5 * (c) 2015 Straylight/Edgeware
8 /*----- Licensing notice --------------------------------------------------*
10 * This file is part of Catacomb.
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
28 /*----- Header files ------------------------------------------------------*/
34 #include <mLib/bits.h>
38 #include "chacha-core.h"
45 /*----- Global variables --------------------------------------------------*/
47 const octet chacha_keysz[] = { KSZ_SET, 32, 16, 10, 0 };
49 /*----- The ChaCha core function and utilities ----------------------------*/
53 * Arguments: @unsigned r@ = number of rounds
54 * @const chacha_matrix src@ = input matrix
55 * @chacha_matrix dest@ = where to put the output
60 * Use: Apply the ChaCha/r core function to @src@, writing the
61 * result to @dest@. This consists of @r@ rounds followed by
62 * the feedforward step.
65 CPU_DISPATCH(static, (void), void, core,
66 (unsigned r, const chacha_matrix src, chacha_matrix dest),
67 (r, src, dest), pick_core, simple_core);
69 static void simple_core(unsigned r, const chacha_matrix src,
71 { CHACHA_nR(dest, src, r); CHACHA_FFWD(dest, src); }
73 #if CPUFAM_X86 || CPUFAM_AMD64
74 extern core__functype chacha_core_x86ish_sse2;
78 extern core__functype chacha_core_arm_neon;
81 static core__functype *pick_core(void)
83 #if CPUFAM_X86 || CPUFAM_AMD64
84 DISPATCH_PICK_COND(chacha_core, chacha_core_x86ish_sse2,
85 cpu_feature_p(CPUFEAT_X86_SSE2));
88 DISPATCH_PICK_COND(chacha_core, chacha_core_arm_neon,
89 cpu_feature_p(CPUFEAT_ARM_NEON));
91 DISPATCH_PICK_FALLBACK(chacha_core, simple_core);
94 /* --- @populate@ --- *
96 * Arguments: @chacha_matrix a@ = a matrix to fill in
97 * @const void *key@ = pointer to key material
98 * @size_t ksz@ = size of key
102 * Use: Fills in a ChaCha matrix from the key, setting the
103 * appropriate constants according to the key length. The nonce
104 * and position words are left uninitialized.
107 static void populate(chacha_matrix a, const void *key, size_t ksz)
109 const octet *k = key;
111 KSZ_ASSERT(chacha, ksz);
113 a[ 4] = LOAD32_L(k + 0);
114 a[ 5] = LOAD32_L(k + 4);
116 a[ 6] = LOAD16_L(k + 8);
119 a[ 6] = LOAD32_L(k + 8);
120 a[ 7] = LOAD32_L(k + 12);
129 a[ 2] = ksz == 10 ? CHACHA_C80 : CHACHA_C128;
132 a[ 8] = LOAD32_L(k + 16);
133 a[ 9] = LOAD32_L(k + 20);
134 a[10] = LOAD32_L(k + 24);
135 a[11] = LOAD32_L(k + 28);
143 /*----- ChaCha implementation ---------------------------------------------*/
145 /* --- @chacha_init@ --- *
147 * Arguments: @chacha_ctx *ctx@ = context to fill in
148 * @const void *key@ = pointer to key material
149 * @size_t ksz@ = size of key (either 32 or 16)
150 * @const void *nonce@ = initial nonce, or null
154 * Use: Initializes a ChaCha context ready for use.
157 void chacha_init(chacha_ctx *ctx, const void *key, size_t ksz,
160 static const octet zerononce[CHACHA_NONCESZ];
162 populate(ctx->a, key, ksz);
163 chacha_setnonce(ctx, nonce ? nonce : zerononce);
166 /* --- @chacha_setnonce@ --- *
168 * Arguments: @chacha_ctx *ctx@ = pointer to context
169 * @const void *nonce@ = the nonce (@CHACHA_NONCESZ@ bytes)
173 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
174 * different message. The stream position is reset to zero (see
175 * @chacha_seek@ etc.).
178 void chacha_setnonce(chacha_ctx *ctx, const void *nonce)
180 const octet *n = nonce;
182 ctx->a[14] = LOAD32_L(n + 0);
183 ctx->a[15] = LOAD32_L(n + 4);
187 /* --- @chacha_seek@, @chacha_seeku64@ --- *
189 * Arguments: @chacha_ctx *ctx@ = pointer to context
190 * @unsigned long i@, @kludge64 i@ = new position to set
194 * Use: Sets a new stream position, in units of Chacha output
195 * blocks, which are @CHACHA_OUTSZ@ bytes each. Byte
196 * granularity can be achieved by calling @chachaR_encrypt@
200 void chacha_seek(chacha_ctx *ctx, unsigned long i)
201 { kludge64 ii; ASSIGN64(ii, i); chacha_seeku64(ctx, ii); }
203 void chacha_seeku64(chacha_ctx *ctx, kludge64 i)
205 ctx->a[12] = LO64(i); ctx->a[13] = HI64(i);
206 ctx->bufi = CHACHA_OUTSZ;
209 /* --- @chacha_tell@, @chacha_tellu64@ --- *
211 * Arguments: @chacha_ctx *ctx@ = pointer to context
213 * Returns: The current position in the output stream, in blocks,
217 unsigned long chacha_tell(chacha_ctx *ctx)
218 { kludge64 i = chacha_tellu64(ctx); return (GET64(unsigned long, i)); }
220 kludge64 chacha_tellu64(chacha_ctx *ctx)
221 { kludge64 i; SET64(i, ctx->a[9], ctx->a[8]); return (i); }
223 /* --- @chacha{,12,8}_encrypt@ --- *
225 * Arguments: @chacha_ctx *ctx@ = pointer to context
226 * @const void *src@ = source buffer (or null)
227 * @void *dest@ = destination buffer (or null)
228 * @size_t sz@ = size of the buffers
232 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
233 * ChaCha works by XORing plaintext with a keystream, so
234 * encryption and decryption are the same operation. If @dest@
235 * is null then ignore @src@ and skip @sz@ bytes of the
236 * keystream. If @src@ is null, then just write the keystream
240 #define CHACHA_ENCRYPT(r, ctx, src, dest, sz) \
241 chacha##r##_encrypt(ctx, src, dest, sz)
242 #define DEFENCRYPT(r) \
243 void CHACHA_ENCRYPT(r, chacha_ctx *ctx, const void *src, \
244 void *dest, size_t sz) \
247 const octet *s = src; \
250 kludge64 pos, delta; \
252 SALSA20_OUTBUF(ctx, d, s, sz); \
256 n = sz/CHACHA_OUTSZ; \
257 pos = chacha_tellu64(ctx); \
258 ASSIGN64(delta, n); \
259 ADD64(pos, pos, delta); \
260 chacha_seeku64(ctx, pos); \
261 sz = sz%CHACHA_OUTSZ; \
263 while (sz >= CHACHA_OUTSZ) { \
264 core(r, ctx->a, b); \
265 CHACHA_STEP(ctx->a); \
266 SALSA20_GENFULL(b, d); \
267 sz -= CHACHA_OUTSZ; \
270 while (sz >= CHACHA_OUTSZ) { \
271 core(r, ctx->a, b); \
272 CHACHA_STEP(ctx->a); \
273 SALSA20_MIXFULL(b, d, s); \
274 sz -= CHACHA_OUTSZ; \
279 core(r, ctx->a, b); \
280 CHACHA_STEP(ctx->a); \
281 SALSA20_PREPBUF(ctx, b); \
282 SALSA20_OUTBUF(ctx, d, s, sz); \
286 CHACHA_VARS(DEFENCRYPT)
288 /*----- HChaCha implementation --------------------------------------------*/
290 #define HCHACHA_RAW(r, ctx, src, dest) hchacha##r##_raw(ctx, src, dest)
291 #define HCHACHA_PRF(r, ctx, src, dest) hchacha##r##_prf(ctx, src, dest)
293 /* --- @hchacha{20,12,8}_prf@ --- *
295 * Arguments: @chacha_ctx *ctx@ = pointer to context
296 * @const void *src@ = the input (@HCHACHA_INSZ@ bytes)
297 * @void *dest@ = the output (@HCHACHA_OUTSZ@ bytes)
301 * Use: Apply the HChacha/r pseudorandom function to @src@, writing
302 * the result to @out@.
305 #define DEFHCHACHA(r) \
306 static void HCHACHA_RAW(r, chacha_matrix k, \
307 const uint32 *src, uint32 *dest) \
312 /* --- HChaCha, computed from full ChaCha --- * \
314 * The security proof makes use of the fact that HChaCha (i.e., \
315 * without the final feedforward step) can be computed from full \
316 * ChaCha using only knowledge of the non-secret input. I don't \
317 * want to compromise the performance of the main function by \
318 * making the feedforward step separate, but this operation is less \
319 * speed critical, so we do it the harder way. \
322 for (i = 0; i < 4; i++) k[12 + i] = src[i]; \
324 for (i = 0; i < 8; i++) dest[i] = a[(i + 4)^4] - k[(i + 4)^4]; \
327 void HCHACHA_PRF(r, chacha_ctx *ctx, const void *src, void *dest) \
329 const octet *s = src; \
331 uint32 in[4], out[8]; \
334 for (i = 0; i < 4; i++) in[i] = LOAD32_L(s + 4*i); \
335 HCHACHA_RAW(r, ctx->a, in, out); \
336 for (i = 0; i < 8; i++) STORE32_L(d + 4*i, out[i]); \
338 CHACHA_VARS(DEFHCHACHA)
340 /*----- XChaCha implementation -------------------------------------------*/
342 /* --- Some convenient macros for naming functions --- *
344 * Because the crypto core is involved in XChaCha/r's per-nonce setup, we
345 * need to take an interest in the number of rounds in most of the various
346 * functions, and it will probably help if we distinguish the context
347 * structures for the various versions.
350 #define XCHACHA_CTX(r) xchacha##r##_ctx
351 #define XCHACHA_INIT(r, ctx, k, ksz, n) xchacha##r##_init(ctx, k, ksz, n)
352 #define XCHACHA_SETNONCE(r, ctx, n) xchacha##r##_setnonce(ctx, n)
353 #define XCHACHA_SEEK(r, ctx, i) xchacha##r##_seek(ctx, i)
354 #define XCHACHA_SEEKU64(r, ctx, i) xchacha##r##_seeku64(ctx, i)
355 #define XCHACHA_TELL(r, ctx) xchacha##r##_tell(ctx)
356 #define XCHACHA_TELLU64(r, ctx) xchacha##r##_tellu64(ctx)
357 #define XCHACHA_ENCRYPT(r, ctx, src, dest, sz) \
358 xchacha##r##_encrypt(ctx, src, dest, sz)
360 /* --- @xchacha{20,12,8}_init@ --- *
362 * Arguments: @xchachaR_ctx *ctx@ = the context to fill in
363 * @const void *key@ = pointer to key material
364 * @size_t ksz@ = size of key (either 32 or 16)
365 * @const void *nonce@ = initial nonce, or null
369 * Use: Initializes an XChaCha/r context ready for use.
371 * There is a different function for each number of rounds,
372 * unlike for plain ChaCha.
375 #define DEFXINIT(r) \
376 void XCHACHA_INIT(r, XCHACHA_CTX(r) *ctx, \
377 const void *key, size_t ksz, const void *nonce) \
379 static const octet zerononce[XCHACHA_NONCESZ]; \
381 populate(ctx->k, key, ksz); \
382 ctx->s.a[ 0] = CHACHA_A256; \
383 ctx->s.a[ 1] = CHACHA_B256; \
384 ctx->s.a[ 2] = CHACHA_C256; \
385 ctx->s.a[ 3] = CHACHA_D256; \
386 XCHACHA_SETNONCE(r, ctx, nonce ? nonce : zerononce); \
388 CHACHA_VARS(DEFXINIT)
390 /* --- @xchacha{20,12,8}_setnonce@ --- *
392 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
393 * @const void *nonce@ = the nonce (@XCHACHA_NONCESZ@ bytes)
397 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
398 * different message. The stream position is reset to zero (see
399 * @chacha_seek@ etc.).
401 * There is a different function for each number of rounds,
402 * unlike for plain ChaCha.
405 #define DEFXNONCE(r) \
406 void XCHACHA_SETNONCE(r, XCHACHA_CTX(r) *ctx, const void *nonce) \
408 const octet *n = nonce; \
412 for (i = 0; i < 4; i++) in[i] = LOAD32_L(n + 4*i); \
413 HCHACHA_RAW(r, ctx->k, in, ctx->s.a + 4); \
414 chacha_setnonce(&ctx->s, n + 16); \
416 CHACHA_VARS(DEFXNONCE)
418 /* --- @xchacha{20,12,8}_seek@, @xchacha{20,12,8}_seeku64@ --- *
420 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
421 * @unsigned long i@, @kludge64 i@ = new position to set
425 * Use: Sets a new stream position, in units of ChaCha output
426 * blocks, which are @XCHACHA_OUTSZ@ bytes each. Byte
427 * granularity can be achieved by calling @xchachaR_encrypt@
430 * There is a different function for each number of rounds,
431 * unlike for plain ChaCha, because the context structures are
435 /* --- @xchacha{20,12,8}_tell@, @xchacha{20,12,8}_tellu64@ --- *
437 * Arguments: @chacha_ctx *ctx@ = pointer to context
439 * Returns: The current position in the output stream, in blocks,
442 * There is a different function for each number of rounds,
443 * unlike for plain ChaCha, because the context structures are
447 /* --- @xchacha{,12,8}_encrypt@ --- *
449 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
450 * @const void *src@ = source buffer (or null)
451 * @void *dest@ = destination buffer (or null)
452 * @size_t sz@ = size of the buffers
456 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
457 * XChaCha works by XORing plaintext with a keystream, so
458 * encryption and decryption are the same operation. If @dest@
459 * is null then ignore @src@ and skip @sz@ bytes of the
460 * keystream. If @src@ is null, then just write the keystream
464 #define DEFXPASSTHRU(r) \
465 void XCHACHA_SEEK(r, XCHACHA_CTX(r) *ctx, unsigned long i) \
466 { chacha_seek(&ctx->s, i); } \
467 void XCHACHA_SEEKU64(r, XCHACHA_CTX(r) *ctx, kludge64 i) \
468 { chacha_seeku64(&ctx->s, i); } \
469 unsigned long XCHACHA_TELL(r, XCHACHA_CTX(r) *ctx) \
470 { return chacha_tell(&ctx->s); } \
471 kludge64 XCHACHA_TELLU64(r, XCHACHA_CTX(r) *ctx) \
472 { return chacha_tellu64(&ctx->s); } \
473 void XCHACHA_ENCRYPT(r, XCHACHA_CTX(r) *ctx, \
474 const void *src, void *dest, size_t sz) \
475 { CHACHA_ENCRYPT(r, &ctx->s, src, dest, sz); }
476 CHACHA_VARS(DEFXPASSTHRU)
478 /*----- Generic cipher interface ------------------------------------------*/
480 typedef struct gctx { gcipher c; chacha_ctx ctx; } gctx;
482 static void gsetiv(gcipher *c, const void *iv)
483 { gctx *g = (gctx *)c; chacha_setnonce(&g->ctx, iv); }
485 static void gdestroy(gcipher *c)
486 { gctx *g = (gctx *)c; BURN(*g); S_DESTROY(g); }
488 #define DEFGCIPHER(r) \
490 static const gcipher_ops gops_##r; \
492 static gcipher *ginit_##r(const void *k, size_t sz) \
494 gctx *g = S_CREATE(gctx); \
495 g->c.ops = &gops_##r; \
496 chacha_init(&g->ctx, k, sz, 0); \
500 static void gencrypt_##r(gcipher *c, const void *s, \
501 void *t, size_t sz) \
502 { gctx *g = (gctx *)c; CHACHA_ENCRYPT(r, &g->ctx, s, t, sz); } \
504 static const gcipher_ops gops_##r = { \
506 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv, 0 \
509 const gccipher chacha##r = { \
510 "chacha" #r, chacha_keysz, \
511 CHACHA_NONCESZ, ginit_##r \
514 CHACHA_VARS(DEFGCIPHER)
516 #define DEFGXCIPHER(r) \
518 typedef struct { gcipher c; XCHACHA_CTX(r) ctx; } gxctx_##r; \
520 static void gxsetiv_##r(gcipher *c, const void *iv) \
521 { gxctx_##r *g = (gxctx_##r *)c; XCHACHA_SETNONCE(r, &g->ctx, iv); } \
523 static void gxdestroy_##r(gcipher *c) \
524 { gxctx_##r *g = (gxctx_##r *)c; BURN(*g); S_DESTROY(g); } \
526 static const gcipher_ops gxops_##r; \
528 static gcipher *gxinit_##r(const void *k, size_t sz) \
530 gxctx_##r *g = S_CREATE(gxctx_##r); \
531 g->c.ops = &gxops_##r; \
532 XCHACHA_INIT(r, &g->ctx, k, sz, 0); \
536 static void gxencrypt_##r(gcipher *c, const void *s, \
537 void *t, size_t sz) \
539 gxctx_##r *g = (gxctx_##r *)c; \
540 XCHACHA_ENCRYPT(r, &g->ctx, s, t, sz); \
543 static const gcipher_ops gxops_##r = { \
545 gxencrypt_##r, gxencrypt_##r, gxdestroy_##r, gxsetiv_##r, 0 \
548 const gccipher xchacha##r = { \
549 "xchacha" #r, chacha_keysz, \
550 CHACHA_NONCESZ, gxinit_##r \
553 CHACHA_VARS(DEFGXCIPHER)
555 /*----- Generic random number generator interface -------------------------*/
557 typedef struct grops {
559 void (*seek)(void *, kludge64);
560 kludge64 (*tell)(void *);
561 void (*setnonce)(void *, const void *);
562 void (*generate)(void *, void *, size_t);
565 typedef struct grbasectx {
570 static int grmisc(grand *r, unsigned op, ...)
572 octet buf[XCHACHA_NONCESZ];
573 grbasectx *g = (grbasectx *)r;
587 switch (va_arg(ap, unsigned)) {
590 case GRAND_SEEDUINT32:
591 case GRAND_SEEDBLOCK:
606 i = va_arg(ap, unsigned); STORE32_L(buf, i);
607 memset(buf + 4, 0, g->ops->noncesz - 4);
608 g->ops->setnonce(g, buf);
610 case GRAND_SEEDUINT32:
611 i = va_arg(ap, uint32); STORE32_L(buf, i);
612 memset(buf + 4, 0, g->ops->noncesz - 4);
613 g->ops->setnonce(g, buf);
615 case GRAND_SEEDBLOCK:
616 p = va_arg(ap, const void *);
617 sz = va_arg(ap, size_t);
618 if (sz < g->ops->noncesz) {
620 memset(buf + sz, 0, g->ops->noncesz - sz);
623 g->ops->setnonce(g, p);
626 rr = va_arg(ap, grand *);
627 rr->ops->fill(rr, buf, g->ops->noncesz);
628 g->ops->setnonce(g, buf);
631 ul = va_arg(ap, unsigned long); ASSIGN64(pos, ul);
632 g->ops->seek(g, pos);
635 pos = va_arg(ap, kludge64);
636 g->ops->seek(g, pos);
639 pos = g->ops->tell(g);
640 *va_arg(ap, unsigned long *) = GET64(unsigned long, pos);
643 *va_arg(ap, kludge64 *) = g->ops->tell(g);
653 static octet grbyte(grand *r)
655 grbasectx *g = (grbasectx *)r;
657 g->ops->generate(g, &o, 1);
661 static uint32 grword(grand *r)
663 grbasectx *g = (grbasectx *)r;
665 g->ops->generate(g, b, sizeof(b));
666 return (LOAD32_L(b));
669 static void grfill(grand *r, void *p, size_t sz)
671 grbasectx *g = (grbasectx *)r;
672 g->ops->generate(r, p, sz);
675 typedef struct grctx {
680 static void gr_seek(void *r, kludge64 pos)
681 { grctx *g = r; chacha_seeku64(&g->ctx, pos); }
683 static kludge64 gr_tell(void *r)
684 { grctx *g = r; return (chacha_tellu64(&g->ctx)); }
686 static void gr_setnonce(void *r, const void *n)
687 { grctx *g = r; chacha_setnonce(&g->ctx, n); }
689 static void grdestroy(grand *r)
690 { grctx *g = (grctx *)r; BURN(*g); S_DESTROY(g); }
692 #define DEFGRAND(rr) \
694 static void gr_generate_##rr(void *r, void *b, size_t sz) \
695 { grctx *g = r; CHACHA_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
697 static const grops grops_##rr = \
698 { CHACHA_NONCESZ, gr_seek, gr_tell, \
699 gr_setnonce, gr_generate_##rr }; \
701 static const grand_ops grops_rand_##rr = { \
702 "chacha" #rr, GRAND_CRYPTO, 0, \
703 grmisc, grdestroy, grword, \
704 grbyte, grword, grand_defaultrange, grfill \
707 grand *chacha##rr##_rand(const void *k, size_t ksz, const void *n) \
709 grctx *g = S_CREATE(grctx); \
710 g->r.r.ops = &grops_rand_##rr; \
711 g->r.ops = &grops_##rr; \
712 chacha_init(&g->ctx, k, ksz, n); \
715 CHACHA_VARS(DEFGRAND)
717 #define DEFXGRAND(rr) \
719 typedef struct grxctx_##rr { \
721 XCHACHA_CTX(rr) ctx; \
724 static void grx_seek_##rr(void *r, kludge64 pos) \
725 { grxctx_##rr *g = r; XCHACHA_SEEKU64(rr, &g->ctx, pos); } \
727 static kludge64 grx_tell_##rr(void *r) \
728 { grxctx_##rr *g = r; return (XCHACHA_TELLU64(rr, &g->ctx)); } \
730 static void grx_setnonce_##rr(void *r, const void *n) \
731 { grxctx_##rr *g = r; XCHACHA_SETNONCE(rr, &g->ctx, n); } \
733 static void grxdestroy_##rr(grand *r) \
734 { grxctx_##rr *g = (grxctx_##rr *)r; BURN(*g); S_DESTROY(g); } \
736 static void grx_generate_##rr(void *r, void *b, size_t sz) \
737 { grxctx_##rr *g = r; XCHACHA_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
739 static const grops grxops_##rr = \
740 { XCHACHA_NONCESZ, grx_seek_##rr, grx_tell_##rr, \
741 grx_setnonce_##rr, grx_generate_##rr }; \
743 static const grand_ops grxops_rand_##rr = { \
744 "xchacha" #rr, GRAND_CRYPTO, 0, \
745 grmisc, grxdestroy_##rr, grword, \
746 grbyte, grword, grand_defaultrange, grfill \
749 grand *xchacha##rr##_rand(const void *k, size_t ksz, const void *n) \
751 grxctx_##rr *g = S_CREATE(grxctx_##rr); \
752 g->r.r.ops = &grxops_rand_##rr; \
753 g->r.ops = &grxops_##rr; \
754 XCHACHA_INIT(rr, &g->ctx, k, ksz, n); \
757 CHACHA_VARS(DEFXGRAND)
759 /*----- Test rig ----------------------------------------------------------*/
766 #include <mLib/quis.h>
767 #include <mLib/testrig.h>
769 #define DEFVCORE(r) \
770 static int v_core_##r(dstr *v) \
772 chacha_matrix a, b; \
773 dstr d = DSTR_INIT; \
777 DENSURE(&d, CHACHA_OUTSZ); d.len = CHACHA_OUTSZ; \
778 n = *(int *)v[0].buf; \
779 for (i = 0; i < CHACHA_OUTSZ/4; i++) \
780 a[i] = LOAD32_L(v[1].buf + 4*i); \
781 for (i = 0; i < n; i++) { \
783 memcpy(a, b, sizeof(a)); \
785 for (i = 0; i < CHACHA_OUTSZ/4; i++) STORE32_L(d.buf + 4*i, a[i]); \
787 if (d.len != v[2].len || memcmp(d.buf, v[2].buf, v[2].len) != 0) { \
789 printf("\nfail core:" \
790 "\n\titerations = %d" \
792 type_hex.dump(&v[1], stdout); \
793 printf("\n\texpected = "); \
794 type_hex.dump(&v[2], stdout); \
795 printf("\n\tcalculated = "); \
796 type_hex.dump(&d, stdout); \
803 CHACHA_VARS(DEFVCORE)
805 #define CHACHA_CTX(r) chacha_ctx
806 #define CHACHA_INIT(r, ctx, k, ksz, n) chacha_init(ctx, k, ksz, n)
807 #define CHACHA_SEEKU64(r, ctx, i) chacha_seeku64(ctx, i)
808 #define XCHACHA_SEEKU64(r, ctx, i) xchacha##r##_seeku64(ctx, i)
810 #define DEFxVENC(base, BASE, r) \
811 static int v_encrypt_##base##_##r(dstr *v) \
814 dstr d = DSTR_INIT; \
816 const octet *p, *p0; \
818 size_t sz, sz0, step; \
819 unsigned long skip; \
822 if (v[4].len) { p0 = (const octet *)v[4].buf; sz0 = v[4].len; } \
823 else { p0 = 0; sz0 = v[5].len; } \
824 DENSURE(&d, sz0); d.len = sz0; \
825 skip = *(unsigned long *)v[3].buf; \
828 while (step < sz0 + skip) { \
829 step = step ? 3*step + 4 : 1; \
830 if (step > sz0 + skip) step = sz0 + skip; \
831 BASE##_INIT(r, &ctx, v[0].buf, v[0].len, v[1].buf); \
833 LOAD64_(pos, v[2].buf); \
834 BASE##_SEEKU64(r, &ctx, pos); \
837 for (sz = skip; sz >= step; sz -= step) \
838 BASE##_ENCRYPT(r, &ctx, 0, 0, step); \
839 if (sz) BASE##_ENCRYPT(r, &ctx, 0, 0, sz); \
840 for (p = p0, q = (octet *)d.buf, sz = sz0; \
842 sz -= step, q += step) { \
843 BASE##_ENCRYPT(r, &ctx, p, q, step); \
846 if (sz) BASE##_ENCRYPT(r, &ctx, p, q, sz); \
848 if (d.len != v[5].len || memcmp(d.buf, v[5].buf, v[5].len) != 0) { \
850 printf("\nfail encrypt:" \
852 "\n\tkey = ", (unsigned long)step); \
853 type_hex.dump(&v[0], stdout); \
854 printf("\n\tnonce = "); \
855 type_hex.dump(&v[1], stdout); \
856 printf("\n\tposition = "); \
857 type_hex.dump(&v[2], stdout); \
858 printf("\n\tskip = %lu", skip); \
859 printf("\n\tmessage = "); \
860 type_hex.dump(&v[4], stdout); \
861 printf("\n\texpected = "); \
862 type_hex.dump(&v[5], stdout); \
863 printf("\n\tcalculated = "); \
864 type_hex.dump(&d, stdout); \
872 #define DEFVENC(r) DEFxVENC(chacha, CHACHA, r)
873 #define DEFXVENC(r) DEFxVENC(xchacha, XCHACHA, r)
875 CHACHA_VARS(DEFXVENC)
877 static test_chunk defs[] = {
878 #define DEFxTAB(base, r) \
879 { #base #r, v_encrypt_##base##_##r, \
880 { &type_hex, &type_hex, &type_hex, &type_ulong, \
881 &type_hex, &type_hex, 0 } },
883 { "chacha" #r "-core", v_core_##r, \
884 { &type_int, &type_hex, &type_hex, 0 } }, \
886 #define DEFXTAB(r) DEFxTAB(xchacha, r)
892 int main(int argc, char *argv[])
894 test_run(argc, argv, defs, SRCDIR"/t/chacha");
900 /*----- That's all, folks -------------------------------------------------*/