3 * The Keccak-p[1600, n] permutation
5 * (c) 2017 Straylight/Edgeware
8 /*----- Licensing notice --------------------------------------------------*
10 * This file is part of Catacomb.
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
28 /*----- Header files ------------------------------------------------------*/
33 #include <mLib/bits.h>
35 #include "keccak1600.h"
37 /* #define KECCAK_DEBUG */
39 /*----- Miscellaneous utilities -------------------------------------------*/
41 #define I(x, y) ((x) + 5*(y)) /* Column-major indexing */
43 /*----- Interlacing or not ------------------------------------------------*/
45 /* We should prefer the interlaced representation if the target is really
46 * 32-bit and only providing synthetic 64-bit integers. Alas, the Windows
47 * 64-bit ABI specifies that `long' is only 32-bits (i.e., it is IL32/LLP64),
48 * so detect x86 specifically.
50 #if (ULONG_MAX >> 31) <= 0xffffffff && \
51 !defined(__amd64__) && !defined(_M_AMD64)
56 /* A 32-bit target with at best weak support for 64-bit shifts. Maintain a
57 * lane as two 32-bit pieces representing the even and odd bits of the lane.
58 * There are slightly fiddly transformations to apply on the way in and out
59 * of the main permutation.
62 typedef keccak1600_lane_i32 lane;
65 static lane interlace(kludge64 x)
67 /* Given a 64-bit string X, return a lane Z containing the even- and
68 * odd-numbered bits of X.
70 * This becomes more manageable if we look at what happens to the bit
71 * indices: bit i of X becomes bit ROR_6(i, 1) of Z. We can effectively
72 * swap two bits of the indices by swapping the object bits where those
73 * index bits differ. Fortunately, this is fairly easy.
75 * We arrange to swap bits between the two halves of X, rather than within
79 uint32 x0 = LO64(x), x1 = HI64(x), t;
82 t = ((x0 >> 16) ^ x1)&0x0000ffff; x0 ^= t << 16; x1 ^= t; /* 453210 */
83 t = ((x0 >> 8) ^ x1)&0x00ff00ff; x0 ^= t << 8; x1 ^= t; /* 354210 */
84 t = ((x0 >> 4) ^ x1)&0x0f0f0f0f; x0 ^= t << 4; x1 ^= t; /* 254310 */
85 t = ((x0 >> 2) ^ x1)&0x33333333; x0 ^= t << 2; x1 ^= t; /* 154320 */
86 t = ((x0 >> 1) ^ x1)&0x55555555; x0 ^= t << 1; x1 ^= t; /* 054321 */
87 z.even = x0; z.odd = x1; return (z);
90 static kludge64 deinterlace(lane x)
92 /* Given a lane X, return the combined 64-bit value. This is the inverse
93 * to `interlace' above, and the principle is the same
96 uint32 x0 = x.even, x1 = x.odd, t;
99 t = ((x0 >> 1) ^ x1)&0x55555555; x0 ^= t << 1; x1 ^= t; /* 154320 */
100 t = ((x0 >> 2) ^ x1)&0x33333333; x0 ^= t << 2; x1 ^= t; /* 254310 */
101 t = ((x0 >> 4) ^ x1)&0x0f0f0f0f; x0 ^= t << 4; x1 ^= t; /* 354210 */
102 t = ((x0 >> 8) ^ x1)&0x00ff00ff; x0 ^= t << 8; x1 ^= t; /* 453210 */
103 t = ((x0 >> 16) ^ x1)&0x0000ffff; x0 ^= t << 16; x1 ^= t; /* 543210 */
104 SET64(z, x1, x0); return (z);
107 #define TO_LANE(x) (interlace(x))
108 #define FROM_LANE(x) (deinterlace(x))
110 #define PRINTFMT_LANE "%08lx:%08lx"
111 #define PRINTARGS_LANE(x) (unsigned long)(x).even, (unsigned long)(x).odd
113 #define BINOP_LANE(z, op, x, y) \
114 ((z).even = (x).even op (y).even, (z).odd = (x).odd op (y).odd)
115 #define XOR_LANE(z, x, y) BINOP_LANE(z, ^, x, y)
116 #define AND_LANE(z, x, y) BINOP_LANE(z, &, x, y)
117 #define OR_LANE(z, x, y) BINOP_LANE(z, |, x, y)
118 #define NOT_LANE(z, x) ((z).even = ~(x).even, (z).odd = ~(x).odd)
120 #define ROTL_LANE(z, x, n) do { \
122 (z).even = (n)%2 ? ROL32(_t.odd, ((n) + 1)/2) \
123 : ROL32(_t.even, (n)/2); \
124 (z).odd = (n)%2 ? ROL32(_t.even, ((n) - 1)/2) \
125 : ROL32(_t.odd, (n)/2); \
128 #define LANE_ZERO { 0, 0 }
129 #define LANE_CMPL { 0xffffffff, 0xffffffff }
131 static const lane rcon[24] = {
132 { 0x00000001, 0x00000000 }, { 0x00000000, 0x00000089 },
133 { 0x00000000, 0x8000008b }, { 0x00000000, 0x80008080 },
134 { 0x00000001, 0x0000008b }, { 0x00000001, 0x00008000 },
135 { 0x00000001, 0x80008088 }, { 0x00000001, 0x80000082 },
136 { 0x00000000, 0x0000000b }, { 0x00000000, 0x0000000a },
137 { 0x00000001, 0x00008082 }, { 0x00000000, 0x00008003 },
138 { 0x00000001, 0x0000808b }, { 0x00000001, 0x8000000b },
139 { 0x00000001, 0x8000008a }, { 0x00000001, 0x80000081 },
140 { 0x00000000, 0x80000081 }, { 0x00000000, 0x80000008 },
141 { 0x00000000, 0x00000083 }, { 0x00000000, 0x80008003 },
142 { 0x00000001, 0x80008088 }, { 0x00000000, 0x80000088 },
143 { 0x00000001, 0x00008000 }, { 0x00000000, 0x80008082 }
147 /* A target with good support for 64-bit shifts. We store lanes as 64-bit
148 * quantities and deal with them in the obvious, natural way.
151 typedef keccak1600_lane_64 lane;
154 #define TO_LANE(x) (x)
155 #define FROM_LANE(x) (x)
157 #define PRINTFMT_LANE "%08lx%08lx"
158 #define PRINTARGS_LANE(x) (unsigned long)HI64(x), (unsigned long)LO64(x)
160 #define XOR_LANE(z, x, y) XOR64((z), (x), (y))
161 #define AND_LANE(z, x, y) AND64((z), (x), (y))
162 #define OR_LANE(z, x, y) OR64((z), (x), (y))
163 #define NOT_LANE(z, x) CPL64((z), (x))
164 #define ROTL_LANE(z, x, n) ROL64_((z), (x), (n))
166 #define LANE_ZERO X64( 0, 0)
167 #define LANE_CMPL X64(ffffffff, ffffffff)
169 static const lane rcon[24] = {
170 X64(00000000, 00000001), X64(00000000, 00008082),
171 X64(80000000, 0000808a), X64(80000000, 80008000),
172 X64(00000000, 0000808b), X64(00000000, 80000001),
173 X64(80000000, 80008081), X64(80000000, 00008009),
174 X64(00000000, 0000008a), X64(00000000, 00000088),
175 X64(00000000, 80008009), X64(00000000, 8000000a),
176 X64(00000000, 8000808b), X64(80000000, 0000008b),
177 X64(80000000, 00008089), X64(80000000, 00008003),
178 X64(80000000, 00008002), X64(80000000, 00000080),
179 X64(00000000, 0000800a), X64(80000000, 8000000a),
180 X64(80000000, 80008081), X64(80000000, 00008080),
181 X64(00000000, 80000001), X64(80000000, 80008008)
186 /*----- Complementing or not ----------------------------------------------*/
188 /* We should use the complemented representation if the target doesn't have a
189 * fused and-not operation. There doesn't appear to be a principled way to
190 * do this, so we'll just have to make do with a big list. Worse, in my
191 * brief survey of the architecture reference manuals I have lying about,
192 * they've split close to 50/50 on this question, so I don't have an
193 * especially good way to pick a default. The `no-fused-op' architectures
194 * seem generally a bit more modern than the `fused-op' architectures, so I
195 * guess I'll make the complemented representation the default.
199 * ARM (`bic') x86/amd64
200 * Sparc (`andn') z/Architecture
206 #if !(defined(__arm__) || defined(__thumb__) || defined(__aarch64__) || \
207 defined(_M_ARM) || defined(_M_THUMB)) && \
208 !(defined(__ia64__) || defined(__ia64) || defined(__itanium__) || \
209 defined(_M_IA64)) && \
210 !defined(__mmix__) && \
211 !(defined(__sparc__) || defined(__sparc)) && \
212 !defined(__vax__) && \
214 # define KECCAK_COMPL
218 /* A target without fused and/not (`bic', `andc2'). We complement some of
219 * the lanes in the initial state and undo this on output. (Absorbing XORs
220 * input into the state, so this is unaffected.) See the handling of chi in
221 * `keccak1600_round' below for the details.
224 #define STATE_INIT(z) do { \
225 lane cmpl = LANE_CMPL; \
226 (z)->S[I(1, 0)] = cmpl; (z)->S[I(2, 0)] = cmpl; \
227 (z)->S[I(3, 1)] = cmpl; (z)->S[I(2, 2)] = cmpl; \
228 (z)->S[I(2, 3)] = cmpl; (z)->S[I(0, 4)] = cmpl; \
231 #define STATE_OUT(z) do { \
232 NOT_LANE((z)->S[I(1, 0)], (z)->S[I(1, 0)]); \
233 NOT_LANE((z)->S[I(2, 0)], (z)->S[I(2, 0)]); \
234 NOT_LANE((z)->S[I(3, 1)], (z)->S[I(3, 1)]); \
235 NOT_LANE((z)->S[I(2, 2)], (z)->S[I(2, 2)]); \
236 NOT_LANE((z)->S[I(2, 3)], (z)->S[I(2, 3)]); \
237 NOT_LANE((z)->S[I(0, 4)], (z)->S[I(0, 4)]); \
241 /* A target with fused and/not (`bic', `andc2'). Everything is simple. */
243 #define STATE_INIT(z) do ; while (0)
244 #define STATE_OUT(z) do ; while (0)
248 /*----- Other magic constants ---------------------------------------------*/
250 /* The rotation constants. These are systematically named -- see `THETA_RHO'
283 /*----- Debugging ---------------------------------------------------------*/
289 static void dump_state(const char *what, unsigned ir,
290 const keccak1600_state *x)
297 printf(";; %s [round %u]\n", what, ir);
298 printf(";; raw state...\n");
299 for (j = 0; j < 5; j++) {
301 for (i = 0, sep = '\t'; i < 5; i++, sep = ' ')
302 printf("%c" PRINTFMT_LANE, sep, PRINTARGS_LANE(x->S[I(i, j)]));
305 y = *x; STATE_OUT(&y);
307 printf(";; uncomplemented state...\n");
308 for (j = 0; j < 5; j++) {
310 for (i = 0, sep = '\t'; i < 5; i++, sep = ' ')
311 printf("%c" PRINTFMT_LANE, sep, PRINTARGS_LANE(y.S[I(i, j)]));
316 printf(";; deinterlaced state...\n");
317 for (j = 0; j < 5; j++) {
319 for (i = 0, sep = '\t'; i < 5; i++, sep = ' ') {
320 a = FROM_LANE(y.S[I(i, j)]);
321 printf("%c%08lx%08lx", sep,
322 (unsigned long)HI64(a), (unsigned long)LO64(a));
332 /*----- The Keccak-p[1600, n] permutation ---------------------------------*/
334 static void keccak1600_round(keccak1600_state *z,
335 const keccak1600_state *x, unsigned i)
337 /* Perform a round of Keccak-p[1600, n]. Process the state X and write the
343 /* Theta, first step: calculate the column parities. */
344 #define COLPARITY(j) do { \
345 d[j] = x->S[I(j, 0)]; \
346 XOR_LANE(d[j], d[j], x->S[I(j, 1)]); \
347 XOR_LANE(d[j], d[j], x->S[I(j, 2)]); \
348 XOR_LANE(d[j], d[j], x->S[I(j, 3)]); \
349 XOR_LANE(d[j], d[j], x->S[I(j, 4)]); \
351 COLPARITY(0); COLPARITY(1); COLPARITY(2); COLPARITY(3); COLPARITY(4);
354 /* Theta, second step: calculate the combined effect. */
355 ROTL_LANE(c[0], d[1], 1); XOR_LANE(c[0], c[0], d[4]);
356 ROTL_LANE(c[1], d[2], 1); XOR_LANE(c[1], c[1], d[0]);
357 ROTL_LANE(c[2], d[3], 1); XOR_LANE(c[2], c[2], d[1]);
358 ROTL_LANE(c[3], d[4], 1); XOR_LANE(c[3], c[3], d[2]);
359 ROTL_LANE(c[4], d[0], 1); XOR_LANE(c[4], c[4], d[3]);
361 /* Now we work plane by plane through the output. To do this, we must undo
362 * the pi transposition. Pi maps (x', y') = (y, 2 x + 3 y), so y = x', and
363 * x = (y' - 3 y)/2 = 3 (y' - 3 x') = x' + 3 y'.
365 #define THETA_RHO(i0, i1, i2, i3, i4) do { \
367 /* First, theta. */ \
368 XOR_LANE(d[0], x->S[I(i0, 0)], c[i0]); \
369 XOR_LANE(d[1], x->S[I(i1, 1)], c[i1]); \
370 XOR_LANE(d[2], x->S[I(i2, 2)], c[i2]); \
371 XOR_LANE(d[3], x->S[I(i3, 3)], c[i3]); \
372 XOR_LANE(d[4], x->S[I(i4, 4)], c[i4]); \
375 ROTL_LANE(d[0], d[0], ROT_##i0##_0); \
376 ROTL_LANE(d[1], d[1], ROT_##i1##_1); \
377 ROTL_LANE(d[2], d[2], ROT_##i2##_2); \
378 ROTL_LANE(d[3], d[3], ROT_##i3##_3); \
379 ROTL_LANE(d[4], d[4], ROT_##i4##_4); \
382 /* The basic chi operation is: z = w ^ (~a&b), but this involves an
383 * inversion which we can mostly avoid by being clever: observe that
385 * w ^ (~a&~~b) = w ^ ~(a | ~b) = ~w ^ (a | ~b)
387 * by De Morgan's law. Furthermore, complementing w or z is basically
388 * equivalent. Bertoni, Daemen, Peeters, Van Assche, and Van Keer, `Keccak
389 * implementation overview', describe a pattern of lane complementation
390 * which propagates through theta and pi in exactly the right way to be
391 * restored easily by chi, here, with exactly one inversion per plane.
393 * Here's the pattern.
395 * [ * . * * . ] [ . * * . . ]
396 * [ * . * . . ] [ . . . * . ]
397 * [ * . * . . ] -> [ . . * . . ]
398 * [ . * . * * ] [ . . * . . ]
399 * [ * . . * . ] [ * . . . . ]
401 * where a `.' means that the lane is unchanged, and a `*' means that it
402 * has been complemented.
404 * The macros `CHI_wxy_z' calculate z in terms of w, x, y assuming that the
405 * inputs w, x, y marked with a `1' are complemented on input, and arrange
406 * for z to be complemented on output if z is so marked.
408 * The diagrams to the right show the fragment of the complementation
409 * pattern being handled by the corresponding line of code. A symbol in
410 * brackets indicates a deviation from the input pattern forced by explicit
411 * complementation: there will be exactly one of these for each plane.
414 # define CHI_COMPL(z, x) NOT_LANE((z), (x))
415 # define CHI_001_1(z, w, x, y) \
416 (OR_LANE((z), (x), (y)), XOR_LANE((z), (z), (w)))
417 # define CHI_010_0(z, w, x, y) \
418 (AND_LANE((z), (x), (y)), XOR_LANE((z), (z), (w)))
419 # define CHI_101_0 CHI_001_1
420 # define CHI_110_1 CHI_010_0
422 # define CHI(z, w, x, y) \
423 (NOT_LANE((z), (x)), \
424 AND_LANE((z), (z), (y)), \
425 XOR_LANE((z), (z), (w)))
426 # define CHI_COMPL(z, x) ((z) = (x))
427 # define CHI_001_1 CHI
428 # define CHI_010_0 CHI
429 # define CHI_101_0 CHI
430 # define CHI_110_1 CHI
433 /* Let's do the y' = 0 plane first. Theta and rho are easy with our macro,
434 * and we've done pi with the coordinate hacking. That leaves chi next.
435 * This is hairy because we must worry about complementation.
437 THETA_RHO(0, 1, 2, 3, 4);
438 CHI_COMPL(t, d[2]); /* [.] */
439 CHI_101_0(z->S[I(0, 0)], d[0], d[1], d[2]); /* * . * -> . */
440 CHI_001_1(z->S[I(1, 0)], d[1], t, d[3]); /* . [.] * -> * */
441 CHI_110_1(z->S[I(2, 0)], d[2], d[3], d[4]); /* * * . -> * */
442 CHI_101_0(z->S[I(3, 0)], d[3], d[4], d[0]); /* * * . -> . */
443 CHI_010_0(z->S[I(4, 0)], d[4], d[0], d[1]); /* * . . -> . */
445 /* We'd better do iota before we forget. */
446 XOR_LANE(z->S[I(0, 0)], z->S[I(0, 0)], rcon[i]);
448 /* That was fun. Maybe y' = 1 will be as good. */
449 THETA_RHO(3, 4, 0, 1, 2);
450 CHI_COMPL(t, d[4]); /* [*] */
451 CHI_101_0(z->S[I(0, 1)], d[0], d[1], d[2]); /* * . * -> . */
452 CHI_010_0(z->S[I(1, 1)], d[1], d[2], d[3]); /* . * . -> . */
453 CHI_101_0(z->S[I(2, 1)], d[2], d[3], t); /* * . [*] -> . */
454 CHI_001_1(z->S[I(3, 1)], d[3], d[4], d[0]); /* * . . -> * */
455 CHI_010_0(z->S[I(4, 1)], d[4], d[0], d[1]); /* * . . -> . */
457 /* We're getting the hang of this. The y' = 2 plane shouldn't be any
460 THETA_RHO(1, 2, 3, 4, 0);
461 CHI_COMPL(t, d[3]); /* [*] */
462 CHI_101_0(z->S[I(0, 2)], d[0], d[1], d[2]); /* * . * -> . */
463 CHI_010_0(z->S[I(1, 2)], d[1], d[2], d[3]); /* . * . -> . */
464 CHI_110_1(z->S[I(2, 2)], d[2], t, d[4]); /* * [*] . -> * */
465 CHI_101_0(z->S[I(3, 2)], t, d[4], d[0]); /* * [*] . -> . */
466 CHI_010_0(z->S[I(4, 2)], d[4], d[0], d[1]); /* * . . -> . */
468 /* This isn't as interesting any more. Let's do y' = 3 before boredom sets
471 THETA_RHO(4, 0, 1, 2, 3);
472 CHI_COMPL(t, d[3]); /* [.] */
473 CHI_010_0(z->S[I(0, 3)], d[0], d[1], d[2]); /* . * . -> . */
474 CHI_101_0(z->S[I(1, 3)], d[1], d[2], d[3]); /* * . * -> . */
475 CHI_001_1(z->S[I(2, 3)], d[2], t, d[4]); /* . [.] * -> * */
476 CHI_010_0(z->S[I(3, 3)], t, d[4], d[0]); /* . [.] * -> . */
477 CHI_101_0(z->S[I(4, 3)], d[4], d[0], d[1]); /* . * * -> . */
479 /* Last plane. Just y' = 4 to go. */
480 THETA_RHO(2, 3, 4, 0, 1);
481 CHI_COMPL(t, d[1]); /* [*] */
482 CHI_110_1(z->S[I(0, 4)], d[0], t, d[2]); /* * [*] . -> * */
483 CHI_101_0(z->S[I(1, 4)], t, d[2], d[3]); /* [*] . * -> . */
484 CHI_010_0(z->S[I(2, 4)], d[2], d[3], d[4]); /* . * . -> . */
485 CHI_101_0(z->S[I(3, 4)], d[3], d[4], d[0]); /* * * . -> . */
486 CHI_010_0(z->S[I(4, 4)], d[4], d[0], d[1]); /* * . . -> . */
488 /* And we're done. */
498 /* --- @keccak1600_p@ --- *
500 * Arguments: @keccak1600_state *z@ = where to write the output state
501 * @conts keccak1600_state *x@ = input state
502 * @unsigned n@ = number of rounds to perform
506 * Use: Implements the %$\Keccak[1600, n]$% permutation at the core
507 * of Keccak and the SHA-3 standard.
510 void keccak1600_p(keccak1600_state *z, const keccak1600_state *x, unsigned n)
512 keccak1600_state u, v;
516 dump_state("init", 0, x);
518 keccak1600_round(&u, x, i++); n--;
520 keccak1600_round(&v, &u, i++);
521 keccak1600_round(&u, &v, i++);
522 keccak1600_round(&v, &u, i++);
523 keccak1600_round(&u, &v, i++);
524 keccak1600_round(&v, &u, i++);
525 keccak1600_round(&u, &v, i++);
526 keccak1600_round(&v, &u, i++);
527 keccak1600_round(&u, &v, i++);
531 case 7: keccak1600_round(&v, &u, i++);
532 keccak1600_round(&u, &v, i++);
533 case 5: keccak1600_round(&v, &u, i++);
534 keccak1600_round(&u, &v, i++);
535 case 3: keccak1600_round(&v, &u, i++);
536 keccak1600_round(&u, &v, i++);
537 case 1: keccak1600_round( z, &u, i++);
539 case 8: keccak1600_round(&v, &u, i++);
540 keccak1600_round(&u, &v, i++);
541 case 6: keccak1600_round(&v, &u, i++);
542 keccak1600_round(&u, &v, i++);
543 case 4: keccak1600_round(&v, &u, i++);
544 keccak1600_round(&u, &v, i++);
545 case 2: keccak1600_round(&v, &u, i++);
546 keccak1600_round( z, &v, i++);
550 dump_state("final", 0, z);
554 /* --- @keccack1600_init@ --- *
556 * Arguments: @keccak1600_state *s@ = a state to initialize
560 * Use: Initialize @s@ to the root state.
563 void keccak1600_init(keccak1600_state *s)
564 { memset(s->S, 0, sizeof(s->S)); STATE_INIT(s); }
566 /* --- @keccak1600_mix@ --- *
568 * Arguments: @keccak1600_state *s@ = a state to update
569 * @const kludge64 *p@ = pointer to 64-bit words to mix in
570 * @size_t n@ = size of the input, in 64-bit words
574 * Use: Mixes data into a %$\Keccak[r, 1600 - r]$% state. Note that
575 * it's the caller's responsibility to pass in no more than
576 * %$r$% bits of data.
579 void keccak1600_mix(keccak1600_state *s, const kludge64 *p, size_t n)
584 for (i = 0; i < n; i++)
585 { a = TO_LANE(p[i]); XOR_LANE(s->S[i], s->S[i], a); }
588 /* --- @keccak1600_extract@ --- *
590 * Arguments: @const keccak1600_state *s@ = a state to extract output from
591 * @kludge64 *p@ = pointer to 64-bit words to write
592 * @size_t n@ = size of the output, in 64-bit words
596 * Use: Reads output from a %$\Keccak[r, 1600 - r]$% state. Note
597 * that it's the caller's responsibility to extract no more than
598 * %$r$% bits of data.
601 void keccak1600_extract(const keccak1600_state *s, kludge64 *p, size_t n)
606 t = *s; STATE_OUT(&t);
607 for (i = 0; i < n; i++) p[i] = FROM_LANE(t.S[i]);
610 /*----- Test rig ----------------------------------------------------------*/
616 #include <mLib/quis.h>
617 #include <mLib/report.h>
618 #include <mLib/testrig.h>
620 static int vrf_p(dstr v[])
629 if (v[0].len != 200) die(1, "bad input size");
630 if (v[2].len != 200) die(1, "bad output size");
631 n = *(int *)v[1].buf;
632 dstr_ensure(&d, 200); d.len = 200;
635 for (i = 0; i < 25; i++) LOAD64_L_(t[i], v[0].buf + 8*i);
636 keccak1600_mix(&u, t, 25);
637 keccak1600_p(&u, &u, n);
638 keccak1600_extract(&u, t, 25);
639 for (i = 0; i < 25; i++) STORE64_L_(d.buf + 8*i, t[i]);
640 if (memcmp(d.buf, v[2].buf, 200) != 0) {
642 fprintf(stderr, "failed!");
643 fprintf(stderr, "\n\t input = "); type_hex.dump(&v[0], stderr);
644 fprintf(stderr, "\n\t rounds = %d", n);
645 fprintf(stderr, "\n\t expected = "); type_hex.dump(&v[2], stderr);
646 fprintf(stderr, "\n\t calclated = "); type_hex.dump(&d, stderr);
653 static test_chunk defs[] = {
654 { "p", vrf_p, { &type_hex, &type_int, &type_hex } },
658 int main(int argc, char *argv[])
660 test_run(argc, argv, defs, SRCDIR"/t/keccak1600");
666 /*----- That's all, folks -------------------------------------------------*/