2 * This file is part of DisOrder
3 * Copyright (C) 2007, 2009 Richard Kettlewell
5 * This program is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 /** @file lib/unicode.c
19 * @brief Unicode support functions
21 * Here by UTF-8 and UTF-8 we mean the encoding forms of those names (not the
22 * encoding schemes). The primary encoding form is UTF-32 but convenience
23 * wrappers using UTF-8 are provided for a number of functions.
25 * The idea is that all the strings that hit the database will be in a
26 * particular normalization form, and for the search and tags database
27 * in case-folded form, so they can be naively compared within the
30 * As the code stands this guarantee is not well met!
35 * - @ref utf32iterator
47 /** @defgroup utf32props Unicode Code Point Properties */
50 static const struct unidata *utf32__unidata_hard(uint32_t c);
52 /** @brief Find definition of code point @p c
54 * @return Pointer to @ref unidata structure for @p c
56 * @p c can be any 32-bit value, a sensible value will be returned regardless.
57 * The returned pointer is NOT guaranteed to be unique to @p c.
59 static inline const struct unidata *utf32__unidata(uint32_t c) {
60 /* The bottom half of the table contains almost everything of interest
61 * and we can just return the right thing straight away */
62 if(c < UNICODE_BREAK_START)
63 return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
65 return utf32__unidata_hard(c);
68 /** @brief Find definition of code point @p c
70 * @return Pointer to @ref unidata structure for @p c
72 * @p c can be any 32-bit value, a sensible value will be returned regardless.
73 * The returned pointer is NOT guaranteed to be unique to @p c.
75 * Don't use this function (although it will work fine) - use utf32__unidata()
78 static const struct unidata *utf32__unidata_hard(uint32_t c) {
79 if(c < UNICODE_BREAK_START)
80 return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
81 /* Within the break everything is unassigned */
82 if(c < UNICODE_BREAK_END)
83 return utf32__unidata(0xFFFF); /* guaranteed to be Cn */
84 /* Planes 15 and 16 are (mostly) private use */
85 if((c >= 0xF0000 && c <= 0xFFFFD)
86 || (c >= 0x100000 && c <= 0x10FFFD))
87 return utf32__unidata(0xE000); /* first Co code point */
88 /* Everything else above the break top is unassigned */
89 if(c >= UNICODE_BREAK_TOP)
90 return utf32__unidata(0xFFFF); /* guaranteed to be Cn */
91 /* Currently the rest is language tags and variation selectors */
92 c -= (UNICODE_BREAK_END - UNICODE_BREAK_START);
93 return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
96 /** @brief Return the combining class of @p c
98 * @return Combining class of @p c
100 * @p c can be any 32-bit value, a sensible value will be returned regardless.
102 static inline int utf32__combining_class(uint32_t c) {
103 return utf32__unidata(c)->ccc;
106 /** @brief Return the combining class of @p c
107 * @param c Code point
108 * @return Combining class of @p c
110 * @p c can be any 32-bit value, a sensible value will be returned regardless.
112 int utf32_combining_class(uint32_t c) {
113 return utf32__combining_class(c);
116 /** @brief Return the General_Category value for @p c
117 * @param c Code point
118 * @return General_Category property value
120 * @p c can be any 32-bit value, a sensible value will be returned regardless.
122 static inline enum unicode_General_Category utf32__general_category(uint32_t c) {
123 return utf32__unidata(c)->general_category;
126 /** @brief Determine Grapheme_Break property
127 * @param c Code point
128 * @return Grapheme_Break property value of @p c
130 * @p c can be any 32-bit value, a sensible value will be returned regardless.
132 static inline enum unicode_Grapheme_Break utf32__grapheme_break(uint32_t c) {
133 return utf32__unidata(c)->grapheme_break;
136 /** @brief Determine Word_Break property
137 * @param c Code point
138 * @return Word_Break property value of @p c
140 * @p c can be any 32-bit value, a sensible value will be returned regardless.
142 static inline enum unicode_Word_Break utf32__word_break(uint32_t c) {
143 return utf32__unidata(c)->word_break;
146 /** @brief Determine Sentence_Break property
147 * @param c Code point
148 * @return Word_Break property value of @p c
150 * @p c can be any 32-bit value, a sensible value will be returned regardless.
152 static inline enum unicode_Sentence_Break utf32__sentence_break(uint32_t c) {
153 return utf32__unidata(c)->sentence_break;
156 /** @brief Return true if @p c is ignorable for boundary specifications
157 * @param wb Word break property value
158 * @return non-0 if @p wb is unicode_Word_Break_Extend or unicode_Word_Break_Format
160 static inline int utf32__boundary_ignorable(enum unicode_Word_Break wb) {
161 return (wb == unicode_Word_Break_Extend
162 || wb == unicode_Word_Break_Format);
165 /** @brief Return the canonical decomposition of @p c
166 * @param c Code point
167 * @return 0-terminated canonical decomposition, or 0
169 static inline const uint32_t *utf32__decomposition_canon(uint32_t c) {
170 const struct unidata *const data = utf32__unidata(c);
171 const uint32_t *const decomp = data->decomp;
173 if(decomp && !(data->flags & unicode_compatibility_decomposition))
179 /** @brief Return the compatibility decomposition of @p c
180 * @param c Code point
181 * @return 0-terminated decomposition, or 0
183 static inline const uint32_t *utf32__decomposition_compat(uint32_t c) {
184 return utf32__unidata(c)->decomp;
188 /** @defgroup utftransform Functions that transform between different Unicode encoding forms */
191 /** @brief Convert UTF-32 to UTF-8
192 * @param s Source string
193 * @param ns Length of source string in code points
194 * @param ndp Where to store length of destination string (or NULL)
195 * @return Newly allocated destination string or NULL on error
197 * If the UTF-32 is not valid then NULL is returned. A UTF-32 code point is
199 * - it codes for a UTF-16 surrogate
200 * - it codes for a value outside the unicode code space
202 * The return value is always 0-terminated. The value returned via @p *ndp
203 * does not include the terminator.
205 char *utf32_to_utf8(const uint32_t *s, size_t ns, size_t *ndp) {
213 dynstr_append(&d, c);
214 else if(c < 0x0800) {
215 dynstr_append(&d, 0xC0 | (c >> 6));
216 dynstr_append(&d, 0x80 | (c & 0x3F));
217 } else if(c < 0x10000) {
218 if(c >= 0xD800 && c <= 0xDFFF)
220 dynstr_append(&d, 0xE0 | (c >> 12));
221 dynstr_append(&d, 0x80 | ((c >> 6) & 0x3F));
222 dynstr_append(&d, 0x80 | (c & 0x3F));
223 } else if(c < 0x110000) {
224 dynstr_append(&d, 0xF0 | (c >> 18));
225 dynstr_append(&d, 0x80 | ((c >> 12) & 0x3F));
226 dynstr_append(&d, 0x80 | ((c >> 6) & 0x3F));
227 dynstr_append(&d, 0x80 | (c & 0x3F));
232 dynstr_terminate(&d);
241 /** @brief Convert UTF-8 to UTF-32
242 * @param s Source string
243 * @param ns Length of source string in code points
244 * @param ndp Where to store length of destination string (or NULL)
245 * @return Newly allocated destination string or NULL on error
247 * The return value is always 0-terminated. The value returned via @p *ndp
248 * does not include the terminator.
250 * If the UTF-8 is not valid then NULL is returned. A UTF-8 sequence
251 * for a code point is invalid if:
252 * - it is not the shortest possible sequence for the code point
253 * - it codes for a UTF-16 surrogate
254 * - it codes for a value outside the unicode code space
256 uint32_t *utf8_to_utf32(const char *s, size_t ns, size_t *ndp) {
257 struct dynstr_ucs4 d;
259 const uint8_t *ss = (const uint8_t *)s;
262 dynstr_ucs4_init(&d);
264 const struct unicode_utf8_row *const r = &unicode_utf8_valid[*ss];
271 if(ss[1] < r->min2 || ss[1] > r->max2)
276 if(ss[1] < r->min2 || ss[1] > r->max2)
281 if(ss[1] < r->min2 || ss[1] > r->max2)
290 for(n = 1; n < r->count; ++n) {
291 if(ss[n] < 0x80 || ss[n] > 0xBF)
293 c32 = (c32 << 6) | (ss[n] & 0x3F);
295 dynstr_ucs4_append(&d, c32);
299 dynstr_ucs4_terminate(&d);
308 /** @brief Test whether [s,s+ns) is valid UTF-8
309 * @param s Start of string
310 * @param ns Length of string
311 * @return non-0 if @p s is valid UTF-8, 0 if it is not valid
313 * This function is intended to be much faster than calling utf8_to_utf32() and
314 * throwing away the result.
316 int utf8_valid(const char *s, size_t ns) {
317 const uint8_t *ss = (const uint8_t *)s;
319 const struct unicode_utf8_row *const r = &unicode_utf8_valid[*ss];
325 if(ss[1] < r->min2 || ss[1] > r->max2)
329 if(ss[1] < r->min2 || ss[1] > r->max2)
331 if(ss[2] < 0x80 || ss[2] > 0xBF)
335 if(ss[1] < r->min2 || ss[1] > r->max2)
337 if(ss[2] < 0x80 || ss[2] > 0xBF)
339 if(ss[3] < 0x80 || ss[3] > 0xBF)
354 /** @defgroup utf32iterator UTF-32 string iterators */
357 struct utf32_iterator_data {
358 /** @brief Start of string */
361 /** @brief Length of string */
364 /** @brief Current position */
367 /** @brief Last two non-ignorable characters or (uint32_t)-1
369 * last[1] is the non-Extend/Format character just before position @p n;
370 * last[0] is the one just before that.
372 * Exception 1: if there is no such non-Extend/Format character then an
373 * Extend/Format character is accepted instead.
375 * Exception 2: if there is no such character even taking that into account
376 * the value is (uint32_t)-1.
380 /** @brief Tailoring for Word_Break */
381 unicode_property_tailor *word_break;
384 /** @brief Initialize an internal private iterator
386 * @param s Start of string
387 * @param ns Length of string
388 * @param n Absolute position
390 static void utf32__iterator_init(utf32_iterator it,
391 const uint32_t *s, size_t ns, size_t n) {
395 it->last[0] = it->last[1] = -1;
397 utf32_iterator_set(it, n);
400 /** @brief Create a new iterator pointing at the start of a string
401 * @param s Start of string
402 * @param ns Length of string
403 * @return New iterator
405 utf32_iterator utf32_iterator_new(const uint32_t *s, size_t ns) {
406 utf32_iterator it = xmalloc(sizeof *it);
407 utf32__iterator_init(it, s, ns, 0);
411 /** @brief Tailor this iterator's interpretation of the Word_Break property.
413 * @param pt Property tailor function or NULL
415 * After calling this the iterator will call @p pt to determine the Word_Break
416 * property of each code point. If it returns -1 the default value will be
417 * used otherwise the returned value will be used.
419 * @p pt can be NULL to revert to the default value of the property.
421 * It is safe to call this function at any time; the iterator's internal state
422 * will be reset to suit the new tailoring.
424 void utf32_iterator_tailor_word_break(utf32_iterator it,
425 unicode_property_tailor *pt) {
427 utf32_iterator_set(it, it->n);
430 static inline enum unicode_Word_Break utf32__iterator_word_break(utf32_iterator it,
433 return utf32__word_break(c);
435 const int t = it->word_break(c);
438 return utf32__word_break(c);
444 /** @brief Destroy an iterator
447 void utf32_iterator_destroy(utf32_iterator it) {
451 /** @brief Find the current position of an interator
454 size_t utf32_iterator_where(utf32_iterator it) {
458 /** @brief Set an iterator's absolute position
460 * @param n Absolute position
461 * @return 0 on success, non-0 on error
463 * It is an error to position the iterator outside the string (but acceptable
464 * to point it at the hypothetical post-final character). If an invalid value
465 * of @p n is specified then the iterator is not changed.
467 * This function works by backing up and then advancing to reconstruct the
468 * iterator's internal state for position @p n. The worst case will be O(n)
469 * time complexity (with a worse constant factor that utf32_iterator_advance())
470 * but the typical case is essentially constant-time.
472 int utf32_iterator_set(utf32_iterator it, size_t n) {
473 /* We can't just jump to position @p n; the @p last[] values will be wrong.
474 * What we need is to jump a bit behind @p n and then advance forward,
475 * updating @p last[] along the way. How far back? We need to cross two
476 * non-ignorable code points as we advance forwards, so we'd better pass two
477 * such characters on the way back (if such are available).
481 if(n > it->ns) /* range check */
483 /* Walk backwards skipping ignorable code points */
486 && (utf32__boundary_ignorable(utf32__iterator_word_break(it,
489 /* Either m=0 or s[m-1] is not ignorable */
492 /* s[m] is our first non-ignorable code; look for a second in the same
495 && (utf32__boundary_ignorable(utf32__iterator_word_break(it,
498 /* Either m=0 or s[m-1] is not ignorable */
502 it->last[0] = it->last[1] = -1;
504 return utf32_iterator_advance(it, n - m);
507 /** @brief Advance an iterator
509 * @param count Number of code points to advance by
510 * @return 0 on success, non-0 on error
512 * It is an error to advance an iterator beyond the hypothetical post-final
513 * character of the string. If an invalid value of @p n is specified then the
514 * iterator is not changed.
516 * This function has O(n) time complexity: it works by advancing naively
517 * forwards through the string.
519 int utf32_iterator_advance(utf32_iterator it, size_t count) {
520 if(count <= it->ns - it->n) {
522 const uint32_t c = it->s[it->n];
523 const enum unicode_Word_Break wb = utf32__iterator_word_break(it, c);
524 if(it->last[1] == (uint32_t)-1
525 || !utf32__boundary_ignorable(wb)) {
526 it->last[0] = it->last[1];
537 /** @brief Find the current code point
539 * @return Current code point or 0
541 * If the iterator points at the hypothetical post-final character of the
542 * string then 0 is returned. NB that this doesn't mean that there aren't any
543 * 0 code points inside the string!
545 uint32_t utf32_iterator_code(utf32_iterator it) {
552 /** @brief Test for a grapheme boundary
554 * @return Non-0 if pointing just after a grapheme boundary, otherwise 0
556 * This function identifies default grapheme cluster boundaries as described in
557 * UAX #29 s3. It returns non-0 if @p it points at the code point just after a
558 * grapheme cluster boundary (including the hypothetical code point just after
559 * the end of the string).
561 int utf32_iterator_grapheme_boundary(utf32_iterator it) {
562 uint32_t before, after;
563 enum unicode_Grapheme_Break gbbefore, gbafter;
565 if(it->n == 0 || it->n == it->ns)
567 /* Now we know that s[n-1] and s[n] are safe to inspect */
569 before = it->s[it->n-1];
570 after = it->s[it->n];
571 if(before == 0x000D && after == 0x000A)
573 gbbefore = utf32__grapheme_break(before);
574 gbafter = utf32__grapheme_break(after);
576 if(gbbefore == unicode_Grapheme_Break_Control
581 if(gbafter == unicode_Grapheme_Break_Control
586 if(gbbefore == unicode_Grapheme_Break_L
587 && (gbafter == unicode_Grapheme_Break_L
588 || gbafter == unicode_Grapheme_Break_V
589 || gbafter == unicode_Grapheme_Break_LV
590 || gbafter == unicode_Grapheme_Break_LVT))
593 if((gbbefore == unicode_Grapheme_Break_LV
594 || gbbefore == unicode_Grapheme_Break_V)
595 && (gbafter == unicode_Grapheme_Break_V
596 || gbafter == unicode_Grapheme_Break_T))
599 if((gbbefore == unicode_Grapheme_Break_LVT
600 || gbbefore == unicode_Grapheme_Break_T)
601 && gbafter == unicode_Grapheme_Break_T)
604 if(gbafter == unicode_Grapheme_Break_Extend)
607 if(gbafter == unicode_Grapheme_Break_SpacingMark)
610 if(gbbefore == unicode_Grapheme_Break_Prepend)
617 /** @brief Test for a word boundary
619 * @return Non-0 if pointing just after a word boundary, otherwise 0
621 * This function identifies default word boundaries as described in UAX #29 s4.
622 * It returns non-0 if @p it points at the code point just after a word
623 * boundary (including the hypothetical code point just after the end of the
624 * string) and 0 otherwise.
626 int utf32_iterator_word_boundary(utf32_iterator it) {
627 uint32_t before, after;
628 enum unicode_Word_Break wbtwobefore, wbbefore, wbafter, wbtwoafter;
632 if(it->n == 0 || it->n == it->ns)
634 before = it->s[it->n-1];
635 after = it->s[it->n];
637 if(before == 0x000D && after == 0x000A)
640 if(utf32__iterator_word_break(it, before) == unicode_Word_Break_Newline
645 if(utf32__iterator_word_break(it, after) == unicode_Word_Break_Newline
650 /* (!Sep) x (Extend|Format) as in UAX #29 s6.2 */
651 if(utf32__sentence_break(before) != unicode_Sentence_Break_Sep
652 && utf32__boundary_ignorable(utf32__iterator_word_break(it, after)))
654 /* Gather the property values we'll need for the rest of the test taking the
655 * s6.2 changes into account */
656 /* First we look at the code points after the proposed boundary */
657 nn = it->n; /* <it->ns */
658 wbafter = utf32__iterator_word_break(it, it->s[nn++]);
659 if(!utf32__boundary_ignorable(wbafter)) {
660 /* X (Extend|Format)* -> X */
662 && utf32__boundary_ignorable(utf32__iterator_word_break(it,
666 /* It's possible now that nn=ns */
668 wbtwoafter = utf32__iterator_word_break(it, it->s[nn]);
670 wbtwoafter = unicode_Word_Break_Other;
672 /* We've already recorded the non-ignorable code points before the proposed
674 wbbefore = utf32__iterator_word_break(it, it->last[1]);
675 wbtwobefore = utf32__iterator_word_break(it, it->last[0]);
678 if(wbbefore == unicode_Word_Break_ALetter
679 && wbafter == unicode_Word_Break_ALetter)
682 if(wbbefore == unicode_Word_Break_ALetter
683 && (wbafter == unicode_Word_Break_MidLetter
684 || wbafter == unicode_Word_Break_MidNumLet)
685 && wbtwoafter == unicode_Word_Break_ALetter)
688 if(wbtwobefore == unicode_Word_Break_ALetter
689 && (wbbefore == unicode_Word_Break_MidLetter
690 || wbbefore == unicode_Word_Break_MidNumLet)
691 && wbafter == unicode_Word_Break_ALetter)
694 if(wbbefore == unicode_Word_Break_Numeric
695 && wbafter == unicode_Word_Break_Numeric)
698 if(wbbefore == unicode_Word_Break_ALetter
699 && wbafter == unicode_Word_Break_Numeric)
702 if(wbbefore == unicode_Word_Break_Numeric
703 && wbafter == unicode_Word_Break_ALetter)
706 if(wbtwobefore == unicode_Word_Break_Numeric
707 && (wbbefore == unicode_Word_Break_MidNum
708 || wbbefore == unicode_Word_Break_MidNumLet)
709 && wbafter == unicode_Word_Break_Numeric)
712 if(wbbefore == unicode_Word_Break_Numeric
713 && (wbafter == unicode_Word_Break_MidNum
714 || wbafter == unicode_Word_Break_MidNumLet)
715 && wbtwoafter == unicode_Word_Break_Numeric)
718 if(wbbefore == unicode_Word_Break_Katakana
719 && wbafter == unicode_Word_Break_Katakana)
722 if((wbbefore == unicode_Word_Break_ALetter
723 || wbbefore == unicode_Word_Break_Numeric
724 || wbbefore == unicode_Word_Break_Katakana
725 || wbbefore == unicode_Word_Break_ExtendNumLet)
726 && wbafter == unicode_Word_Break_ExtendNumLet)
729 if(wbbefore == unicode_Word_Break_ExtendNumLet
730 && (wbafter == unicode_Word_Break_ALetter
731 || wbafter == unicode_Word_Break_Numeric
732 || wbafter == unicode_Word_Break_Katakana))
739 /** @defgroup utf32 Functions that operate on UTF-32 strings */
742 /** @brief Return the length of a 0-terminated UTF-32 string
743 * @param s Pointer to 0-terminated string
744 * @return Length of string in code points (excluding terminator)
746 * Unlike the conversion functions no validity checking is done on the string.
748 size_t utf32_len(const uint32_t *s) {
749 const uint32_t *t = s;
753 return (size_t)(t - s);
756 /** @brief Stably sort [s,s+ns) into descending order of combining class
757 * @param s Start of array
758 * @param ns Number of elements, must be at least 1
759 * @param buffer Buffer of at least @p ns elements
761 static void utf32__sort_ccc(uint32_t *s, size_t ns, uint32_t *buffer) {
762 uint32_t *a, *b, *bp;
766 case 1: /* 1-element array is always sorted */
768 case 2: /* 2-element arrays are trivial to sort */
769 if(utf32__combining_class(s[0]) > utf32__combining_class(s[1])) {
776 /* Partition the array */
781 /* Sort the two halves of the array */
782 utf32__sort_ccc(a, na, buffer);
783 utf32__sort_ccc(b, nb, buffer);
784 /* Merge them back into one, via the buffer */
786 while(na > 0 && nb > 0) {
787 /* We want ascending order of combining class (hence <)
788 * and we want stability within combining classes (hence <=)
790 if(utf32__combining_class(*a) <= utf32__combining_class(*b)) {
806 memcpy(s, buffer, ns * sizeof(uint32_t));
811 /** @brief Put combining characters into canonical order
812 * @param s Pointer to UTF-32 string
813 * @param ns Length of @p s
814 * @return 0 on success, non-0 on error
816 * @p s is modified in-place. See Unicode 5.0 s3.11 for details of the
819 * Currently we only support a maximum of 1024 combining characters after each
820 * base character. If this limit is exceeded then a non-0 value is returned.
822 static int utf32__canonical_ordering(uint32_t *s, size_t ns) {
824 uint32_t buffer[1024];
826 /* The ordering amounts to a stable sort of each contiguous group of
827 * characters with non-0 combining class. */
829 /* Skip non-combining characters */
830 if(utf32__combining_class(*s) == 0) {
835 /* We must now have at least one combining character; see how many
837 for(nc = 1; nc < ns && utf32__combining_class(s[nc]) != 0; ++nc)
842 utf32__sort_ccc(s, nc, buffer);
849 /* Magic numbers from UAX #15 s16 */
857 #define NCount (VCount * TCount)
858 #define SCount (LCount * NCount)
860 /** @brief Guts of the decomposition lookup functions */
861 #define utf32__decompose_one_generic(WHICH) do { \
862 const uint32_t *dc = utf32__decomposition_##WHICH(c); \
864 /* Found a canonical decomposition in the table */ \
866 utf32__decompose_one_##WHICH(d, *dc++); \
867 } else if(c >= SBase && c < SBase + SCount) { \
868 /* Mechanically decomposable Hangul syllable (UAX #15 s16) */ \
869 const uint32_t SIndex = c - SBase; \
870 const uint32_t L = LBase + SIndex / NCount; \
871 const uint32_t V = VBase + (SIndex % NCount) / TCount; \
872 const uint32_t T = TBase + SIndex % TCount; \
873 dynstr_ucs4_append(d, L); \
874 dynstr_ucs4_append(d, V); \
876 dynstr_ucs4_append(d, T); \
878 /* Equal to own canonical decomposition */ \
879 dynstr_ucs4_append(d, c); \
882 /** @brief Recursively compute the canonical decomposition of @p c
883 * @param d Dynamic string to store decomposition in
884 * @param c Code point to decompose (must be a valid!)
885 * @return 0 on success, non-0 on error
887 static void utf32__decompose_one_canon(struct dynstr_ucs4 *d, uint32_t c) {
888 utf32__decompose_one_generic(canon);
891 /** @brief Recursively compute the compatibility decomposition of @p c
892 * @param d Dynamic string to store decomposition in
893 * @param c Code point to decompose (must be a valid!)
894 * @return 0 on success, non-0 on error
896 static void utf32__decompose_one_compat(struct dynstr_ucs4 *d, uint32_t c) {
897 utf32__decompose_one_generic(compat);
900 /** @brief Magic utf32__compositions() return value for Hangul Choseong */
901 static const uint32_t utf32__hangul_L[1];
903 /** @brief Return the list of compositions that @p c starts
904 * @param c Starter code point
905 * @return Composition list or NULL
907 * For Hangul leading (Choseong) jamo we return the special value
908 * utf32__hangul_L. These code points are not listed as the targets of
909 * canonical decompositions (make-unidata checks) so there is no confusion with
910 * real decompositions here.
912 static const uint32_t *utf32__compositions(uint32_t c) {
913 const uint32_t *compositions = utf32__unidata(c)->composed;
917 /* Special-casing for Hangul */
918 switch(utf32__grapheme_break(c)) {
921 case unicode_Grapheme_Break_L:
922 return utf32__hangul_L;
926 /** @brief Composition step
927 * @param s Start of string
928 * @param ns Length of string
929 * @return New length of string
931 * This is called from utf32__decompose_generic() to compose the result string
934 static size_t utf32__compose(uint32_t *s, size_t ns) {
935 const uint32_t *compositions;
936 uint32_t *start = s, *t = s, *tt, cc;
939 uint32_t starter = *s++;
940 int block_starters = 0;
942 /* We don't attempt to compose the following things:
943 * - final characters whatever kind they are
944 * - non-starter characters
945 * - starters that don't take part in a canonical decomposition mapping
948 || utf32__combining_class(starter)
949 || !(compositions = utf32__compositions(starter))) {
953 if(compositions != utf32__hangul_L) {
954 /* Where we'll put the eventual starter */
957 /* See if we can find composition of starter+*s */
958 const uint32_t cchar = *s, *cp = compositions;
959 while((cc = *cp++)) {
960 const uint32_t *decomp = utf32__decomposition_canon(cc);
961 /* We know decomp[0] == starter */
962 if(decomp[1] == cchar)
966 /* Found a composition: cc decomposes to starter,*s */
968 compositions = utf32__compositions(starter);
972 /* No composition found. */
973 const int class = utf32__combining_class(*s);
975 /* Transfer the uncomposable combining character to the output */
978 /* All the combining characters of the same class of the
979 * uncomposable character are blocked by it, but there may be
980 * others of higher class later. We eat the uncomposable and
981 * blocked characters and go back round the loop for that higher
983 while(ns > 0 && utf32__combining_class(*s) == class) {
987 /* Block any subsequent starters */
990 /* The uncombinable character is itself a starter, so we don't
991 * transfer it to the output but instead go back round the main
996 /* Keep going while there are still characters and the starter takes
997 * part in some composition */
998 } while(ns > 0 && compositions
999 && (!block_starters || utf32__combining_class(*s)));
1000 /* Store any remaining combining characters */
1001 while(ns > 0 && utf32__combining_class(*s)) {
1005 /* Store the resulting starter */
1008 /* Special-casing for Hangul
1010 * If there are combining characters between the L and the V then they
1011 * will block the V and so no composition happens. Similarly combining
1012 * characters between V and T will block the T and so we only get as far
1015 if(utf32__grapheme_break(*s) == unicode_Grapheme_Break_V) {
1016 const uint32_t V = *s++;
1017 const uint32_t LIndex = starter - LBase;
1018 const uint32_t VIndex = V - VBase;
1022 && utf32__grapheme_break(*s) == unicode_Grapheme_Break_T) {
1023 /* We have an L V T sequence */
1024 const uint32_t T = *s++;
1030 /* Compose to LVT or LV as appropriate */
1031 starter = (LIndex * VCount + VIndex) * TCount + TIndex + SBase;
1032 } /* else we only have L or LV and no V or T */
1034 /* There could be some combining characters that belong to the V or T.
1035 * These will be treated as non-starter characters at the top of the loop
1036 * and thuss transferred to the output. */
1042 /** @brief Guts of the composition and decomposition functions
1043 * @param WHICH @c canon or @c compat to choose decomposition
1044 * @param COMPOSE @c 0 or @c 1 to compose
1046 #define utf32__decompose_generic(WHICH, COMPOSE) do { \
1047 struct dynstr_ucs4 d; \
1050 dynstr_ucs4_init(&d); \
1053 if((c >= 0xD800 && c <= 0xDFFF) || c > 0x10FFFF) \
1055 utf32__decompose_one_##WHICH(&d, c); \
1058 if(utf32__canonical_ordering(d.vec, d.nvec)) \
1061 d.nvec = utf32__compose(d.vec, d.nvec); \
1062 dynstr_ucs4_terminate(&d); \
1071 /** @brief Canonically decompose @p [s,s+ns)
1072 * @param s Pointer to string
1073 * @param ns Length of string
1074 * @param ndp Where to store length of result
1075 * @return Pointer to result string, or NULL on error
1077 * Computes NFD (Normalization Form D) of the string at @p s. This implies
1078 * performing all canonical decompositions and then normalizing the order of
1079 * combining characters.
1081 * Returns NULL if the string is not valid for either of the following reasons:
1082 * - it codes for a UTF-16 surrogate
1083 * - it codes for a value outside the unicode code space
1086 * - utf32_decompose_compat()
1087 * - utf32_compose_canon()
1089 uint32_t *utf32_decompose_canon(const uint32_t *s, size_t ns, size_t *ndp) {
1090 utf32__decompose_generic(canon, 0);
1093 /** @brief Compatibility decompose @p [s,s+ns)
1094 * @param s Pointer to string
1095 * @param ns Length of string
1096 * @param ndp Where to store length of result
1097 * @return Pointer to result string, or NULL on error
1099 * Computes NFKD (Normalization Form KD) of the string at @p s. This implies
1100 * performing all canonical and compatibility decompositions and then
1101 * normalizing the order of combining characters.
1103 * Returns NULL if the string is not valid for either of the following reasons:
1104 * - it codes for a UTF-16 surrogate
1105 * - it codes for a value outside the unicode code space
1108 * - utf32_decompose_canon()
1109 * - utf32_compose_compat()
1111 uint32_t *utf32_decompose_compat(const uint32_t *s, size_t ns, size_t *ndp) {
1112 utf32__decompose_generic(compat, 0);
1115 /** @brief Canonically compose @p [s,s+ns)
1116 * @param s Pointer to string
1117 * @param ns Length of string
1118 * @param ndp Where to store length of result
1119 * @return Pointer to result string, or NULL on error
1121 * Computes NFC (Normalization Form C) of the string at @p s. This implies
1122 * performing all canonical decompositions, normalizing the order of combining
1123 * characters and then composing all unblocked primary compositables.
1125 * Returns NULL if the string is not valid for either of the following reasons:
1126 * - it codes for a UTF-16 surrogate
1127 * - it codes for a value outside the unicode code space
1130 * - utf32_compose_compat()
1131 * - utf32_decompose_canon()
1133 uint32_t *utf32_compose_canon(const uint32_t *s, size_t ns, size_t *ndp) {
1134 utf32__decompose_generic(canon, 1);
1137 /** @brief Compatibility compose @p [s,s+ns)
1138 * @param s Pointer to string
1139 * @param ns Length of string
1140 * @param ndp Where to store length of result
1141 * @return Pointer to result string, or NULL on error
1143 * Computes NFKC (Normalization Form KC) of the string at @p s. This implies
1144 * performing all canonical and compatibility decompositions, normalizing the
1145 * order of combining characters and then composing all unblocked primary
1148 * Returns NULL if the string is not valid for either of the following reasons:
1149 * - it codes for a UTF-16 surrogate
1150 * - it codes for a value outside the unicode code space
1153 * - utf32_compose_canon()
1154 * - utf32_decompose_compat()
1156 uint32_t *utf32_compose_compat(const uint32_t *s, size_t ns, size_t *ndp) {
1157 utf32__decompose_generic(compat, 1);
1160 /** @brief Single-character case-fold and decompose operation */
1161 #define utf32__casefold_one(WHICH) do { \
1162 const uint32_t *cf = utf32__unidata(c)->casefold; \
1164 /* Found a case-fold mapping in the table */ \
1166 utf32__decompose_one_##WHICH(&d, *cf++); \
1168 utf32__decompose_one_##WHICH(&d, c); \
1171 /** @brief Case-fold @p [s,s+ns)
1172 * @param s Pointer to string
1173 * @param ns Length of string
1174 * @param ndp Where to store length of result
1175 * @return Pointer to result string, or NULL on error
1177 * Case-fold the string at @p s according to full default case-folding rules
1178 * (s3.13) for caseless matching. The result will be in NFD.
1180 * Returns NULL if the string is not valid for either of the following reasons:
1181 * - it codes for a UTF-16 surrogate
1182 * - it codes for a value outside the unicode code space
1184 uint32_t *utf32_casefold_canon(const uint32_t *s, size_t ns, size_t *ndp) {
1185 struct dynstr_ucs4 d;
1190 /* If the canonical decomposition of the string includes any combining
1191 * character that case-folds to a non-combining character then we must
1192 * normalize before we fold. In Unicode 5.0.0 this means 0345 COMBINING
1193 * GREEK YPOGEGRAMMENI in its decomposition and the various characters that
1194 * canonically decompose to it. */
1195 for(n = 0; n < ns; ++n)
1196 if(utf32__unidata(s[n])->flags & unicode_normalize_before_casefold)
1199 /* We need a preliminary decomposition */
1200 if(!(ss = utf32_decompose_canon(s, ns, &ns)))
1204 dynstr_ucs4_init(&d);
1207 if((c >= 0xD800 && c <= 0xDFFF) || c > 0x10FFFF)
1209 utf32__casefold_one(canon);
1212 if(utf32__canonical_ordering(d.vec, d.nvec))
1214 dynstr_ucs4_terminate(&d);
1224 /** @brief Compatibility case-fold @p [s,s+ns)
1225 * @param s Pointer to string
1226 * @param ns Length of string
1227 * @param ndp Where to store length of result
1228 * @return Pointer to result string, or NULL on error
1230 * Case-fold the string at @p s according to full default case-folding rules
1231 * (s3.13) for compatibility caseless matching. The result will be in NFKD.
1233 * Returns NULL if the string is not valid for either of the following reasons:
1234 * - it codes for a UTF-16 surrogate
1235 * - it codes for a value outside the unicode code space
1237 uint32_t *utf32_casefold_compat(const uint32_t *s, size_t ns, size_t *ndp) {
1238 struct dynstr_ucs4 d;
1243 for(n = 0; n < ns; ++n)
1244 if(utf32__unidata(s[n])->flags & unicode_normalize_before_casefold)
1247 /* We need a preliminary _canonical_ decomposition */
1248 if(!(ss = utf32_decompose_canon(s, ns, &ns)))
1252 /* This computes NFKD(toCaseFold(s)) */
1253 #define compat_casefold_middle() do { \
1254 dynstr_ucs4_init(&d); \
1257 if((c >= 0xD800 && c <= 0xDFFF) || c > 0x10FFFF) \
1259 utf32__casefold_one(compat); \
1262 if(utf32__canonical_ordering(d.vec, d.nvec)) \
1265 /* Do the inner (NFKD o toCaseFold) */
1266 compat_casefold_middle();
1267 /* We can do away with the NFD'd copy of the input now */
1271 /* Do the outer (NFKD o toCaseFold) */
1272 compat_casefold_middle();
1274 dynstr_ucs4_terminate(&d);
1284 /** @brief Order a pair of UTF-32 strings
1285 * @param a First 0-terminated string
1286 * @param b Second 0-terminated string
1287 * @return -1, 0 or 1 for a less than, equal to or greater than b
1289 * "Comparable to strcmp() at its best."
1291 int utf32_cmp(const uint32_t *a, const uint32_t *b) {
1292 while(*a && *b && *a == *b) {
1296 return *a < *b ? -1 : (*a > *b ? 1 : 0);
1299 /** @brief Identify a grapheme cluster boundary
1300 * @param s Start of string (must be NFD)
1301 * @param ns Length of string
1302 * @param n Index within string (in [0,ns].)
1303 * @return 1 at a grapheme cluster boundary, 0 otherwise
1305 * This function identifies default grapheme cluster boundaries as described in
1306 * UAX #29 s3. It returns non-0 if @p n points at the code point just after a
1307 * grapheme cluster boundary (including the hypothetical code point just after
1308 * the end of the string).
1310 * This function uses utf32_iterator_set() internally; see that function for
1311 * remarks on performance.
1313 int utf32_is_grapheme_boundary(const uint32_t *s, size_t ns, size_t n) {
1314 struct utf32_iterator_data it[1];
1316 utf32__iterator_init(it, s, ns, n);
1317 return utf32_iterator_grapheme_boundary(it);
1320 /** @brief Identify a word boundary
1321 * @param s Start of string (must be NFD)
1322 * @param ns Length of string
1323 * @param n Index within string (in [0,ns].)
1324 * @return 1 at a word boundary, 0 otherwise
1326 * This function identifies default word boundaries as described in UAX #29 s4.
1327 * It returns non-0 if @p n points at the code point just after a word boundary
1328 * (including the hypothetical code point just after the end of the string).
1330 * This function uses utf32_iterator_set() internally; see that function for
1331 * remarks on performance.
1333 int utf32_is_word_boundary(const uint32_t *s, size_t ns, size_t n) {
1334 struct utf32_iterator_data it[1];
1336 utf32__iterator_init(it, s, ns, n);
1337 return utf32_iterator_word_boundary(it);
1340 /** @brief Split [s,ns) into multiple words
1341 * @param s Pointer to start of string
1342 * @param ns Length of string
1343 * @param nwp Where to store word count, or NULL
1344 * @param wbreak Word_Break property tailor, or NULL
1345 * @return Pointer to array of pointers to words
1347 * The returned array is terminated by a NULL pointer and individual
1348 * strings are 0-terminated.
1350 uint32_t **utf32_word_split(const uint32_t *s, size_t ns, size_t *nwp,
1351 unicode_property_tailor *wbreak) {
1352 struct utf32_iterator_data it[1];
1353 size_t b1 = 0, b2 = 0 ,i;
1355 struct vector32 v32[1];
1359 utf32__iterator_init(it, s, ns, 0);
1360 it->word_break = wbreak;
1361 /* Work our way through the string stopping at each word break. */
1363 if(utf32_iterator_word_boundary(it)) {
1364 /* We've found a new boundary */
1367 /*fprintf(stderr, "[%zu, %zu) is a candidate word\n", b1, b2);*/
1368 /* Inspect the characters between the boundary and form an opinion as to
1369 * whether they are a word or not */
1371 for(i = b1; i < b2; ++i) {
1372 switch(utf32__iterator_word_break(it, it->s[i])) {
1373 case unicode_Word_Break_ALetter:
1374 case unicode_Word_Break_Numeric:
1375 case unicode_Word_Break_Katakana:
1382 /* If it's a word add it to the list of results */
1384 const size_t len = b2 - b1;
1385 w = xcalloc_noptr(len + 1, sizeof(uint32_t));
1386 memcpy(w, it->s + b1, len * sizeof (uint32_t));
1388 vector32_append(v32, w);
1391 } while(!utf32_iterator_advance(it, 1));
1392 vector32_terminate(v32);
1399 /** @defgroup utf8 Functions that operate on UTF-8 strings */
1402 /** @brief Wrapper to transform a UTF-8 string using the UTF-32 function */
1403 #define utf8__transform(FN) do { \
1404 uint32_t *to32 = 0, *decomp32 = 0; \
1405 size_t nto32, ndecomp32; \
1406 char *decomp8 = 0; \
1408 if(!(to32 = utf8_to_utf32(s, ns, &nto32))) goto error; \
1409 if(!(decomp32 = FN(to32, nto32, &ndecomp32))) goto error; \
1410 decomp8 = utf32_to_utf8(decomp32, ndecomp32, ndp); \
1417 /** @brief Canonically decompose @p [s,s+ns)
1418 * @param s Pointer to string
1419 * @param ns Length of string
1420 * @param ndp Where to store length of result
1421 * @return Pointer to result string, or NULL on error
1423 * Computes NFD (Normalization Form D) of the string at @p s. This implies
1424 * performing all canonical decompositions and then normalizing the order of
1425 * combining characters.
1427 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1431 * - utf32_decompose_canon().
1432 * - utf8_decompose_compat()
1433 * - utf8_compose_canon()
1435 char *utf8_decompose_canon(const char *s, size_t ns, size_t *ndp) {
1436 utf8__transform(utf32_decompose_canon);
1439 /** @brief Compatibility decompose @p [s,s+ns)
1440 * @param s Pointer to string
1441 * @param ns Length of string
1442 * @param ndp Where to store length of result
1443 * @return Pointer to result string, or NULL on error
1445 * Computes NFKD (Normalization Form KD) of the string at @p s. This implies
1446 * performing all canonical and compatibility decompositions and then
1447 * normalizing the order of combining characters.
1449 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1453 * - utf32_decompose_compat().
1454 * - utf8_decompose_canon()
1455 * - utf8_compose_compat()
1457 char *utf8_decompose_compat(const char *s, size_t ns, size_t *ndp) {
1458 utf8__transform(utf32_decompose_compat);
1461 /** @brief Canonically compose @p [s,s+ns)
1462 * @param s Pointer to string
1463 * @param ns Length of string
1464 * @param ndp Where to store length of result
1465 * @return Pointer to result string, or NULL on error
1467 * Computes NFC (Normalization Form C) of the string at @p s. This implies
1468 * performing all canonical decompositions, normalizing the order of combining
1469 * characters and then composing all unblocked primary compositables.
1471 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1475 * - utf32_compose_canon()
1476 * - utf8_compose_compat()
1477 * - utf8_decompose_canon()
1479 char *utf8_compose_canon(const char *s, size_t ns, size_t *ndp) {
1480 utf8__transform(utf32_compose_canon);
1483 /** @brief Compatibility compose @p [s,s+ns)
1484 * @param s Pointer to string
1485 * @param ns Length of string
1486 * @param ndp Where to store length of result
1487 * @return Pointer to result string, or NULL on error
1489 * Computes NFKC (Normalization Form KC) of the string at @p s. This implies
1490 * performing all canonical and compatibility decompositions, normalizing the
1491 * order of combining characters and then composing all unblocked primary
1494 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1498 * - utf32_compose_compat()
1499 * - utf8_compose_canon()
1500 * - utf8_decompose_compat()
1502 char *utf8_compose_compat(const char *s, size_t ns, size_t *ndp) {
1503 utf8__transform(utf32_compose_compat);
1506 /** @brief Case-fold @p [s,s+ns)
1507 * @param s Pointer to string
1508 * @param ns Length of string
1509 * @param ndp Where to store length of result
1510 * @return Pointer to result string, or NULL on error
1512 * Case-fold the string at @p s according to full default case-folding rules
1513 * (s3.13). The result will be in NFD.
1515 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1518 char *utf8_casefold_canon(const char *s, size_t ns, size_t *ndp) {
1519 utf8__transform(utf32_casefold_canon);
1522 /** @brief Compatibility case-fold @p [s,s+ns)
1523 * @param s Pointer to string
1524 * @param ns Length of string
1525 * @param ndp Where to store length of result
1526 * @return Pointer to result string, or NULL on error
1528 * Case-fold the string at @p s according to full default case-folding rules
1529 * (s3.13). The result will be in NFKD.
1531 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1534 char *utf8_casefold_compat(const char *s, size_t ns, size_t *ndp) {
1535 utf8__transform(utf32_casefold_compat);
1538 /** @brief Split [s,ns) into multiple words
1539 * @param s Pointer to start of string
1540 * @param ns Length of string
1541 * @param nwp Where to store word count, or NULL
1542 * @param wbreak Word_Break property tailor, or NULL
1543 * @return Pointer to array of pointers to words
1545 * The returned array is terminated by a NULL pointer and individual
1546 * strings are 0-terminated.
1548 char **utf8_word_split(const char *s, size_t ns, size_t *nwp,
1549 unicode_property_tailor *wbreak) {
1550 uint32_t *to32 = 0, **v32 = 0;
1551 size_t nto32, nv, n;
1552 char **v8 = 0, **ret = 0;
1554 if(!(to32 = utf8_to_utf32(s, ns, &nto32))) goto error;
1555 if(!(v32 = utf32_word_split(to32, nto32, &nv, wbreak))) goto error;
1556 v8 = xcalloc(sizeof (char *), nv + 1);
1557 for(n = 0; n < nv; ++n)
1558 if(!(v8[n] = utf32_to_utf8(v32[n], utf32_len(v32[n]), 0)))
1562 v8 = 0; /* don't free */
1565 for(n = 0; n < nv; ++n)
1570 for(n = 0; n < nv; ++n)
1586 indent-tabs-mode:nil