chiark / gitweb /
configure.ac: Replace with a new version.
[catacomb] / f-binpoly.c
1 /* -*-c-*-
2  *
3  * $Id$
4  *
5  * Binary fields with polynomial basis representation
6  *
7  * (c) 2004 Straylight/Edgeware
8  */
9
10 /*----- Licensing notice --------------------------------------------------*
11  *
12  * This file is part of Catacomb.
13  *
14  * Catacomb is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU Library General Public License as
16  * published by the Free Software Foundation; either version 2 of the
17  * License, or (at your option) any later version.
18  *
19  * Catacomb is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU Library General Public License for more details.
23  *
24  * You should have received a copy of the GNU Library General Public
25  * License along with Catacomb; if not, write to the Free
26  * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27  * MA 02111-1307, USA.
28  */
29
30 /*----- Header files ------------------------------------------------------*/
31
32 #include <mLib/sub.h>
33
34 #include "field.h"
35 #include "field-guts.h"
36 #include "mprand.h"
37
38 /*----- Polynomial basis --------------------------------------------------*/
39
40 /* --- Field operations --- */
41
42 static void fdestroy(field *ff) {
43   fctx_binpoly *f = (fctx_binpoly *)ff;
44   gfreduce_destroy(&f->r); MP_DROP(f->f.q);
45   DESTROY(f);
46 }
47
48 static mp *frand(field *f, mp *d, grand *r) {
49   return (mprand(d, f->nbits, r, 0));
50 }
51
52 static int fzerop(field *ff, mp *x) { return (MP_ZEROP(x)); }
53
54 static mp *fadd(field *ff, mp *d, mp *x, mp *y) { return (gf_add(d, x, y)); }
55
56 static mp *fmul(field *ff, mp *d, mp *x, mp *y) {
57   fctx_binpoly *f = (fctx_binpoly *)ff; d = gf_mul(d, x, y);
58   return (gfreduce_do(&f->r, d, d));
59 }
60
61 static mp *fsqr(field *ff, mp *d, mp *x) {
62   fctx_binpoly *f = (fctx_binpoly *)ff; d = gf_sqr(d, x);
63   return (gfreduce_do(&f->r, d, d));
64 }
65
66 static mp *finv(field *ff, mp *d, mp *x) {
67   fctx_binpoly *f = (fctx_binpoly *)ff;
68   d = gf_modinv(d, x, f->r.p);
69   return (d);
70 }
71
72 static mp *freduce(field *ff, mp *d, mp *x) {
73   fctx_binpoly *f = (fctx_binpoly *)ff;
74   return (gfreduce_do(&f->r, d, x));
75 }
76
77 static mp *fsqrt(field *ff, mp *d, mp *x) {
78   fctx_binpoly *f = (fctx_binpoly *)ff;
79   return (gfreduce_sqrt(&f->r, d, x));
80 }
81
82 static mp *fquadsolve(field *ff, mp *d, mp *x) {
83   fctx_binpoly *f = (fctx_binpoly *)ff;
84   return (gfreduce_quadsolve(&f->r, d, x));
85 }
86
87 /* --- Field operations table --- */
88
89 static const field_ops fops = {
90   FTY_BINARY, "binpoly",
91   fdestroy, frand, field_stdsamep,
92   freduce, field_id,
93   fzerop, field_id, fadd, fadd, fmul, fsqr, finv, freduce, fsqrt,
94   fquadsolve,
95   0, 0, 0, 0
96 };
97
98 /* --- @field_binpoly@ --- *
99  *
100  * Arguments:   @mp *p@ = the reduction polynomial
101  *
102  * Returns:     A pointer to the field.
103  *
104  * Use:         Creates a field structure for a binary field mod @p@.
105  */
106
107 field *field_binpoly(mp *p)
108 {
109   fctx_binpoly *f = CREATE(fctx_binpoly);
110   f->f.ops = &fops;
111   f->f.zero = MP_ZERO;
112   f->f.one = MP_ONE;
113   f->f.nbits = mp_bits(p) - 1;
114   f->f.noctets = (f->f.nbits + 7) >> 3;
115   gfreduce_create(&f->r, p);
116   f->f.m = f->r.p;
117   f->f.q = mp_lsl(MP_NEW, MP_ONE, f->f.nbits);
118   return (&f->f);
119 }
120
121 /*----- Normal basis ------------------------------------------------------*/
122
123 /* --- Field operations --- */
124
125 static void fndestroy(field *ff) {
126   fctx_binnorm *f = (fctx_binnorm *)ff; gfreduce_destroy(&f->f.r);
127   gfn_destroy(&f->ntop); gfn_destroy(&f->pton); MP_DROP(f->f.f.q);
128   DESTROY(f);
129 }
130
131 static int fnsamep(field *ff, field *gg) {
132   fctx_binnorm *f = (fctx_binnorm *)ff, *g = (fctx_binnorm *)gg;
133   return (MP_EQ(f->ntop.r[0], g->ntop.r[0]) && field_stdsamep(ff, gg));
134 }
135
136 static mp *fnin(field *ff, mp *d, mp *x) {
137   fctx_binnorm *f = (fctx_binnorm *)ff;
138   return (gfn_transform(&f->ntop, d, x));
139 }
140
141 static mp *fnout(field *ff, mp *d, mp *x) {
142   fctx_binnorm *f = (fctx_binnorm *)ff;
143   return (gfn_transform(&f->pton, d, x));
144 }
145
146 /* --- Field operations table --- */
147
148 static const field_ops fnops = {
149   FTY_BINARY, "binnorm",
150   fndestroy, frand, fnsamep,
151   fnin, fnout,
152   fzerop, field_id, fadd, fadd, fmul, fsqr, finv, freduce, fsqrt,
153   fquadsolve,
154   0, 0, 0, 0
155 };
156
157 /* --- @field_binnorm@ --- *
158  *
159  * Arguments:   @mp *p@ = the reduction polynomial
160  *              @mp *beta@ = representation of normal point
161  *
162  * Returns:     A pointer to the field.
163  *
164  * Use:         Creates a field structure for a binary field mod @p@ which
165  *              uses a normal basis representation externally.  Computations
166  *              are still done on a polynomial-basis representation.
167  */
168
169 field *field_binnorm(mp *p, mp *beta)
170 {
171   fctx_binnorm *f = CREATE(fctx_binnorm);
172   f->f.f.ops = &fnops;
173   f->f.f.zero = MP_ZERO;
174   f->f.f.one = MP_ONE;
175   f->f.f.nbits = mp_bits(p) - 1;
176   f->f.f.noctets = (f->f.f.nbits + 7) >> 3;
177   gfreduce_create(&f->f.r, p);
178   f->f.f.m = f->f.r.p;
179   f->f.f.q = mp_lsl(MP_NEW, MP_ONE, f->f.f.nbits);
180   gfn_create(p, beta, &f->ntop, &f->pton);
181   return (&f->f.f);
182 }
183
184 /*----- That's all, folks -------------------------------------------------*/