5 * (c) 2015 Straylight/Edgeware
8 /*----- Licensing notice --------------------------------------------------*
10 * This file is part of Catacomb.
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
28 /*----- Header files ------------------------------------------------------*/
34 #include <mLib/bits.h>
38 #include "chacha-core.h"
45 /*----- Global variables --------------------------------------------------*/
47 const octet chacha_keysz[] = { KSZ_SET, 32, 16, 10, 0 };
49 /*----- The ChaCha core function and utilities ----------------------------*/
53 * Arguments: @unsigned r@ = number of rounds
54 * @const chacha_matrix src@ = input matrix
55 * @chacha_matrix dest@ = where to put the output
60 * Use: Apply the ChaCha/r core function to @src@, writing the
61 * result to @dest@. This consists of @r@ rounds followed by
62 * the feedforward step.
65 CPU_DISPATCH(static, (void), void, core,
66 (unsigned r, const chacha_matrix src, chacha_matrix dest),
67 (r, src, dest), pick_core, simple_core);
69 static void simple_core(unsigned r, const chacha_matrix src,
71 { CHACHA_nR(dest, src, r); CHACHA_FFWD(dest, src); }
73 #if CPUFAM_X86 || CPUFAM_AMD64
74 extern core__functype chacha_core_x86ish_sse2;
75 extern core__functype chacha_core_x86ish_avx;
79 extern core__functype chacha_core_arm_neon;
83 extern core__functype chacha_core_arm64;
86 static core__functype *pick_core(void)
88 #if CPUFAM_X86 || CPUFAM_AMD64
89 DISPATCH_PICK_COND(chacha_core, chacha_core_x86ish_avx,
90 cpu_feature_p(CPUFEAT_X86_AVX));
91 DISPATCH_PICK_COND(chacha_core, chacha_core_x86ish_sse2,
92 cpu_feature_p(CPUFEAT_X86_SSE2));
95 DISPATCH_PICK_COND(chacha_core, chacha_core_arm_neon,
96 cpu_feature_p(CPUFEAT_ARM_NEON));
99 DISPATCH_PICK_COND(chacha_core, chacha_core_arm64, 1);
101 DISPATCH_PICK_FALLBACK(chacha_core, simple_core);
104 /* --- @populate@ --- *
106 * Arguments: @chacha_matrix a@ = a matrix to fill in
107 * @const void *key@ = pointer to key material
108 * @size_t ksz@ = size of key
112 * Use: Fills in a ChaCha matrix from the key, setting the
113 * appropriate constants according to the key length. The nonce
114 * and position words are left uninitialized.
117 static void populate(chacha_matrix a, const void *key, size_t ksz)
119 const octet *k = key;
121 KSZ_ASSERT(chacha, ksz);
123 a[ 4] = LOAD32_L(k + 0);
124 a[ 5] = LOAD32_L(k + 4);
126 a[ 6] = LOAD16_L(k + 8);
129 a[ 6] = LOAD32_L(k + 8);
130 a[ 7] = LOAD32_L(k + 12);
139 a[ 2] = ksz == 10 ? CHACHA_C80 : CHACHA_C128;
142 a[ 8] = LOAD32_L(k + 16);
143 a[ 9] = LOAD32_L(k + 20);
144 a[10] = LOAD32_L(k + 24);
145 a[11] = LOAD32_L(k + 28);
153 /*----- ChaCha implementation ---------------------------------------------*/
155 static const octet zerononce[XCHACHA_NONCESZ];
157 /* --- @chacha_init@ --- *
159 * Arguments: @chacha_ctx *ctx@ = context to fill in
160 * @const void *key@ = pointer to key material
161 * @size_t ksz@ = size of key (either 32 or 16)
162 * @const void *nonce@ = initial nonce, or null
166 * Use: Initializes a ChaCha context ready for use.
169 void chacha_init(chacha_ctx *ctx, const void *key, size_t ksz,
172 populate(ctx->a, key, ksz);
173 chacha_setnonce(ctx, nonce ? nonce : zerononce);
176 /* --- @chacha_setnonce{,_ietf}@ --- *
178 * Arguments: @chacha_ctx *ctx@ = pointer to context
179 * @const void *nonce@ = the nonce (@CHACHA_NONCESZ@ or
180 * @CHACHA_IETF_NONCESZ@ bytes)
184 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
185 * different message. The stream position is reset to zero (see
186 * @chacha_seek@ etc.).
189 void chacha_setnonce(chacha_ctx *ctx, const void *nonce)
191 const octet *n = nonce;
193 ctx->a[14] = LOAD32_L(n + 0);
194 ctx->a[15] = LOAD32_L(n + 4);
198 void chacha_setnonce_ietf(chacha_ctx *ctx, const void *nonce)
200 const octet *n = nonce;
202 ctx->a[13] = LOAD32_L(n + 0);
203 ctx->a[14] = LOAD32_L(n + 4);
204 ctx->a[15] = LOAD32_L(n + 8);
205 chacha_seek_ietf(ctx, 0);
208 /* --- @chacha_seek{,u64,_ietf}@ --- *
210 * Arguments: @chacha_ctx *ctx@ = pointer to context
211 * @unsigned long i@, @kludge64 i@, @uint32 i@ = new position
215 * Use: Sets a new stream position, in units of Chacha output
216 * blocks, which are @CHACHA_OUTSZ@ bytes each. Byte
217 * granularity can be achieved by calling @chachaR_encrypt@
221 void chacha_seek(chacha_ctx *ctx, unsigned long i)
222 { kludge64 ii; ASSIGN64(ii, i); chacha_seeku64(ctx, ii); }
224 void chacha_seeku64(chacha_ctx *ctx, kludge64 i)
226 ctx->a[12] = LO64(i); ctx->a[13] = HI64(i);
227 ctx->bufi = CHACHA_OUTSZ;
230 void chacha_seek_ietf(chacha_ctx *ctx, uint32 i)
233 /* --- @chacha_tell{,u64,_ietf}@ --- *
235 * Arguments: @chacha_ctx *ctx@ = pointer to context
237 * Returns: The current position in the output stream, in blocks,
241 unsigned long chacha_tell(chacha_ctx *ctx)
242 { kludge64 i = chacha_tellu64(ctx); return (GET64(unsigned long, i)); }
244 kludge64 chacha_tellu64(chacha_ctx *ctx)
245 { kludge64 i; SET64(i, ctx->a[13], ctx->a[12]); return (i); }
247 uint32 chacha_tell_ietf(chacha_ctx *ctx)
248 { return (ctx->a[12]); }
250 /* --- @chacha{20,12,8}_encrypt@ --- *
252 * Arguments: @chacha_ctx *ctx@ = pointer to context
253 * @const void *src@ = source buffer (or null)
254 * @void *dest@ = destination buffer (or null)
255 * @size_t sz@ = size of the buffers
259 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
260 * ChaCha works by XORing plaintext with a keystream, so
261 * encryption and decryption are the same operation. If @dest@
262 * is null then ignore @src@ and skip @sz@ bytes of the
263 * keystream. If @src@ is null, then just write the keystream
267 #define CHACHA_ENCRYPT(r, ctx, src, dest, sz) \
268 chacha##r##_encrypt(ctx, src, dest, sz)
269 #define DEFENCRYPT(r) \
270 void CHACHA_ENCRYPT(r, chacha_ctx *ctx, const void *src, \
271 void *dest, size_t sz) \
274 const octet *s = src; \
277 kludge64 pos, delta; \
279 SALSA20_OUTBUF(ctx, d, s, sz); \
283 n = sz/CHACHA_OUTSZ; \
284 pos = chacha_tellu64(ctx); \
285 ASSIGN64(delta, n); \
286 ADD64(pos, pos, delta); \
287 chacha_seeku64(ctx, pos); \
288 sz = sz%CHACHA_OUTSZ; \
290 while (sz >= CHACHA_OUTSZ) { \
291 core(r, ctx->a, b); \
292 CHACHA_STEP(ctx->a); \
293 SALSA20_GENFULL(b, d); \
294 sz -= CHACHA_OUTSZ; \
297 while (sz >= CHACHA_OUTSZ) { \
298 core(r, ctx->a, b); \
299 CHACHA_STEP(ctx->a); \
300 SALSA20_MIXFULL(b, d, s); \
301 sz -= CHACHA_OUTSZ; \
306 core(r, ctx->a, b); \
307 CHACHA_STEP(ctx->a); \
308 SALSA20_PREPBUF(ctx, b); \
309 SALSA20_OUTBUF(ctx, d, s, sz); \
313 CHACHA_VARS(DEFENCRYPT)
315 /*----- HChaCha implementation --------------------------------------------*/
317 #define HCHACHA_RAW(r, ctx, src, dest) hchacha##r##_raw(ctx, src, dest)
318 #define HCHACHA_PRF(r, ctx, src, dest) hchacha##r##_prf(ctx, src, dest)
320 /* --- @hchacha{20,12,8}_prf@ --- *
322 * Arguments: @chacha_ctx *ctx@ = pointer to context
323 * @const void *src@ = the input (@HCHACHA_INSZ@ bytes)
324 * @void *dest@ = the output (@HCHACHA_OUTSZ@ bytes)
328 * Use: Apply the HChacha/r pseudorandom function to @src@, writing
329 * the result to @out@.
332 #define DEFHCHACHA(r) \
333 static void HCHACHA_RAW(r, chacha_matrix k, \
334 const uint32 *src, uint32 *dest) \
339 /* --- HChaCha, computed from full ChaCha --- * \
341 * The security proof makes use of the fact that HChaCha (i.e., \
342 * without the final feedforward step) can be computed from full \
343 * ChaCha using only knowledge of the non-secret input. I don't \
344 * want to compromise the performance of the main function by \
345 * making the feedforward step separate, but this operation is less \
346 * speed critical, so we do it the harder way. \
349 for (i = 0; i < 4; i++) k[12 + i] = src[i]; \
351 for (i = 0; i < 8; i++) dest[i] = a[(i + 4)^4] - k[(i + 4)^4]; \
354 void HCHACHA_PRF(r, chacha_ctx *ctx, const void *src, void *dest) \
356 const octet *s = src; \
358 uint32 in[4], out[8]; \
361 for (i = 0; i < 4; i++) in[i] = LOAD32_L(s + 4*i); \
362 HCHACHA_RAW(r, ctx->a, in, out); \
363 for (i = 0; i < 8; i++) STORE32_L(d + 4*i, out[i]); \
365 CHACHA_VARS(DEFHCHACHA)
367 /*----- XChaCha implementation -------------------------------------------*/
369 /* --- Some convenient macros for naming functions --- *
371 * Because the crypto core is involved in XChaCha/r's per-nonce setup, we
372 * need to take an interest in the number of rounds in most of the various
373 * functions, and it will probably help if we distinguish the context
374 * structures for the various versions.
377 #define XCHACHA_CTX(r) xchacha##r##_ctx
378 #define XCHACHA_INIT(r, ctx, k, ksz, n) xchacha##r##_init(ctx, k, ksz, n)
379 #define XCHACHA_SETNONCE(r, ctx, n) xchacha##r##_setnonce(ctx, n)
380 #define XCHACHA_SEEK(r, ctx, i) xchacha##r##_seek(ctx, i)
381 #define XCHACHA_SEEKU64(r, ctx, i) xchacha##r##_seeku64(ctx, i)
382 #define XCHACHA_TELL(r, ctx) xchacha##r##_tell(ctx)
383 #define XCHACHA_TELLU64(r, ctx) xchacha##r##_tellu64(ctx)
384 #define XCHACHA_ENCRYPT(r, ctx, src, dest, sz) \
385 xchacha##r##_encrypt(ctx, src, dest, sz)
387 /* --- @xchacha{20,12,8}_init@ --- *
389 * Arguments: @xchachaR_ctx *ctx@ = the context to fill in
390 * @const void *key@ = pointer to key material
391 * @size_t ksz@ = size of key (either 32 or 16)
392 * @const void *nonce@ = initial nonce, or null
396 * Use: Initializes an XChaCha/r context ready for use.
398 * There is a different function for each number of rounds,
399 * unlike for plain ChaCha.
402 #define DEFXINIT(r) \
403 void XCHACHA_INIT(r, XCHACHA_CTX(r) *ctx, \
404 const void *key, size_t ksz, const void *nonce) \
406 populate(ctx->k, key, ksz); \
407 ctx->s.a[ 0] = CHACHA_A256; \
408 ctx->s.a[ 1] = CHACHA_B256; \
409 ctx->s.a[ 2] = CHACHA_C256; \
410 ctx->s.a[ 3] = CHACHA_D256; \
411 XCHACHA_SETNONCE(r, ctx, nonce ? nonce : zerononce); \
413 CHACHA_VARS(DEFXINIT)
415 /* --- @xchacha{20,12,8}_setnonce@ --- *
417 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
418 * @const void *nonce@ = the nonce (@XCHACHA_NONCESZ@ bytes)
422 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
423 * different message. The stream position is reset to zero (see
424 * @chacha_seek@ etc.).
426 * There is a different function for each number of rounds,
427 * unlike for plain ChaCha.
430 #define DEFXNONCE(r) \
431 void XCHACHA_SETNONCE(r, XCHACHA_CTX(r) *ctx, const void *nonce) \
433 const octet *n = nonce; \
437 for (i = 0; i < 4; i++) in[i] = LOAD32_L(n + 4*i); \
438 HCHACHA_RAW(r, ctx->k, in, ctx->s.a + 4); \
439 chacha_setnonce(&ctx->s, n + 16); \
441 CHACHA_VARS(DEFXNONCE)
443 /* --- @xchacha{20,12,8}_seek{,u64}@ --- *
445 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
446 * @unsigned long i@, @kludge64 i@ = new position to set
450 * Use: Sets a new stream position, in units of ChaCha output
451 * blocks, which are @XCHACHA_OUTSZ@ bytes each. Byte
452 * granularity can be achieved by calling @xchachaR_encrypt@
455 * There is a different function for each number of rounds,
456 * unlike for plain ChaCha, because the context structures are
460 /* --- @xchacha{20,12,8}_tell{,u64}@ --- *
462 * Arguments: @chacha_ctx *ctx@ = pointer to context
464 * Returns: The current position in the output stream, in blocks,
467 * There is a different function for each number of rounds,
468 * unlike for plain ChaCha, because the context structures are
472 /* --- @xchacha{20,12,8}_encrypt@ --- *
474 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
475 * @const void *src@ = source buffer (or null)
476 * @void *dest@ = destination buffer (or null)
477 * @size_t sz@ = size of the buffers
481 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
482 * XChaCha works by XORing plaintext with a keystream, so
483 * encryption and decryption are the same operation. If @dest@
484 * is null then ignore @src@ and skip @sz@ bytes of the
485 * keystream. If @src@ is null, then just write the keystream
489 #define DEFXPASSTHRU(r) \
490 void XCHACHA_SEEK(r, XCHACHA_CTX(r) *ctx, unsigned long i) \
491 { chacha_seek(&ctx->s, i); } \
492 void XCHACHA_SEEKU64(r, XCHACHA_CTX(r) *ctx, kludge64 i) \
493 { chacha_seeku64(&ctx->s, i); } \
494 unsigned long XCHACHA_TELL(r, XCHACHA_CTX(r) *ctx) \
495 { return chacha_tell(&ctx->s); } \
496 kludge64 XCHACHA_TELLU64(r, XCHACHA_CTX(r) *ctx) \
497 { return chacha_tellu64(&ctx->s); } \
498 void XCHACHA_ENCRYPT(r, XCHACHA_CTX(r) *ctx, \
499 const void *src, void *dest, size_t sz) \
500 { CHACHA_ENCRYPT(r, &ctx->s, src, dest, sz); }
501 CHACHA_VARS(DEFXPASSTHRU)
503 /*----- Generic cipher interface ------------------------------------------*/
505 typedef struct gctx { gcipher c; chacha_ctx ctx; } gctx;
507 static void gsetiv(gcipher *c, const void *iv)
508 { gctx *g = (gctx *)c; chacha_setnonce(&g->ctx, iv); }
510 static void gsetiv_ietf(gcipher *c, const void *iv)
511 { gctx *g = (gctx *)c; chacha_setnonce_ietf(&g->ctx, iv); }
513 static void gdestroy(gcipher *c)
514 { gctx *g = (gctx *)c; BURN(*g); S_DESTROY(g); }
516 static gcipher *ginit(const void *k, size_t sz, const gcipher_ops *ops)
518 gctx *g = S_CREATE(gctx);
520 chacha_init(&g->ctx, k, sz, 0);
524 #define DEFGCIPHER(r) \
526 static const gcipher_ops gops_##r, gops_##r##_ietf; \
528 static gcipher *ginit_##r(const void *k, size_t sz) \
529 { return (ginit(k, sz, &gops_##r)); } \
531 static gcipher *ginit_##r##_ietf(const void *k, size_t sz) \
532 { return (ginit(k, sz, &gops_##r##_ietf)); } \
534 static void gencrypt_##r(gcipher *c, const void *s, \
535 void *t, size_t sz) \
536 { gctx *g = (gctx *)c; CHACHA_ENCRYPT(r, &g->ctx, s, t, sz); } \
538 static const gcipher_ops gops_##r = { \
540 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv, 0 \
543 static const gcipher_ops gops_##r##_ietf = { \
545 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv_ietf, 0 \
548 const gccipher chacha##r = { \
549 "chacha" #r, chacha_keysz, \
550 CHACHA_NONCESZ, ginit_##r \
553 const gccipher chacha##r##_ietf = { \
554 "chacha" #r "-ietf", chacha_keysz, \
555 CHACHA_IETF_NONCESZ, ginit_##r##_ietf \
558 CHACHA_VARS(DEFGCIPHER)
560 #define DEFGXCIPHER(r) \
562 typedef struct { gcipher c; XCHACHA_CTX(r) ctx; } gxctx_##r; \
564 static void gxsetiv_##r(gcipher *c, const void *iv) \
565 { gxctx_##r *g = (gxctx_##r *)c; XCHACHA_SETNONCE(r, &g->ctx, iv); } \
567 static void gxdestroy_##r(gcipher *c) \
568 { gxctx_##r *g = (gxctx_##r *)c; BURN(*g); S_DESTROY(g); } \
570 static const gcipher_ops gxops_##r; \
572 static gcipher *gxinit_##r(const void *k, size_t sz) \
574 gxctx_##r *g = S_CREATE(gxctx_##r); \
575 g->c.ops = &gxops_##r; \
576 XCHACHA_INIT(r, &g->ctx, k, sz, 0); \
580 static void gxencrypt_##r(gcipher *c, const void *s, \
581 void *t, size_t sz) \
583 gxctx_##r *g = (gxctx_##r *)c; \
584 XCHACHA_ENCRYPT(r, &g->ctx, s, t, sz); \
587 static const gcipher_ops gxops_##r = { \
589 gxencrypt_##r, gxencrypt_##r, gxdestroy_##r, gxsetiv_##r, 0 \
592 const gccipher xchacha##r = { \
593 "xchacha" #r, chacha_keysz, \
594 XCHACHA_NONCESZ, gxinit_##r \
597 CHACHA_VARS(DEFGXCIPHER)
599 /*----- Generic random number generator interface -------------------------*/
601 typedef struct grops {
603 void (*seek)(void *, kludge64);
604 kludge64 (*tell)(void *);
605 void (*setnonce)(void *, const void *);
606 void (*generate)(void *, void *, size_t);
609 typedef struct grbasectx {
614 static int grmisc(grand *r, unsigned op, ...)
616 octet buf[XCHACHA_NONCESZ];
617 grbasectx *g = (grbasectx *)r;
631 switch (va_arg(ap, unsigned)) {
634 case GRAND_SEEDUINT32:
635 case GRAND_SEEDBLOCK:
650 i = va_arg(ap, unsigned); STORE32_L(buf, i);
651 memset(buf + 4, 0, g->ops->noncesz - 4);
652 g->ops->setnonce(g, buf);
654 case GRAND_SEEDUINT32:
655 i = va_arg(ap, uint32); STORE32_L(buf, i);
656 memset(buf + 4, 0, g->ops->noncesz - 4);
657 g->ops->setnonce(g, buf);
659 case GRAND_SEEDBLOCK:
660 p = va_arg(ap, const void *);
661 sz = va_arg(ap, size_t);
662 if (sz < g->ops->noncesz) {
664 memset(buf + sz, 0, g->ops->noncesz - sz);
667 g->ops->setnonce(g, p);
670 rr = va_arg(ap, grand *);
671 rr->ops->fill(rr, buf, g->ops->noncesz);
672 g->ops->setnonce(g, buf);
675 ul = va_arg(ap, unsigned long); ASSIGN64(pos, ul);
676 g->ops->seek(g, pos);
679 pos = va_arg(ap, kludge64);
680 g->ops->seek(g, pos);
683 pos = g->ops->tell(g);
684 *va_arg(ap, unsigned long *) = GET64(unsigned long, pos);
687 *va_arg(ap, kludge64 *) = g->ops->tell(g);
697 static octet grbyte(grand *r)
699 grbasectx *g = (grbasectx *)r;
701 g->ops->generate(g, &o, 1);
705 static uint32 grword(grand *r)
707 grbasectx *g = (grbasectx *)r;
709 g->ops->generate(g, b, sizeof(b));
710 return (LOAD32_L(b));
713 static void grfill(grand *r, void *p, size_t sz)
715 grbasectx *g = (grbasectx *)r;
716 g->ops->generate(r, p, sz);
719 typedef struct grctx {
724 static void gr_seek(void *r, kludge64 pos)
725 { grctx *g = r; chacha_seeku64(&g->ctx, pos); }
727 static void gr_seek_ietf(void *r, kludge64 pos)
728 { grctx *g = r; chacha_seek_ietf(&g->ctx, LO64(pos)); }
730 static kludge64 gr_tell(void *r)
731 { grctx *g = r; return (chacha_tellu64(&g->ctx)); }
733 static kludge64 gr_tell_ietf(void *r)
738 SET64(pos, 0, chacha_tell_ietf(&g->ctx));
742 static void gr_setnonce(void *r, const void *n)
743 { grctx *g = r; chacha_setnonce(&g->ctx, n); }
745 static void gr_setnonce_ietf(void *r, const void *n)
746 { grctx *g = r; chacha_setnonce_ietf(&g->ctx, n); }
748 static void grdestroy(grand *r)
749 { grctx *g = (grctx *)r; BURN(*g); S_DESTROY(g); }
751 static grand *grinit(const void *k, size_t ksz, const void *n,
752 const grand_ops *ops, const grops *myops)
754 grctx *g = S_CREATE(grctx);
757 chacha_init(&g->ctx, k, ksz, 0);
758 if (n) myops->setnonce(g, n);
762 #define DEFGRAND(rr) \
764 static void gr_generate_##rr(void *r, void *b, size_t sz) \
765 { grctx *g = r; CHACHA_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
767 static const grops grops_##rr = \
768 { CHACHA_NONCESZ, gr_seek, gr_tell, \
769 gr_setnonce, gr_generate_##rr }; \
771 static const grops grops_##rr##_ietf = \
772 { CHACHA_IETF_NONCESZ, gr_seek_ietf, gr_tell_ietf, \
773 gr_setnonce_ietf, gr_generate_##rr }; \
775 static const grand_ops grops_rand_##rr = { \
776 "chacha" #rr, GRAND_CRYPTO, 0, \
777 grmisc, grdestroy, grword, \
778 grbyte, grword, grand_defaultrange, grfill \
781 static const grand_ops grops_rand_##rr##_ietf = { \
782 "chacha" #rr "-ietf", GRAND_CRYPTO, 0, \
783 grmisc, grdestroy, grword, \
784 grbyte, grword, grand_defaultrange, grfill \
787 grand *chacha##rr##_rand(const void *k, size_t ksz, const void *n) \
788 { return (grinit(k, ksz, n, &grops_rand_##rr, &grops_##rr)); } \
790 grand *chacha##rr##_ietf_rand(const void *k, size_t ksz, \
793 return (grinit(k, ksz, n, \
794 &grops_rand_##rr##_ietf, \
795 &grops_##rr##_ietf)); \
798 CHACHA_VARS(DEFGRAND)
800 #define DEFXGRAND(rr) \
802 typedef struct grxctx_##rr { \
804 XCHACHA_CTX(rr) ctx; \
807 static void grx_seek_##rr(void *r, kludge64 pos) \
808 { grxctx_##rr *g = r; XCHACHA_SEEKU64(rr, &g->ctx, pos); } \
810 static kludge64 grx_tell_##rr(void *r) \
811 { grxctx_##rr *g = r; return (XCHACHA_TELLU64(rr, &g->ctx)); } \
813 static void grx_setnonce_##rr(void *r, const void *n) \
814 { grxctx_##rr *g = r; XCHACHA_SETNONCE(rr, &g->ctx, n); } \
816 static void grxdestroy_##rr(grand *r) \
817 { grxctx_##rr *g = (grxctx_##rr *)r; BURN(*g); S_DESTROY(g); } \
819 static void grx_generate_##rr(void *r, void *b, size_t sz) \
820 { grxctx_##rr *g = r; XCHACHA_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
822 static const grops grxops_##rr = \
823 { XCHACHA_NONCESZ, grx_seek_##rr, grx_tell_##rr, \
824 grx_setnonce_##rr, grx_generate_##rr }; \
826 static const grand_ops grxops_rand_##rr = { \
827 "xchacha" #rr, GRAND_CRYPTO, 0, \
828 grmisc, grxdestroy_##rr, grword, \
829 grbyte, grword, grand_defaultrange, grfill \
832 grand *xchacha##rr##_rand(const void *k, size_t ksz, const void *n) \
834 grxctx_##rr *g = S_CREATE(grxctx_##rr); \
835 g->r.r.ops = &grxops_rand_##rr; \
836 g->r.ops = &grxops_##rr; \
837 XCHACHA_INIT(rr, &g->ctx, k, ksz, n); \
840 CHACHA_VARS(DEFXGRAND)
842 /*----- Test rig ----------------------------------------------------------*/
849 #include <mLib/quis.h>
850 #include <mLib/testrig.h>
852 #define DEFVCORE(r) \
853 static int v_core_##r(dstr *v) \
855 chacha_matrix a, b; \
856 dstr d = DSTR_INIT; \
860 DENSURE(&d, CHACHA_OUTSZ); d.len = CHACHA_OUTSZ; \
861 n = *(int *)v[0].buf; \
862 for (i = 0; i < CHACHA_OUTSZ/4; i++) \
863 a[i] = LOAD32_L(v[1].buf + 4*i); \
864 for (i = 0; i < n; i++) { \
866 memcpy(a, b, sizeof(a)); \
868 for (i = 0; i < CHACHA_OUTSZ/4; i++) STORE32_L(d.buf + 4*i, a[i]); \
870 if (d.len != v[2].len || memcmp(d.buf, v[2].buf, v[2].len) != 0) { \
872 printf("\nfail core:" \
873 "\n\titerations = %d" \
875 type_hex.dump(&v[1], stdout); \
876 printf("\n\texpected = "); \
877 type_hex.dump(&v[2], stdout); \
878 printf("\n\tcalculated = "); \
879 type_hex.dump(&d, stdout); \
886 CHACHA_VARS(DEFVCORE)
888 #define CHACHA_CTX(r) chacha_ctx
890 #define CHACHA_TESTSETUP(r, ctx, k, ksz, n, nsz, p, psz) do { \
892 chacha_init(ctx, k, ksz, 0); \
893 if (nsz == 8) chacha_setnonce(ctx, n); \
894 else if (nsz == 12) chacha_setnonce_ietf(ctx, n); \
895 if (psz == 8) { LOAD64_(pos64, p); chacha_seeku64(ctx, pos64); } \
896 else if (psz == 4) chacha_seek_ietf(ctx, LOAD32(p)); \
899 #define XCHACHA_TESTSETUP(r, ctx, k, ksz, n, nsz, p, psz) do { \
901 XCHACHA_INIT(r, ctx, k, ksz, 0); \
902 if (nsz == 24) XCHACHA_SETNONCE(r, ctx, n); \
903 if (psz == 8) { LOAD64_(pos64, p); xchacha##r##_seeku64(ctx, pos64); } \
906 #define DEFxVENC(base, BASE, r) \
907 static int v_encrypt_##base##_##r(dstr *v) \
910 dstr d = DSTR_INIT; \
911 const octet *p, *p0; \
913 size_t sz, sz0, step; \
914 unsigned long skip; \
917 if (v[4].len) { p0 = (const octet *)v[4].buf; sz0 = v[4].len; } \
918 else { p0 = 0; sz0 = v[5].len; } \
919 DENSURE(&d, sz0); d.len = sz0; \
920 skip = *(unsigned long *)v[3].buf; \
923 while (step < sz0 + skip) { \
924 step = step ? 3*step + 4 : 1; \
925 if (step > sz0 + skip) step = sz0 + skip; \
926 BASE##_TESTSETUP(r, &ctx, v[0].buf, v[0].len, \
927 v[1].buf, v[1].len, v[2].buf, v[2].len); \
929 for (sz = skip; sz >= step; sz -= step) \
930 BASE##_ENCRYPT(r, &ctx, 0, 0, step); \
931 if (sz) BASE##_ENCRYPT(r, &ctx, 0, 0, sz); \
932 for (p = p0, q = (octet *)d.buf, sz = sz0; \
934 sz -= step, q += step) { \
935 BASE##_ENCRYPT(r, &ctx, p, q, step); \
938 if (sz) BASE##_ENCRYPT(r, &ctx, p, q, sz); \
940 if (d.len != v[5].len || memcmp(d.buf, v[5].buf, v[5].len) != 0) { \
942 printf("\nfail encrypt:" \
944 "\n\tkey = ", (unsigned long)step); \
945 type_hex.dump(&v[0], stdout); \
946 printf("\n\tnonce = "); \
947 type_hex.dump(&v[1], stdout); \
948 printf("\n\tposition = "); \
949 type_hex.dump(&v[2], stdout); \
950 printf("\n\tskip = %lu", skip); \
951 printf("\n\tmessage = "); \
952 type_hex.dump(&v[4], stdout); \
953 printf("\n\texpected = "); \
954 type_hex.dump(&v[5], stdout); \
955 printf("\n\tcalculated = "); \
956 type_hex.dump(&d, stdout); \
964 #define DEFVENC(r) DEFxVENC(chacha, CHACHA, r)
965 #define DEFXVENC(r) DEFxVENC(xchacha, XCHACHA, r)
967 CHACHA_VARS(DEFXVENC)
969 static test_chunk defs[] = {
970 #define DEFxTAB(base, r) \
971 { #base #r, v_encrypt_##base##_##r, \
972 { &type_hex, &type_hex, &type_hex, &type_ulong, \
973 &type_hex, &type_hex, 0 } },
975 { "chacha" #r "-core", v_core_##r, \
976 { &type_int, &type_hex, &type_hex, 0 } }, \
978 #define DEFXTAB(r) DEFxTAB(xchacha, r)
984 int main(int argc, char *argv[])
986 test_run(argc, argv, defs, SRCDIR"/t/chacha");
992 /*----- That's all, folks -------------------------------------------------*/