5 * (c) 2015 Straylight/Edgeware
8 /*----- Licensing notice --------------------------------------------------*
10 * This file is part of Catacomb.
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
28 /*----- Header files ------------------------------------------------------*/
34 #include <mLib/bits.h>
38 #include "chacha-core.h"
46 /*----- Global variables --------------------------------------------------*/
48 const octet chacha_keysz[] = { KSZ_SET, 32, 16, 10, 0 };
50 /*----- The ChaCha core function and utilities ----------------------------*/
54 * Arguments: @unsigned r@ = number of rounds
55 * @const chacha_matrix src@ = input matrix
56 * @chacha_matrix dest@ = where to put the output
61 * Use: Apply the ChaCha/r core function to @src@, writing the
62 * result to @dest@. This consists of @r@ rounds followed by
63 * the feedforward step.
66 CPU_DISPATCH(static, (void), void, core,
67 (unsigned r, const chacha_matrix src, chacha_matrix dest),
68 (r, src, dest), pick_core, simple_core);
70 static void simple_core(unsigned r, const chacha_matrix src,
72 { CHACHA_nR(dest, src, r); CHACHA_FFWD(dest, src); }
74 #if CPUFAM_X86 || CPUFAM_AMD64
75 extern core__functype chacha_core_x86ish_sse2;
76 extern core__functype chacha_core_x86ish_avx;
80 extern core__functype chacha_core_arm_neon;
84 extern core__functype chacha_core_arm64;
87 static core__functype *pick_core(void)
89 #if CPUFAM_X86 || CPUFAM_AMD64
90 DISPATCH_PICK_COND(chacha_core, chacha_core_x86ish_avx,
91 cpu_feature_p(CPUFEAT_X86_AVX));
92 DISPATCH_PICK_COND(chacha_core, chacha_core_x86ish_sse2,
93 cpu_feature_p(CPUFEAT_X86_SSE2));
96 DISPATCH_PICK_COND(chacha_core, chacha_core_arm_neon,
97 cpu_feature_p(CPUFEAT_ARM_NEON));
100 DISPATCH_PICK_COND(chacha_core, chacha_core_arm64,
101 cpu_feature_p(CPUFEAT_ARM_NEON));
103 DISPATCH_PICK_FALLBACK(chacha_core, simple_core);
106 /* --- @populate@ --- *
108 * Arguments: @chacha_matrix a@ = a matrix to fill in
109 * @const void *key@ = pointer to key material
110 * @size_t ksz@ = size of key
114 * Use: Fills in a ChaCha matrix from the key, setting the
115 * appropriate constants according to the key length. The nonce
116 * and position words are left uninitialized.
119 static void populate(chacha_matrix a, const void *key, size_t ksz)
121 const octet *k = key;
123 KSZ_ASSERT(chacha, ksz);
125 a[ 4] = LOAD32_L(k + 0);
126 a[ 5] = LOAD32_L(k + 4);
128 a[ 6] = LOAD16_L(k + 8);
131 a[ 6] = LOAD32_L(k + 8);
132 a[ 7] = LOAD32_L(k + 12);
141 a[ 2] = ksz == 10 ? CHACHA_C80 : CHACHA_C128;
144 a[ 8] = LOAD32_L(k + 16);
145 a[ 9] = LOAD32_L(k + 20);
146 a[10] = LOAD32_L(k + 24);
147 a[11] = LOAD32_L(k + 28);
155 /*----- ChaCha implementation ---------------------------------------------*/
157 static const octet zerononce[XCHACHA_NONCESZ];
159 /* --- @chacha_init@ --- *
161 * Arguments: @chacha_ctx *ctx@ = context to fill in
162 * @const void *key@ = pointer to key material
163 * @size_t ksz@ = size of key (either 32 or 16)
164 * @const void *nonce@ = initial nonce, or null
168 * Use: Initializes a ChaCha context ready for use.
171 void chacha_init(chacha_ctx *ctx, const void *key, size_t ksz,
174 populate(ctx->a, key, ksz);
175 chacha_setnonce(ctx, nonce ? nonce : zerononce);
178 /* --- @chacha_setnonce{,_ietf}@ --- *
180 * Arguments: @chacha_ctx *ctx@ = pointer to context
181 * @const void *nonce@ = the nonce (@CHACHA_NONCESZ@ or
182 * @CHACHA_IETF_NONCESZ@ bytes)
186 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
187 * different message. The stream position is reset to zero (see
188 * @chacha_seek@ etc.).
191 void chacha_setnonce(chacha_ctx *ctx, const void *nonce)
193 const octet *n = nonce;
195 ctx->a[14] = LOAD32_L(n + 0);
196 ctx->a[15] = LOAD32_L(n + 4);
200 void chacha_setnonce_ietf(chacha_ctx *ctx, const void *nonce)
202 const octet *n = nonce;
204 ctx->a[13] = LOAD32_L(n + 0);
205 ctx->a[14] = LOAD32_L(n + 4);
206 ctx->a[15] = LOAD32_L(n + 8);
207 chacha_seek_ietf(ctx, 0);
210 /* --- @chacha_seek{,u64,_ietf}@ --- *
212 * Arguments: @chacha_ctx *ctx@ = pointer to context
213 * @unsigned long i@, @kludge64 i@, @uint32 i@ = new position
217 * Use: Sets a new stream position, in units of Chacha output
218 * blocks, which are @CHACHA_OUTSZ@ bytes each. Byte
219 * granularity can be achieved by calling @chachaR_encrypt@
223 void chacha_seek(chacha_ctx *ctx, unsigned long i)
224 { kludge64 ii; ASSIGN64(ii, i); chacha_seeku64(ctx, ii); }
226 void chacha_seeku64(chacha_ctx *ctx, kludge64 i)
228 ctx->a[12] = LO64(i); ctx->a[13] = HI64(i);
229 ctx->off = CHACHA_OUTSZ;
232 void chacha_seek_ietf(chacha_ctx *ctx, uint32 i)
235 /* --- @chacha_tell{,u64,_ietf}@ --- *
237 * Arguments: @chacha_ctx *ctx@ = pointer to context
239 * Returns: The current position in the output stream, in blocks,
243 unsigned long chacha_tell(chacha_ctx *ctx)
244 { kludge64 i = chacha_tellu64(ctx); return (GET64(unsigned long, i)); }
246 kludge64 chacha_tellu64(chacha_ctx *ctx)
247 { kludge64 i; SET64(i, ctx->a[13], ctx->a[12]); return (i); }
249 uint32 chacha_tell_ietf(chacha_ctx *ctx)
250 { return (ctx->a[12]); }
252 /* --- @chacha{20,12,8}_encrypt@ --- *
254 * Arguments: @chacha_ctx *ctx@ = pointer to context
255 * @const void *src@ = source buffer (or null)
256 * @void *dest@ = destination buffer (or null)
257 * @size_t sz@ = size of the buffers
261 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
262 * ChaCha works by XORing plaintext with a keystream, so
263 * encryption and decryption are the same operation. If @dest@
264 * is null then ignore @src@ and skip @sz@ bytes of the
265 * keystream. If @src@ is null, then just write the keystream
269 static const rsvr_policy policy = { 0, CHACHA_OUTSZ, CHACHA_OUTSZ };
271 #define CHACHA_ENCRYPT(r, ctx, src, dest, sz) \
272 chacha##r##_encrypt(ctx, src, dest, sz)
273 #define DEFENCRYPT(r) \
274 void CHACHA_ENCRYPT(r, chacha_ctx *ctx, const void *src, \
275 void *dest, size_t sz) \
278 const octet *s = src; \
281 kludge64 pos, delta; \
283 rsvr_mkplan(&plan, &policy, ctx->off, sz); \
287 core(r, ctx->a, b); CHACHA_STEP(ctx->a); \
288 SALSA20_PREPBUF(ctx, b); \
290 SALSA20_OUTBUF(ctx, d, s, plan.head); \
293 ctx->off -= plan.from_rsvr; \
296 if (plan.from_input) { \
297 pos = chacha_tellu64(ctx); \
298 ASSIGN64(delta, plan.from_input/SALSA20_OUTSZ); \
299 ADD64(pos, pos, delta); \
300 chacha_seeku64(ctx, pos); \
302 } else if (!s) while (plan.from_input) { \
303 core(r, ctx->a, b); CHACHA_STEP(ctx->a); \
304 SALSA20_GENFULL(b, d); plan.from_input -= CHACHA_OUTSZ; \
305 } else while (plan.from_input) { \
306 core(r, ctx->a, b); CHACHA_STEP(ctx->a); \
307 SALSA20_MIXFULL(b, d, s); plan.from_input -= CHACHA_OUTSZ; \
311 core(r, ctx->a, b); CHACHA_STEP(ctx->a); \
312 SALSA20_PREPBUF(ctx, b); \
313 SALSA20_OUTBUF(ctx, d, s, plan.tail); \
316 CHACHA_VARS(DEFENCRYPT)
318 /*----- HChaCha implementation --------------------------------------------*/
320 #define HCHACHA_RAW(r, ctx, src, dest) hchacha##r##_raw(ctx, src, dest)
321 #define HCHACHA_PRF(r, ctx, src, dest) hchacha##r##_prf(ctx, src, dest)
323 /* --- @hchacha{20,12,8}_prf@ --- *
325 * Arguments: @chacha_ctx *ctx@ = pointer to context
326 * @const void *src@ = the input (@HCHACHA_INSZ@ bytes)
327 * @void *dest@ = the output (@HCHACHA_OUTSZ@ bytes)
331 * Use: Apply the HChacha/r pseudorandom function to @src@, writing
332 * the result to @out@.
335 #define DEFHCHACHA(r) \
336 static void HCHACHA_RAW(r, chacha_matrix k, \
337 const uint32 *src, uint32 *dest) \
342 /* --- HChaCha, computed from full ChaCha --- * \
344 * The security proof makes use of the fact that HChaCha (i.e., \
345 * without the final feedforward step) can be computed from full \
346 * ChaCha using only knowledge of the non-secret input. I don't \
347 * want to compromise the performance of the main function by \
348 * making the feedforward step separate, but this operation is less \
349 * speed critical, so we do it the harder way. \
352 for (i = 0; i < 4; i++) k[12 + i] = src[i]; \
354 for (i = 0; i < 8; i++) dest[i] = a[(i + 4)^4] - k[(i + 4)^4]; \
357 void HCHACHA_PRF(r, chacha_ctx *ctx, const void *src, void *dest) \
359 const octet *s = src; \
361 uint32 in[4], out[8]; \
364 for (i = 0; i < 4; i++) in[i] = LOAD32_L(s + 4*i); \
365 HCHACHA_RAW(r, ctx->a, in, out); \
366 for (i = 0; i < 8; i++) STORE32_L(d + 4*i, out[i]); \
368 CHACHA_VARS(DEFHCHACHA)
370 /*----- XChaCha implementation -------------------------------------------*/
372 /* --- Some convenient macros for naming functions --- *
374 * Because the crypto core is involved in XChaCha/r's per-nonce setup, we
375 * need to take an interest in the number of rounds in most of the various
376 * functions, and it will probably help if we distinguish the context
377 * structures for the various versions.
380 #define XCHACHA_CTX(r) xchacha##r##_ctx
381 #define XCHACHA_INIT(r, ctx, k, ksz, n) xchacha##r##_init(ctx, k, ksz, n)
382 #define XCHACHA_SETNONCE(r, ctx, n) xchacha##r##_setnonce(ctx, n)
383 #define XCHACHA_SEEK(r, ctx, i) xchacha##r##_seek(ctx, i)
384 #define XCHACHA_SEEKU64(r, ctx, i) xchacha##r##_seeku64(ctx, i)
385 #define XCHACHA_TELL(r, ctx) xchacha##r##_tell(ctx)
386 #define XCHACHA_TELLU64(r, ctx) xchacha##r##_tellu64(ctx)
387 #define XCHACHA_ENCRYPT(r, ctx, src, dest, sz) \
388 xchacha##r##_encrypt(ctx, src, dest, sz)
390 /* --- @xchacha{20,12,8}_init@ --- *
392 * Arguments: @xchachaR_ctx *ctx@ = the context to fill in
393 * @const void *key@ = pointer to key material
394 * @size_t ksz@ = size of key (either 32 or 16)
395 * @const void *nonce@ = initial nonce, or null
399 * Use: Initializes an XChaCha/r context ready for use.
401 * There is a different function for each number of rounds,
402 * unlike for plain ChaCha.
405 #define DEFXINIT(r) \
406 void XCHACHA_INIT(r, XCHACHA_CTX(r) *ctx, \
407 const void *key, size_t ksz, const void *nonce) \
409 populate(ctx->k, key, ksz); \
410 ctx->s.a[ 0] = CHACHA_A256; \
411 ctx->s.a[ 1] = CHACHA_B256; \
412 ctx->s.a[ 2] = CHACHA_C256; \
413 ctx->s.a[ 3] = CHACHA_D256; \
414 XCHACHA_SETNONCE(r, ctx, nonce ? nonce : zerononce); \
416 CHACHA_VARS(DEFXINIT)
418 /* --- @xchacha{20,12,8}_setnonce@ --- *
420 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
421 * @const void *nonce@ = the nonce (@XCHACHA_NONCESZ@ bytes)
425 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
426 * different message. The stream position is reset to zero (see
427 * @chacha_seek@ etc.).
429 * There is a different function for each number of rounds,
430 * unlike for plain ChaCha.
433 #define DEFXNONCE(r) \
434 void XCHACHA_SETNONCE(r, XCHACHA_CTX(r) *ctx, const void *nonce) \
436 const octet *n = nonce; \
440 for (i = 0; i < 4; i++) in[i] = LOAD32_L(n + 4*i); \
441 HCHACHA_RAW(r, ctx->k, in, ctx->s.a + 4); \
442 chacha_setnonce(&ctx->s, n + 16); \
444 CHACHA_VARS(DEFXNONCE)
446 /* --- @xchacha{20,12,8}_seek{,u64}@ --- *
448 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
449 * @unsigned long i@, @kludge64 i@ = new position to set
453 * Use: Sets a new stream position, in units of ChaCha output
454 * blocks, which are @XCHACHA_OUTSZ@ bytes each. Byte
455 * granularity can be achieved by calling @xchachaR_encrypt@
458 * There is a different function for each number of rounds,
459 * unlike for plain ChaCha, because the context structures are
463 /* --- @xchacha{20,12,8}_tell{,u64}@ --- *
465 * Arguments: @chacha_ctx *ctx@ = pointer to context
467 * Returns: The current position in the output stream, in blocks,
470 * There is a different function for each number of rounds,
471 * unlike for plain ChaCha, because the context structures are
475 /* --- @xchacha{20,12,8}_encrypt@ --- *
477 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
478 * @const void *src@ = source buffer (or null)
479 * @void *dest@ = destination buffer (or null)
480 * @size_t sz@ = size of the buffers
484 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
485 * XChaCha works by XORing plaintext with a keystream, so
486 * encryption and decryption are the same operation. If @dest@
487 * is null then ignore @src@ and skip @sz@ bytes of the
488 * keystream. If @src@ is null, then just write the keystream
492 #define DEFXPASSTHRU(r) \
493 void XCHACHA_SEEK(r, XCHACHA_CTX(r) *ctx, unsigned long i) \
494 { chacha_seek(&ctx->s, i); } \
495 void XCHACHA_SEEKU64(r, XCHACHA_CTX(r) *ctx, kludge64 i) \
496 { chacha_seeku64(&ctx->s, i); } \
497 unsigned long XCHACHA_TELL(r, XCHACHA_CTX(r) *ctx) \
498 { return chacha_tell(&ctx->s); } \
499 kludge64 XCHACHA_TELLU64(r, XCHACHA_CTX(r) *ctx) \
500 { return chacha_tellu64(&ctx->s); } \
501 void XCHACHA_ENCRYPT(r, XCHACHA_CTX(r) *ctx, \
502 const void *src, void *dest, size_t sz) \
503 { CHACHA_ENCRYPT(r, &ctx->s, src, dest, sz); }
504 CHACHA_VARS(DEFXPASSTHRU)
506 /*----- Generic cipher interface ------------------------------------------*/
508 typedef struct gctx { gcipher c; chacha_ctx ctx; } gctx;
510 static void gsetiv(gcipher *c, const void *iv)
511 { gctx *g = (gctx *)c; chacha_setnonce(&g->ctx, iv); }
513 static void gsetiv_ietf(gcipher *c, const void *iv)
514 { gctx *g = (gctx *)c; chacha_setnonce_ietf(&g->ctx, iv); }
516 static void gdestroy(gcipher *c)
517 { gctx *g = (gctx *)c; BURN(*g); S_DESTROY(g); }
519 static gcipher *ginit(const void *k, size_t sz, const gcipher_ops *ops)
521 gctx *g = S_CREATE(gctx);
523 chacha_init(&g->ctx, k, sz, 0);
527 #define DEFGCIPHER(r) \
529 static const gcipher_ops gops_##r, gops_##r##_ietf; \
531 static gcipher *ginit_##r(const void *k, size_t sz) \
532 { return (ginit(k, sz, &gops_##r)); } \
534 static gcipher *ginit_##r##_ietf(const void *k, size_t sz) \
535 { return (ginit(k, sz, &gops_##r##_ietf)); } \
537 static void gencrypt_##r(gcipher *c, const void *s, \
538 void *t, size_t sz) \
539 { gctx *g = (gctx *)c; CHACHA_ENCRYPT(r, &g->ctx, s, t, sz); } \
541 static const gcipher_ops gops_##r = { \
543 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv, 0 \
546 static const gcipher_ops gops_##r##_ietf = { \
548 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv_ietf, 0 \
551 const gccipher chacha##r = { \
552 "chacha" #r, chacha_keysz, \
553 CHACHA_NONCESZ, ginit_##r \
556 const gccipher chacha##r##_ietf = { \
557 "chacha" #r "-ietf", chacha_keysz, \
558 CHACHA_IETF_NONCESZ, ginit_##r##_ietf \
561 CHACHA_VARS(DEFGCIPHER)
563 #define DEFGXCIPHER(r) \
565 typedef struct { gcipher c; XCHACHA_CTX(r) ctx; } gxctx_##r; \
567 static void gxsetiv_##r(gcipher *c, const void *iv) \
568 { gxctx_##r *g = (gxctx_##r *)c; XCHACHA_SETNONCE(r, &g->ctx, iv); } \
570 static void gxdestroy_##r(gcipher *c) \
571 { gxctx_##r *g = (gxctx_##r *)c; BURN(*g); S_DESTROY(g); } \
573 static const gcipher_ops gxops_##r; \
575 static gcipher *gxinit_##r(const void *k, size_t sz) \
577 gxctx_##r *g = S_CREATE(gxctx_##r); \
578 g->c.ops = &gxops_##r; \
579 XCHACHA_INIT(r, &g->ctx, k, sz, 0); \
583 static void gxencrypt_##r(gcipher *c, const void *s, \
584 void *t, size_t sz) \
586 gxctx_##r *g = (gxctx_##r *)c; \
587 XCHACHA_ENCRYPT(r, &g->ctx, s, t, sz); \
590 static const gcipher_ops gxops_##r = { \
592 gxencrypt_##r, gxencrypt_##r, gxdestroy_##r, gxsetiv_##r, 0 \
595 const gccipher xchacha##r = { \
596 "xchacha" #r, chacha_keysz, \
597 XCHACHA_NONCESZ, gxinit_##r \
600 CHACHA_VARS(DEFGXCIPHER)
602 /*----- Generic random number generator interface -------------------------*/
604 typedef struct grops {
606 void (*seek)(void *, kludge64);
607 kludge64 (*tell)(void *);
608 void (*setnonce)(void *, const void *);
609 void (*generate)(void *, void *, size_t);
612 typedef struct grbasectx {
617 static int grmisc(grand *r, unsigned op, ...)
619 octet buf[XCHACHA_NONCESZ];
620 grbasectx *g = (grbasectx *)r;
634 switch (va_arg(ap, unsigned)) {
637 case GRAND_SEEDUINT32:
638 case GRAND_SEEDBLOCK:
653 i = va_arg(ap, unsigned); STORE32_L(buf, i);
654 memset(buf + 4, 0, g->ops->noncesz - 4);
655 g->ops->setnonce(g, buf);
657 case GRAND_SEEDUINT32:
658 i = va_arg(ap, uint32); STORE32_L(buf, i);
659 memset(buf + 4, 0, g->ops->noncesz - 4);
660 g->ops->setnonce(g, buf);
662 case GRAND_SEEDBLOCK:
663 p = va_arg(ap, const void *);
664 sz = va_arg(ap, size_t);
665 if (sz < g->ops->noncesz) {
667 memset(buf + sz, 0, g->ops->noncesz - sz);
670 g->ops->setnonce(g, p);
673 rr = va_arg(ap, grand *);
674 rr->ops->fill(rr, buf, g->ops->noncesz);
675 g->ops->setnonce(g, buf);
678 ul = va_arg(ap, unsigned long); ASSIGN64(pos, ul);
679 g->ops->seek(g, pos);
682 pos = va_arg(ap, kludge64);
683 g->ops->seek(g, pos);
686 pos = g->ops->tell(g);
687 *va_arg(ap, unsigned long *) = GET64(unsigned long, pos);
690 *va_arg(ap, kludge64 *) = g->ops->tell(g);
700 static octet grbyte(grand *r)
702 grbasectx *g = (grbasectx *)r;
704 g->ops->generate(g, &o, 1);
708 static uint32 grword(grand *r)
710 grbasectx *g = (grbasectx *)r;
712 g->ops->generate(g, b, sizeof(b));
713 return (LOAD32_L(b));
716 static void grfill(grand *r, void *p, size_t sz)
718 grbasectx *g = (grbasectx *)r;
719 g->ops->generate(r, p, sz);
722 typedef struct grctx {
727 static void gr_seek(void *r, kludge64 pos)
728 { grctx *g = r; chacha_seeku64(&g->ctx, pos); }
730 static void gr_seek_ietf(void *r, kludge64 pos)
731 { grctx *g = r; chacha_seek_ietf(&g->ctx, LO64(pos)); }
733 static kludge64 gr_tell(void *r)
734 { grctx *g = r; return (chacha_tellu64(&g->ctx)); }
736 static kludge64 gr_tell_ietf(void *r)
741 SET64(pos, 0, chacha_tell_ietf(&g->ctx));
745 static void gr_setnonce(void *r, const void *n)
746 { grctx *g = r; chacha_setnonce(&g->ctx, n); }
748 static void gr_setnonce_ietf(void *r, const void *n)
749 { grctx *g = r; chacha_setnonce_ietf(&g->ctx, n); }
751 static void grdestroy(grand *r)
752 { grctx *g = (grctx *)r; BURN(*g); S_DESTROY(g); }
754 static grand *grinit(const void *k, size_t ksz, const void *n,
755 const grand_ops *ops, const grops *myops)
757 grctx *g = S_CREATE(grctx);
760 chacha_init(&g->ctx, k, ksz, 0);
761 if (n) myops->setnonce(g, n);
765 #define DEFGRAND(rr) \
767 static void gr_generate_##rr(void *r, void *b, size_t sz) \
768 { grctx *g = r; CHACHA_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
770 static const grops grops_##rr = \
771 { CHACHA_NONCESZ, gr_seek, gr_tell, \
772 gr_setnonce, gr_generate_##rr }; \
774 static const grops grops_##rr##_ietf = \
775 { CHACHA_IETF_NONCESZ, gr_seek_ietf, gr_tell_ietf, \
776 gr_setnonce_ietf, gr_generate_##rr }; \
778 static const grand_ops grops_rand_##rr = { \
779 "chacha" #rr, GRAND_CRYPTO, 0, \
780 grmisc, grdestroy, grword, \
781 grbyte, grword, grand_defaultrange, grfill \
784 static const grand_ops grops_rand_##rr##_ietf = { \
785 "chacha" #rr "-ietf", GRAND_CRYPTO, 0, \
786 grmisc, grdestroy, grword, \
787 grbyte, grword, grand_defaultrange, grfill \
790 grand *chacha##rr##_rand(const void *k, size_t ksz, const void *n) \
791 { return (grinit(k, ksz, n, &grops_rand_##rr, &grops_##rr)); } \
793 grand *chacha##rr##_ietf_rand(const void *k, size_t ksz, \
796 return (grinit(k, ksz, n, \
797 &grops_rand_##rr##_ietf, \
798 &grops_##rr##_ietf)); \
801 CHACHA_VARS(DEFGRAND)
803 #define DEFXGRAND(rr) \
805 typedef struct grxctx_##rr { \
807 XCHACHA_CTX(rr) ctx; \
810 static void grx_seek_##rr(void *r, kludge64 pos) \
811 { grxctx_##rr *g = r; XCHACHA_SEEKU64(rr, &g->ctx, pos); } \
813 static kludge64 grx_tell_##rr(void *r) \
814 { grxctx_##rr *g = r; return (XCHACHA_TELLU64(rr, &g->ctx)); } \
816 static void grx_setnonce_##rr(void *r, const void *n) \
817 { grxctx_##rr *g = r; XCHACHA_SETNONCE(rr, &g->ctx, n); } \
819 static void grxdestroy_##rr(grand *r) \
820 { grxctx_##rr *g = (grxctx_##rr *)r; BURN(*g); S_DESTROY(g); } \
822 static void grx_generate_##rr(void *r, void *b, size_t sz) \
823 { grxctx_##rr *g = r; XCHACHA_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
825 static const grops grxops_##rr = \
826 { XCHACHA_NONCESZ, grx_seek_##rr, grx_tell_##rr, \
827 grx_setnonce_##rr, grx_generate_##rr }; \
829 static const grand_ops grxops_rand_##rr = { \
830 "xchacha" #rr, GRAND_CRYPTO, 0, \
831 grmisc, grxdestroy_##rr, grword, \
832 grbyte, grword, grand_defaultrange, grfill \
835 grand *xchacha##rr##_rand(const void *k, size_t ksz, const void *n) \
837 grxctx_##rr *g = S_CREATE(grxctx_##rr); \
838 g->r.r.ops = &grxops_rand_##rr; \
839 g->r.ops = &grxops_##rr; \
840 XCHACHA_INIT(rr, &g->ctx, k, ksz, n); \
843 CHACHA_VARS(DEFXGRAND)
845 /*----- Test rig ----------------------------------------------------------*/
852 #include <mLib/quis.h>
853 #include <mLib/testrig.h>
855 #define DEFVCORE(r) \
856 static int v_core_##r(dstr *v) \
858 chacha_matrix a, b; \
859 dstr d = DSTR_INIT; \
863 DENSURE(&d, CHACHA_OUTSZ); d.len = CHACHA_OUTSZ; \
864 n = *(int *)v[0].buf; \
865 for (i = 0; i < CHACHA_OUTSZ/4; i++) \
866 a[i] = LOAD32_L(v[1].buf + 4*i); \
867 for (i = 0; i < n; i++) { \
869 memcpy(a, b, sizeof(a)); \
871 for (i = 0; i < CHACHA_OUTSZ/4; i++) STORE32_L(d.buf + 4*i, a[i]); \
873 if (d.len != v[2].len || memcmp(d.buf, v[2].buf, v[2].len) != 0) { \
875 printf("\nfail core:" \
876 "\n\titerations = %d" \
878 type_hex.dump(&v[1], stdout); \
879 printf("\n\texpected = "); \
880 type_hex.dump(&v[2], stdout); \
881 printf("\n\tcalculated = "); \
882 type_hex.dump(&d, stdout); \
889 CHACHA_VARS(DEFVCORE)
891 #define CHACHA_CTX(r) chacha_ctx
893 #define CHACHA_TESTSETUP(r, ctx, k, ksz, n, nsz, p, psz) do { \
895 chacha_init(ctx, k, ksz, 0); \
896 if (nsz == 8) chacha_setnonce(ctx, n); \
897 else if (nsz == 12) chacha_setnonce_ietf(ctx, n); \
898 if (psz == 8) { LOAD64_(pos64, p); chacha_seeku64(ctx, pos64); } \
899 else if (psz == 4) chacha_seek_ietf(ctx, LOAD32(p)); \
902 #define XCHACHA_TESTSETUP(r, ctx, k, ksz, n, nsz, p, psz) do { \
904 XCHACHA_INIT(r, ctx, k, ksz, 0); \
905 if (nsz == 24) XCHACHA_SETNONCE(r, ctx, n); \
906 if (psz == 8) { LOAD64_(pos64, p); xchacha##r##_seeku64(ctx, pos64); } \
909 #define DEFxVENC(base, BASE, r) \
910 static int v_encrypt_##base##_##r(dstr *v) \
913 dstr d = DSTR_INIT; \
914 const octet *p, *p0; \
916 size_t sz, sz0, step; \
917 unsigned long skip; \
920 if (v[4].len) { p0 = (const octet *)v[4].buf; sz0 = v[4].len; } \
921 else { p0 = 0; sz0 = v[5].len; } \
922 DENSURE(&d, sz0); d.len = sz0; \
923 skip = *(unsigned long *)v[3].buf; \
926 while (step < sz0 + skip) { \
927 step = step ? 3*step + 4 : 1; \
928 if (step > sz0 + skip) step = sz0 + skip; \
929 BASE##_TESTSETUP(r, &ctx, v[0].buf, v[0].len, \
930 v[1].buf, v[1].len, v[2].buf, v[2].len); \
932 for (sz = skip; sz >= step; sz -= step) \
933 BASE##_ENCRYPT(r, &ctx, 0, 0, step); \
934 if (sz) BASE##_ENCRYPT(r, &ctx, 0, 0, sz); \
935 for (p = p0, q = (octet *)d.buf, sz = sz0; \
937 sz -= step, q += step) { \
938 BASE##_ENCRYPT(r, &ctx, p, q, step); \
941 if (sz) BASE##_ENCRYPT(r, &ctx, p, q, sz); \
943 if (d.len != v[5].len || memcmp(d.buf, v[5].buf, v[5].len) != 0) { \
945 printf("\nfail encrypt:" \
947 "\n\tkey = ", (unsigned long)step); \
948 type_hex.dump(&v[0], stdout); \
949 printf("\n\tnonce = "); \
950 type_hex.dump(&v[1], stdout); \
951 printf("\n\tposition = "); \
952 type_hex.dump(&v[2], stdout); \
953 printf("\n\tskip = %lu", skip); \
954 printf("\n\tmessage = "); \
955 type_hex.dump(&v[4], stdout); \
956 printf("\n\texpected = "); \
957 type_hex.dump(&v[5], stdout); \
958 printf("\n\tcalculated = "); \
959 type_hex.dump(&d, stdout); \
967 #define DEFVENC(r) DEFxVENC(chacha, CHACHA, r)
968 #define DEFXVENC(r) DEFxVENC(xchacha, XCHACHA, r)
970 CHACHA_VARS(DEFXVENC)
972 static test_chunk defs[] = {
973 #define DEFxTAB(base, r) \
974 { #base #r, v_encrypt_##base##_##r, \
975 { &type_hex, &type_hex, &type_hex, &type_ulong, \
976 &type_hex, &type_hex, 0 } },
978 { "chacha" #r "-core", v_core_##r, \
979 { &type_int, &type_hex, &type_hex, 0 } }, \
981 #define DEFXTAB(r) DEFxTAB(xchacha, r)
987 int main(int argc, char *argv[])
989 test_run(argc, argv, defs, SRCDIR"/t/chacha");
995 /*----- That's all, folks -------------------------------------------------*/