5 * RSA parameter generation
7 * (c) 1999 Straylight/Edgeware
10 /*----- Licensing notice --------------------------------------------------*
12 * This file is part of Catacomb.
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
30 /*----- Header files ------------------------------------------------------*/
32 #include <mLib/dstr.h>
39 #include "strongprime.h"
41 /*----- Main code ---------------------------------------------------------*/
43 /* --- @rsa_gen@ --- *
45 * Arguments: @rsa_priv *rp@ = pointer to block to be filled in
46 * @unsigned nbits@ = required modulus size in bits
47 * @grand *r@ = random number source
48 * @unsigned n@ = number of attempts to make
49 * @pgen_proc *event@ = event handler function
50 * @void *ectx@ = argument for the event handler
52 * Returns: Zero if all went well, nonzero otherwise.
54 * Use: Constructs a pair of strong RSA primes and other useful RSA
55 * parameters. A small encryption exponent is chosen if
59 int rsa_gen(rsa_priv *rp, unsigned nbits, grand *r, unsigned n,
60 pgen_proc *event, void *ectx)
65 /* --- Bits of initialization --- */
67 rp->e = mp_fromulong(MP_NEW, 0x10001);
70 /* --- Generate strong primes %$p$% and %$q$% --- *
72 * Constrain the GCD of @q@ to ensure that overly small private exponents
73 * are impossible. Current results suggest that if %$d < n^{0.29}$% then
74 * it can be guessed fairly easily. This implementation is rather more
75 * conservative about that sort of thing.
79 if ((rp->p = strongprime("p", MP_NEWSEC, nbits/2, r, n, event, ectx)) == 0)
82 /* --- Do painful fiddling with GCD steppers --- */
88 if ((q = strongprime_setup("q", MP_NEWSEC, &g.jp, nbits / 2,
89 r, n, event, ectx)) == 0)
91 g.r = mp_lsr(MP_NEW, rp->p, 1);
94 q = pgen("q", q, q, event, ectx, n, pgen_gcdstep, &g,
95 rabin_iters(nbits/2), pgen_test, &rb);
108 /* --- Ensure that %$p > q$% --- *
110 * Also ensure that %$p$% and %$q$% are sufficiently different to deter
111 * square-root-based factoring methods.
114 phi = mp_sub(phi, rp->p, rp->q);
115 if (MP_LEN(phi) * 4 < MP_LEN(rp->p) * 3 ||
116 MP_LEN(phi) * 4 < MP_LEN(rp->q) * 3) {
131 /* --- Work out the modulus and the CRT coefficient --- */
133 rp->n = mp_mul(MP_NEW, rp->p, rp->q);
134 rp->q_inv = mp_modinv(MP_NEW, rp->q, rp->p);
136 /* --- Work out %$\varphi(n) = (p - 1)(q - 1)$% --- *
138 * Save on further multiplications by noting that %$n = pq$% is known and
139 * that %$(p - 1)(q - 1) = pq - p - q + 1$%. To minimize the size of @d@
140 * (useful for performance reasons, although not very because an overly
141 * small @d@ will be rejected for security reasons) this is then divided by
142 * %$\gcd(p - 1, q - 1)$%.
145 phi = mp_sub(phi, rp->n, rp->p);
146 phi = mp_sub(phi, phi, rp->q);
147 phi = mp_add(phi, phi, MP_ONE);
148 phi = mp_lsr(phi, phi, 1);
149 mp_div(&phi, 0, phi, g.g);
151 /* --- Decide on a public exponent --- *
153 * Simultaneously compute the private exponent.
156 mp_gcd(&g.g, 0, &rp->d, phi, rp->e);
157 if (!MP_EQ(g.g, MP_ONE) && MP_LEN(rp->d) * 4 > MP_LEN(rp->n) * 3)
160 /* --- Work out exponent residues --- */
162 rp->dp = MP_NEW; phi = mp_sub(phi, rp->p, MP_ONE);
163 mp_div(0, &rp->dp, rp->d, phi);
165 rp->dq = MP_NEW; phi = mp_sub(phi, rp->q, MP_ONE);
166 mp_div(0, &rp->dq, rp->d, phi);
174 /* --- Tidy up when something goes wrong --- */
191 /*----- That's all, folks -------------------------------------------------*/