5 * Chinese Remainder Theorem computations (Gauss's algorithm)
7 * (c) 1999 Straylight/Edgeware
10 /*----- Licensing notice --------------------------------------------------*
12 * This file is part of Catacomb.
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
30 /*----- Header files ------------------------------------------------------*/
35 #include "mpbarrett.h"
37 /*----- Main code ---------------------------------------------------------*/
39 /* --- @mpcrt_create@ --- *
41 * Arguments: @mpcrt *c@ = pointer to CRT context
42 * @mpcrt_mod *v@ = pointer to vector of moduli
43 * @size_t k@ = number of moduli
44 * @mp *n@ = product of all moduli (@MP_NEW@ if unknown)
48 * Use: Initializes a context for solving Chinese Remainder Theorem
49 * problems. The vector of moduli can be incomplete. Omitted
50 * items must be left as null pointers. Not all combinations of
51 * missing things can be coped with, even if there is
52 * technically enough information to cope. For example, if @n@
53 * is unspecified, all the @m@ values must be present, even if
54 * there is one modulus with both @m@ and @n@ (from which the
55 * product of all moduli could clearly be calculated).
58 void mpcrt_create(mpcrt *c, mpcrt_mod *v, size_t k, mp *n)
62 /* --- Simple initialization things --- */
67 /* --- Work out @n@ if I don't have it already --- */
74 for (i = 0; i < k; i++)
75 mpmul_add(&mm, v[i].m);
79 /* --- A quick hack if %$k = 2$% --- */
83 /* --- The %$n / n_i$% values are trivial in this case --- */
86 v[0].n = MP_COPY(v[1].m);
88 v[1].n = MP_COPY(v[0].m);
90 /* --- Now sort out the inverses --- *
92 * @mp_gcd@ will ensure that the first argument is negative.
95 if (!v[0].ni && !v[1].ni) {
97 mp_gcd(&g, &v[0].ni, &v[1].ni, v[0].n, v[1].n);
98 assert(MP_EQ(g, MP_ONE));
100 v[0].ni = mp_add(v[0].ni, v[0].ni, v[1].n);
110 x = mp_mul(MP_NEW, v[j].n, v[j].ni);
111 x = mp_sub(x, x, MP_ONE);
112 mp_div(&x, 0, x, v[i].n);
117 /* --- Set up the Barrett context --- */
119 mpbarrett_create(&c->mb, n);
121 /* --- Walk through filling in @n@, @ni@ and @nnir@ --- */
123 for (i = 0; i < k; i++) {
125 mp_div(&v[i].n, 0, n, v[i].m);
127 v[i].ni = mp_modinv(MP_NEW, v[i].n, v[i].m);
129 v[i].nni = mp_mul(MP_NEW, v[i].n, v[i].ni);
137 /* --- @mpcrt_destroy@ --- *
139 * Arguments: @mpcrt *c@ - pointer to CRT context
143 * Use: Destroys a CRT context, releasing all the resources it holds.
146 void mpcrt_destroy(mpcrt *c)
150 for (i = 0; i < c->k; i++) {
151 if (c->v[i].m) mp_drop(c->v[i].m);
152 if (c->v[i].n) mp_drop(c->v[i].n);
153 if (c->v[i].ni) mp_drop(c->v[i].ni);
154 if (c->v[i].nni) mp_drop(c->v[i].nni);
156 mpbarrett_destroy(&c->mb);
159 /* --- @mpcrt_solve@ --- *
161 * Arguments: @mpcrt *c@ = pointer to CRT context
162 * @mp *d@ = fake destination
163 * @mp **v@ = array of residues
165 * Returns: The unique solution modulo the product of the individual
166 * moduli, which leaves the given residues.
168 * Use: Constructs a result given its residue modulo an array of
169 * coprime integers. This can be used to improve performance of
170 * RSA encryption or Blum-Blum-Shub generation if the factors
171 * of the modulus are known, since results can be computed mod
172 * each of the individual factors and then combined at the end.
173 * This is rather faster than doing the full-scale modular
177 mp *mpcrt_solve(mpcrt *c, mp *d, mp **v)
183 for (i = 0; i < c->k; i++) {
184 x = mp_mul(x, c->v[i].nni, v[i]);
185 x = mpbarrett_reduce(&c->mb, x, x);
190 a = mpbarrett_reduce(&c->mb, a, a);
196 /*----- Test rig ----------------------------------------------------------*/
200 static int verify(size_t n, dstr *v)
202 mpcrt_mod *m = xmalloc(n * sizeof(mpcrt_mod));
203 mp **r = xmalloc(n * sizeof(mp *));
209 for (i = 0; i < n; i++) {
210 r[i] = *(mp **)v[2 * i].buf;
211 m[i].m = *(mp **)v[2 * i + 1].buf;
216 a = *(mp **)v[2 * n].buf;
218 mpcrt_create(&c, m, n, 0);
219 b = mpcrt_solve(&c, MP_NEW, r);
222 fputs("\n*** failed\n", stderr);
223 fputs("n = ", stderr);
224 mp_writefile(c.mb.m, stderr, 10);
225 for (i = 0; i < n; i++) {
226 fprintf(stderr, "\nr[%u] = ", i);
227 mp_writefile(r[i], stderr, 10);
228 fprintf(stderr, "\nm[%u] = ", i);
229 mp_writefile(m[i].m, stderr, 10);
230 fprintf(stderr, "\nN[%u] = ", i);
231 mp_writefile(m[i].n, stderr, 10);
232 fprintf(stderr, "\nM[%u] = ", i);
233 mp_writefile(m[i].ni, stderr, 10);
235 fputs("\nresult = ", stderr);
236 mp_writefile(b, stderr, 10);
237 fputs("\nexpect = ", stderr);
238 mp_writefile(a, stderr, 10);
243 for (i = 0; i < n; i++)
250 assert(mparena_count(MPARENA_GLOBAL) == 0);
254 static int crt1(dstr *v) { return verify(1, v); }
255 static int crt2(dstr *v) { return verify(2, v); }
256 static int crt3(dstr *v) { return verify(3, v); }
257 static int crt4(dstr *v) { return verify(4, v); }
258 static int crt5(dstr *v) { return verify(5, v); }
260 static test_chunk tests[] = {
261 { "crt-1", crt1, { &type_mp, &type_mp,
263 { "crt-2", crt2, { &type_mp, &type_mp,
266 { "crt-3", crt3, { &type_mp, &type_mp,
270 { "crt-4", crt4, { &type_mp, &type_mp,
275 { "crt-5", crt5, { &type_mp, &type_mp,
284 int main(int argc, char *argv[])
287 test_run(argc, argv, tests, SRCDIR "/tests/mpcrt");
293 /*----- That's all, folks -------------------------------------------------*/