensional C array type. The @<dimensions> are a list
789 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
790 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
791 individual dimension specifier is either a string containing a C integral
792 constant expression, or nil which is equivalent to an empty string. Only
793 the first (outermost) dimension $d_0$ should be empty.
795 C doesn't actually have multidimensional arrays as a primitive notion;
796 rather, it permits an array (with known extent) to be the element type of
797 an array, which achieves an equivalent effect. C arrays are stored in
798 row-major order: i.e., if we write down the indices of the elements of an
799 array in order of ascending address, the rightmost index varies fastest;
800 hence, the type constructed is more accurately an array of $d_0$ arrays of
801 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
802 continue to abuse terminology and refer to multidimensional arrays.
804 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
805 multidimensional array with the given @<dimension>s whose elements have the
806 type specified by @<type-spec>. If no dimensions are given then a
807 single-dimensional array with unspecified extent. The synonyms @|array|
808 and @|vector| may be used in place of the brackets @`[]'.
811 \begin{describe}{fun}
812 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
813 Return an object describing the type of arrays with given @<dimensions> and
814 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
815 argument is a list whose elements are strings or nil; see the description
816 of the class @|c-array-type| above for details.
819 \begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
820 Returns the dimensions of @<c-type>, an array type, as an immutable list.
824 \subsection{Function types} \label{sec:clang.c-types.fun}
826 Function types implement the compound-type protocol. The subtype of a
827 function type is the type of the function's return value.
829 \begin{describe}{cls}{argument}
830 Represents an ordinary function argument.
833 \begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
834 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
838 \begin{describe}{fun}
839 {make-argument @<name> @<c-type> \&optional @<default> @> @<argument>}
840 Construct and a return a new @<argument> object. The argument has type
841 @<c-type>, which must be a @|c-type| object, and is named @<name>.
843 The @<name> may be nil to indicate that the argument has no name: in this
844 case the argument will be formatted as an abstract declarator, which is not
845 suitable for function definitions. If @<name> is not nil, then the
846 @<name>'s print representation, with @|*print-escape*| nil, is used as the
849 A @<default> may be supplied. If the argument is used in a
850 keyword-argument list (e.g., in a \descref{cls}{c-keyword-function-type}
851 [object]), and the @<default> value is provided and non-nil, then its
852 (unescaped) printed representation is used to provide a default value if
853 the keyword argument is not supplied by the caller.
857 {\dhead{fun}{argument-name @<argument> @> @<name>}
858 \dhead{fun}{argument-type @<argument> @> @<c-type>}
859 \dhead{fun}{argument-default @<argument> @> @<default>}}
860 Accessor functions for @|argument| objects. They return the appropriate
861 component of the object, as set by to @|make-argument|. The @<default> is
862 nil if no default was provided to @|make-argument|.
866 {commentify-argument-name @<name> @> @<commentified-name>}
867 Convert the argument name @<name> so that it's suitable to declare the
868 function in a header file.
870 Robust header files shouldn't include literal argument names in
871 declarations of functions or function types, since this restricts the
872 including file from defining such names as macros. This generic function
873 is used to convert names into a safe form.
875 \begin{describe}{meth}{null}
876 {commentify-argument-name (@<name> null) @> nil}
877 Returns nil: if the argument name is already omitted, it's safe for use
880 \begin{describe}{meth}{t}
881 {commentify-argument-name (@<name> t) @> @<string>}
882 Returns the print form of @<name> wrapped in a C comment, as
887 \begin{describe}{fun}
888 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
889 Convert the @<arguments> list so that it's suitable for use in a header
892 The @<arguments> list should be a list whose items are @|argument| objects
893 or the keyword @|:ellipsis|. The return value is a list constructed as
894 follows. For each @|argument| object in the input list, there is a
895 corresponding @|argument| object in the returned list, with the same type,
896 and whose name is the result of @|commentify-argument-name| applied to the
897 input argument name; an @|:ellipsis| in the input list is passed through
901 \begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
902 Represents C function types. An instance denotes the type of a C
903 function which accepts the @<arguments> and returns @<subtype>.
905 The @<arguments> are a possibly empty list. All but the last element of
906 the list must be @|argument| objects; the final element may instead be the
907 keyword @|:ellipsis|, which denotes a variable argument list.
909 An @<arguments> list consisting of a single argument with type @|void| is
910 converted into an empty list. On output as C code, an empty argument list
911 is written as @|void|. It is not possible to represent a pre-ANSI C
912 function without prototypes.
914 Two function types are considered to be the same if their return types are
915 the same, and their argument lists consist of arguments with the same type,
916 in the same order, and either both or neither argument list ends with
917 @|:ellipsis|; argument names are not compared.
922 @{ (@<arg-name> @<arg-type>) @}^*
923 @[:ellipsis @! . @<form>@])
925 constructs a function type. The function has the subtype @<return-type>.
926 The remaining items in the type-specifier list are used to construct the
927 argument list. The argument items are a possibly improper list, beginning
928 with zero or more \emph{explicit arguments}: two-item
929 @<arg-name>/@<arg-type> lists. For each such list, an @|argument| object
930 is constructed with the given name (evaluated) and type. Following the
931 explicit arguments, there may be
933 \item nothing, in which case the function's argument list consists only of
934 the explicit arguments;
935 \item the keyword @|:ellipsis|, as the final item in the type-specifier
936 list, indicating a variable argument list may follow the explicit
938 \item a possibly-improper list tail, beginning with an atom either as a
939 list item or as the final list cdr, indicating that the entire list tail
940 is a Lisp expression which is to be evaluated to compute the remaining
943 A tail expression may return a list of @|argument| objects, optionally
944 followed by an @|:ellipsis|.
948 (c-type (fun \=(lisp (c-type-subtype other-func)) \+\\
949 ("first" int) . (c-function-arguments other-func))
951 evaluates to a function type like @|other-func|, only with an additional
952 argument of type @|int| added to the front of its argument list. This
953 could also have been written
955 (let (\=(args (c-function-arguments other-func)) \+\\
956 (ret (c-type-subtype other-func))) \-\\ \ind
957 (c-type (fun \=(lisp ret) ("first" int) . args)
961 \begin{describe}{cls}
962 {c-keyword-function-type (c-function-type)
963 \&key :subtype :arguments :keywords}
964 Represents `functions' which accept keyword arguments. Of course, actual C
965 functions can't accept keyword arguments directly, but this type is useful
966 for describing messages and methods which deal with keyword arguments.
968 An instance denotes the type of C function which accepts the position
969 argument list @<arguments>, and keyword arguments from the @<keywords>
970 list, and returns @<subtype>. Either or both of the @<arguments> and
971 @<keywords> lists may be empty. (It is important to note the distinction
972 between a function which doesn't accept keyword arguments, and one which
973 does but for which no keyword arguments are defined. In particular, the
974 latter function can be changed later to accept a keyword argument without
975 breaking compatibility with old code.) The @<arguments> and @<keywords>
976 lists must \emph{not} contain @|:ellipsis| markers: a function can accept
977 keywords, or a variable-length argument tail, but not both.
979 Keyword arguments may (but need not) have a \emph{default value} which is
980 supplied to the function body if the keyword is omitted.
982 Keyword functions are never considered to be the same as ordinary
983 functions. Two keyword function types are considered to be the same if
984 their return types are the same, and their positional argument lists
985 consist of arguments with the same type, in the same order: the keyword
986 arguments accepted by the functions is not significant.
988 Keyword functions are constructed using an extended version of the @|fun|
989 specifier used for ordinary C function types. The extended syntax is as
992 (fun \=@<return-type>
993 @{ (@<arg-name> @<arg-type>) @}^* \+\\
994 @{ \=:keys @{ (@<kw-name> @<kw-type> @[@<kw-default>@]) @}^*
995 @[. @<form>@] @! \+\\
998 where either the symbol @|:keys| appears literally in the specifier, or the
999 @<form> evaluates to a list containing the symbol @|:keys|. (If neither of
1000 these circumstances obtains, then the specifier constructs an ordinary
1003 See the description of \descref{cls}{c-function-type} for how a trailing
1006 The list of @<arg-name>s and @<arg-type>s describes the positional
1007 arguments. The list of @<kw-name>s, @<kw-type>s and @<kw-defaults>s
1008 describes the keyword arguments.
1011 \begin{describe}{fun}
1012 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
1013 Construct and return a new function type, returning @<subtype> and
1014 accepting the @<arguments>.
1016 If the @<arguments> list contains a @|:keys| marker, then a
1017 \descref{cls}{c-keyword-function-type}[object] is returned: those arguments
1018 preceding the @|:keys| marker form the positional argument list, and those
1019 following the marker form the list of keyword arguments.
1022 \begin{describe}{fun}
1023 {make-keyword-function-type @<subtype> @<arguments> @<keywords>
1024 \nlret @<c-keyword-function-type>}
1025 Construct and return a new keyword-function type, returning @<subtype> and
1026 accepting the @<arguments> and @<keywords>.
1029 \begin{describe}{gf}
1030 {c-function-arguments @<c-function-type> @> @<arguments>}
1031 Return the (non-keyword) argument list of the @<c-function-type>.
1034 \begin{describe}{gf}
1035 {c-function-keywords @<c-function-type> @> @<keywords>}
1036 Return the keyword-argument list of the @<c-function-type>.
1039 \begin{describe}{fun}
1040 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
1041 Return a commentified version of the @<c-function-type>.
1043 The returned type has the same subtype as the given type, and the argument
1044 list of the returned type is the result of applying
1045 @|commentify-argument-names| to the argument list of the given type.
1048 \begin{describe}{fun}{reify-variable-argument-tail @<arguments> @> @<list>}
1049 If the @<argument> list contains an @|:ellipsis| marker, then replace it
1050 with a @|va_list|. The name for the new argument, if any, is taken from
1051 the \descref{var}{*sod-ap*}[variable]. The new list is returned; the
1052 original list is not modified, but may share structure with the new list.
1055 \begin{describe}{fun}
1056 {merge-keyword-lists @<what-function> @<lists> @> @<list>}
1057 Merge a number of keyword-argument lists together and return the result.
1059 The @<what-function> is either nil or a function designator; see below.
1061 The @<lists> parameter is a list consisting of a number of
1062 @|(@<report-function> . @<args>)| pairs: in each pair, @<report-function>
1063 is either nil or a function designator, and @<args> is a list of
1064 \descref{cls}{argument} objects.
1066 The resulting list contains exactly one argument for each distinct argument
1067 name appearing in the input @<lists>; this argument will contain the
1068 default value from the earliest occurrence in the input @<lists> of an
1069 argument with that name.
1071 If the same name appears multiple times with different types, a continuable
1072 error will be signalled, and one of the conflicting argument types will be
1073 chosen arbitrarily. The @<what-function> will be called to establish
1074 information which will be reported to the user. It will be called with no
1075 arguments and is expected to return two values:
1077 \item a file location @<floc> or other object acceptable to
1078 \descref{gf}{file-location}, to be used as the location of the main
1080 \item an object @<what>, whose printed representation should be a noun
1081 phrase describing the object for which the argument lists are being
1084 The phrasing of the error message is `type mismatch in @<what>'. Either,
1085 or both, of @<floc> and @<what> may be nil, though this is considered poor
1086 practice; if @<what-function> is nil, this is equivalent to a function
1087 which returns two nil values. Following the error, the @<report-function>s
1088 for the @<args> lists containing the conflicting argument objects are
1089 called, in an arbitrary order, with a single argument which is the
1090 offending @|argument| object; the function is expected to issue information
1091 messages (see \descref{fun}{info}) to give more detail for diagnosing the
1092 conflict. If a @<report-function> is nil, then nothing happens; this is
1093 considered poor practice.
1096 \begin{describe}{fun}
1097 {pprint-c-function-type @<return-type> @<stream>
1098 @<print-args> @<print-kernel>}
1099 Provides the top-level structure for printing C function types.
1101 Output is written to @<stream> to describe a function type returning
1102 @<return-type>, whose declarator kernel (containing the name, and any
1103 further type operands) will be printed by @<print-kernel>, and whose
1104 arguments, if any, will be printed by @<print-args>.
1106 The @<print-kernel> function is a standard kernel-printing function
1107 following the \descref{gf}{pprint-c-type}[protocol].
1109 The @<print-args> function is given a single argument, which is the
1110 @<stream> to print on. It should not print the surrounding parentheses.
1112 The output written to @<stream> looks approximately like
1114 @<return-type> @<kernel>(@<args>)
1118 \begin{describe}{fun}{pprint-argument-list @<args> @<stream> @> @<flag>}
1119 Print an argument list to @<stream>.
1121 The @<args> is a list of \descref{cls}{argument}[objects], optionally
1122 containing an @|:ellipsis| marker. The function returns true if any
1123 arguments were actually printed.
1127 \subsection{Parsing C types} \label{sec:clang.c-types.parsing}
1129 \begin{describe}{fun}
1130 {parse-c-type @<scanner>
1131 @> @<result> @<success-flag> @<consumed-flag>}
1134 \begin{describe}{fun}
1135 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
1136 \nlret @<result> @<success-flag> @<consumed-flag>}
1140 \subsection{Class types} \label{sec:clang.c-types.class}
1142 \begin{describe}{cls}
1143 {c-class-type (simple-c-type) \&key :class :tag :qualifiers :name}
1147 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
1148 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
1151 \begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
1154 \begin{describe}{fun}
1155 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
1158 \begin{describe}{fun}{find-sod-class @<name> @> @<class>}
1161 \begin{describe}{fun}{record-sod-class @<class>}
1164 %%%--------------------------------------------------------------------------
1165 \section{Generating C code} \label{sec:clang.codegen}
1167 This section deals with Sod's facilities for constructing and manipulating C
1168 expressions, declarations, instructions and definitions.
1171 \subsection{Temporary names} \label{sec:clang.codegen.temporaries}
1173 Many C-level objects, especially ones with external linkage or inclusion in a
1174 header file, are assigned names which are simple strings, perhaps fixed ones,
1175 perhaps constructed. Other objects don't need meaningful names, and
1176 suitably unique constructed names would be tedious and most likely rather
1177 opaque. Therefore Sod has an ability to construct \emph{temporary names}.
1179 These aren't temporary in the sense that they name C objects which have
1180 limited lifetimes at runtime. Rather, the idea is that the names be
1181 significant only to small pieces of Lisp code, which will soon forget about
1184 \subsubsection{The temporary name protocol}
1185 Temporary names are represented by objects which implement a simple protocol.
1187 \begin{describe}{gf}{format-temporary-name @<var> @<stream>}
1191 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
1192 \dhead{gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
1195 \subsubsection{Temporary name objects}
1197 \begin{describe}{cls}{temporary-name () \&key :tag}
1198 A temporary name object. This is the root of a small collection of
1199 subclasses, but is also usable on its own.
1202 \begin{describe}{gf}{temp-tag @<name> @> @<tag>}
1205 \begin{describe}{meth}{temporary-name}
1206 {commentify-argument-name (@<name> temporary-name) @> nil}
1210 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1211 \thd{\textbf{Class}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1212 temporary-name & @<tag> \\
1213 temporary-argument & sod__a@<tag> \\
1214 temporary-function & sod__f@<tag> \\
1215 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
1217 \caption{Temporary name formats}
1218 \label{tab:codegen.codegen.temps-format}
1221 \begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
1224 \begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
1227 \begin{describe}{fun}{temporary-function @> @<name>}
1230 \begin{describe}{cls}
1231 {temporary-variable (temporary-name) \&key :tag :in-use-p}
1234 \subsubsection{Well-known `temporary' names}
1237 \def\x#1{\desclabel{var}{#1}}
1238 \x{*sod-ap*} \x{*sod-master-ap*} \x{*null-pointer*}
1239 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1240 \thd{\textbf{Variable}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1241 {}*sod-ap* & sod__ap \\
1242 {}*sod-master-ap* & sod__master_ap \\
1243 {}*null-pointer* & NULL \\ \hlx*{vh}
1245 \caption{Well-known temporary names}
1246 \label{tab:codegen.codegen.well-known-temps}
1250 \subsection{Instructions} \label{sec:clang.codegen.insts}
1252 \begin{describe}{cls}{inst () \&key}
1255 \begin{describe}{gf}{inst-metric @<inst>}
1258 \begin{describe}{mac}
1259 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
1260 @[[ @<declaration>^* @! @<doc-string> @]] \\
1265 \begin{describe}{mac}
1266 {format-compound-statement
1267 (@<stream> @<child> \&optional @<morep>) \\ \ind
1272 \begin{describe}{fun}
1273 {format-banner-comment @<stream> @<control> \&rest @<args>}
1277 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
1280 \thd{Output format} \\ \hlx{vhv}
1281 @|var| & @<name> @<type> @|\&optional| @<init>
1282 & @<type> @<name> @[= @<init>@];
1284 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
1285 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
1287 @|cond| & @<cond> @<conseq> @<alt> & @<cond> ? @<conseq> : @<alt>
1289 @|return| & @<expr> & return @[@<expr>@];
1291 @|break| & --- & break; \\ \hlx{v}
1292 @|continue| & --- & continue; \\ \hlx{v}
1293 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
1294 @|call| & @<func> @|\&rest| @<args>
1297 @<arg>_n) \\ \hlx{v}
1298 @|banner| & @<control> @|\&rest| @<args>
1299 & /* @<banner> */ \\ \hlx{vhv}
1300 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
1302 @|if| & @<cond> @<conseq> @|\&optional| @<alt>
1303 & if (@<cond>) @<conseq>
1304 @[else @<alt>@] \\ \hlx{v}
1305 @|for| & @<init> @<cond> @<update> @<body> &
1306 for (@<init>; @<cond>; @<update>) @<body> \\ \hlx{v}
1307 @|while| & @<cond> @<body> & while (@<cond>) @<body>
1309 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
1312 \vtop{\hbox{\strut @<name> @<type> @<body>}
1313 \hbox{\strut \quad @|\&optional @<banner>|}
1314 \hbox{\strut \quad @|\&rest| @<banner-args>}} &
1315 \vtop{\hbox{\strut @[/* @<banner> */@]}
1316 \hbox{\strut @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
1317 @<type>_n @<arg>_n @[, \dots@])}
1318 \hbox{\strut \quad @<body>}} \\ \hlx*{vh}
1320 \caption{Instruction classes}
1321 \label{tab:codegen.codegen.insts}
1325 {\dhead*{cls}{@<code>-inst (inst) \&key \dots}
1326 \dhead*{fn}{make-@<code>-inst \dots}
1327 \dhead*{gf}{inst-@<slot> @<inst> @> @<value>}}
1328 \def\instclass#1#2#3{%
1329 #1{cls}{#3-inst}[#2]%
1330 #1{fun}{make-#3-inst}[#2]%
1332 \def\instslot#1#2#3{#1{gf}{inst-#3}[#2]}
1333 \def\makelabels#1#2{%
1334 \def\x{\instclass{#1}{#2}}
1335 \x{var} \x{set} \x{update} \x{cond} \x{return} \x{break} \x{continue}
1336 \x{expr} \x{call} \x{banner} \x{block} \x{if} \x{for} \x{while}
1337 \x{do-while} \x{function}
1338 \def\x{\instslot{#1}{#2}}
1339 \x{name} \x{type} \x{init} \x{var} \x{expr} \x{op} \x{cond} \x{conseq}
1340 \x{alt} \x{func} \x{args} \x{control} \x{decls} \x{body} \x{update}
1341 \x{banner} \x{banner-args}
1343 \makelabels{\desclabel}{|(}
1345 Sod provides a number of built-in instruction types generated by
1346 \descref{mac}{definst}: see \xref{tab:codegen.codegen.insts}.
1348 \makelabels{\descindex}{|)}
1352 \subsection{Code generation} \label{sec:clang.codegen.codegen}
1354 \begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
1357 \begin{describe}{gf}
1358 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
1361 \begin{describe}{gf}{emit-inst @<codegen> @<inst>}
1364 \begin{describe}{gf}{emit-insts @<codegen> @<insts>}
1367 \begin{describe}{gf}{emit-decl @<codegen> @<decl>}
1370 \begin{describe}{gf}{emit-decls @<codegen> @<decls>}
1373 \begin{describe}{fun}{emit-banner @<codegen> @<control> \&rest @<args>}
1376 \begin{describe}{gf}{codegen-push @<codegen>}
1379 \begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
1382 \begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
1385 \begin{describe}{gf}
1386 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
1389 \begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
1392 \begin{describe}{fun}
1393 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
1397 \begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
1400 \begin{describe}{mac}
1401 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
1404 \-\nlret @<value>^*}
1407 \begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
1410 \begin{describe}{fun}
1411 {deliver-call @<codegen> @<target> @<func> \&rest @<args>}
1414 \begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
1417 \begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
1420 %%%--------------------------------------------------------------------------
1421 \section{Literal C code fragments} \label{sec:clang.fragment}
1423 \begin{describe}{cls}{c-fragment () \&key :location :text}
1427 {\dhead{gf}{c-fragment-text @<fragment> @> @<string>}
1428 \dhead{meth}{c-fragment}
1429 {file-location (@<fragment> c-fragment) @> @<floc>}}
1432 \begin{describe}{fun}
1433 {scan-c-fragment @<scanner> @<end-chars>
1434 @> @<result> @<success-flag> @<consumed-flag>}
1437 \begin{describe}{fun}
1438 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
1439 \nlret @<result> @<success-flag> @<consumed-flag>}
1442 %%%----- That's all, folks --------------------------------------------------
1444 %%% Local variables:
1446 %%% TeX-master: "sod.tex"