3 * Iterate over small primes efficiently
5 * (c) 2007 Straylight/Edgeware
8 /*----- Licensing notice --------------------------------------------------*
10 * This file is part of Catacomb.
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
28 /*----- Header files ------------------------------------------------------*/
33 #include "primeiter.h"
37 /*----- Theory ------------------------------------------------------------*
39 * For small primes, we can just pluck them out of the small primes table.
40 * For larger primes, we can test them individually, or build a sieve or
41 * something, but since we don't know when to stop, that could be tricky.
43 * We've built a `wheel', as follows. Let %$m$% be the product of the first
44 * %$n$% primes. There are %$\phi(m)$% integers %$n_i$%, with %$0 < n_i <
45 * m$% coprime to %$m$%, and any integer %$j > n$% must be congruent to some
46 * %$n_i$% modulo %$m$%. The wheel itself doesn't list the %$n_i$%, but
47 * rather the differences %$\delta_i = n_i - n_{i-1}$% (wrapping around
48 * appropriately at the ends), so you can just add simple offsets to step
49 * onwards. The wheel assumes you start at 1 and move on round.
52 /*----- Main code ---------------------------------------------------------*/
54 /* --- @wheelsync@ --- *
56 * Arguments: @primeiter *pi@ = iterator to synchronize
57 * @mp *where@ = value to synchronize
61 * Use: Sets up the wheel index to match the given integer. After
62 * this, we can step along the wheel to find candidate primes.
65 static void wheelsync(primeiter *pi, mp *where)
74 mp_build(&t, &w, &w + 1);
75 mp_div(0, &r, where, &t);
76 rr = MP_ZEROP(r) ? 0 : r->v[0];
78 for (i = 0, n = 1; rr > n; n += wheel[i], i++);
80 pi->p = mp_add(MP_NEW, where, &t);
82 pi->r = fibrand_create(0);
86 /* --- @primeiter_create@ --- *
88 * Arguments: @primeiter *pi@ = pointer to an iterator structure
89 * @mp *start@ = where to start
93 * Use: Initializes a prime iterator. The first output will be the
94 * smallest prime not less than @start@.
97 void primeiter_create(primeiter *pi, mp *start)
102 if (!start || MP_CMP(start, <=, MP_TWO))
105 if (MP_LEN(start) <= 1) {
112 if (primetab[m] == n) break;
113 else if (m == l) { m++; break; }
114 else if (primetab[m] < n) l = m;
118 pi->mode = PIMODE_PTAB;
119 mp_build(&pi->pp, &pi->w, &pi->w + 1);
125 wheelsync(pi, start);
126 pi->mode = PIMODE_STALL;
129 /* --- @primeiter_destroy@ --- *
131 * Arguments: @primeiter *pi@ = pointer to iterator structure
135 * Use: Frees up an iterator structure when it's no longer wanted.
138 void primeiter_destroy(primeiter *pi)
153 /* --- @primeiter_next@ --- *
155 * Arguments: @primeiter *pi@ = pointer to an iterator structure
156 * @mp *d@ = fake destination
158 * Returns: The next prime number from the iterator.
160 * Use: Returns a new prime number.
163 mp *primeiter_next(primeiter *pi, mp *d)
169 pi->w = primetab[pi->i++];
170 if (pi->i >= NPRIME) {
171 wheelsync(pi, pi->p);
172 pi->mode = PIMODE_WHEEL;
178 pi->mode = PIMODE_WHEEL;
182 MP_DEST(pi->p, MP_LEN(pi->p) + 1, pi->p->f);
183 MPX_UADDN(pi->p->v, pi->p->vl, wheel[pi->i++]);
185 if (pi->i >= WHEELN) pi->i = 0;
187 } while (!pgen_primep(pi->p, pi->r));
197 /*----- Test rig ----------------------------------------------------------*/
201 #include <mLib/macros.h>
202 #include <mLib/testrig.h>
204 static int test(dstr *v)
206 mp *start = *(mp **)v[0].buf;
212 for (i = 0; i < N(pp); i++)
213 pp[i] = *(mp **)v[i + 1].buf;
214 primeiter_create(&pi, start);
215 for (i = 0; i < N(pp); i++) {
216 ret[i] = primeiter_next(&pi, MP_NEW);
217 if (!MP_EQ(ret[i], pp[i])) ok = 0;
220 fprintf(stderr, "\n*** primeiter test failure:\n*** start = ");
221 mp_writefile(start, stderr, 10);
222 for (i = 0; i < N(pp); i++) {
223 fprintf(stderr, "\n*** p[%d] = ", i);
224 mp_writefile(ret[i], stderr, 10);
225 fprintf(stderr, " %s ", MP_EQ(ret[i], pp[i]) ? "==" : "!=");
226 mp_writefile(pp[i], stderr, 10);
230 for (i = 0; i < N(pp); i++) {
234 primeiter_destroy(&pi);
236 assert(mparena_count(MPARENA_GLOBAL) == 0);
240 static test_chunk tests[] = {
242 { &type_mp, &type_mp, &type_mp, &type_mp, &type_mp, &type_mp, } },
246 int main(int argc, char *argv[])
248 test_run(argc, argv, tests, SRCDIR "/tests/pgen");
254 /*----- That's all, folks -------------------------------------------------*/