5 * Basic arithmetic on multiprecision integers
7 * (c) 1999 Straylight/Edgeware
10 /*----- Licensing notice --------------------------------------------------*
12 * This file is part of Catacomb.
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
30 /*----- Header files ------------------------------------------------------*/
34 /*----- Macros ------------------------------------------------------------*/
36 #define MAX(x, y) ((x) >= (y) ? (x) : (y))
38 /*----- Main code ---------------------------------------------------------*/
40 /* --- @mp_lsl@, @mp_lslc@, @mp_lsr@ --- *
42 * Arguments: @mp *d@ = destination
44 * @size_t n@ = number of bits to move
46 * Returns: Result, @a@ shifted left or right by @n@.
48 * Use: Bitwise shift operators. @mp_lslc@ fills the bits introduced
49 * on the right with ones instead of zeroes: it's used
50 * internally by @mp_lsl2c@, though it may be useful on its
54 mp *mp_lsl(mp *d, mp *a, size_t n)
56 MP_DEST(d, MP_LEN(a) + (n + MPW_BITS - 1) / MPW_BITS, a->f);
57 mpx_lsl(d->v, d->vl, a->v, a->vl, n);
58 d->f = a->f & (MP_NEG | MP_BURN);
63 mp *mp_lslc(mp *d, mp *a, size_t n)
65 MP_DEST(d, MP_LEN(a) + (n + MPW_BITS - 1) / MPW_BITS, a->f);
66 mpx_lslc(d->v, d->vl, a->v, a->vl, n);
67 d->f = a->f & (MP_NEG | MP_BURN);
72 mp *mp_lsr(mp *d, mp *a, size_t n)
74 MP_DEST(d, MP_LEN(a), a->f);
75 mpx_lsr(d->v, d->vl, a->v, a->vl, n);
76 d->f = a->f & (MP_NEG | MP_BURN);
81 /* --- @mp_lsl2c@, @mp_lsr2c@ --- *
83 * Arguments: @mp *d@ = destination
85 * @size_t n@ = number of bits to move
87 * Returns: Result, @a@ shifted left or right by @n@. Handles the
88 * pretence of sign-extension for negative numbers.
91 mp *mp_lsl2c(mp *d, mp *a, size_t n)
94 return (mp_lsl(d, a, n));
101 mp *mp_lsr2c(mp *d, mp *a, size_t n)
104 return (mp_lsr(d, a, n));
111 /* --- @mp_testbit@ --- *
113 * Arguments: @mp *x@ = a large integer
114 * @unsigned long n@ = which bit to test
116 * Returns: Nonzero if the bit is set, zero if not.
119 int mp_testbit(mp *x, unsigned long n)
121 if (n > MPW_BITS * MP_LEN(x))
123 return ((x->v[n/MPW_BITS] >> n%MPW_BITS) & 1u);
126 /* --- @mp_testbit2c@ --- *
128 * Arguments: @mp *x@ = a large integer
129 * @unsigned long n@ = which bit to test
131 * Returns: Nonzero if the bit is set, zero if not. Fakes up two's
132 * complement representation.
135 int mp_testbit2c(mp *x, unsigned long n)
139 return (mp_testbit(x, n));
140 x = mp_not2c(MP_NEW, x);
141 r = !mp_testbit(x, n);
146 /* --- @mp_setbit@, @mp_clearbit@ --- *
148 * Arguments: @mp *d@ = a destination
149 * @mp *x@ = a large integer
150 * @unsigned long n@ = which bit to modify
152 * Returns: The argument @x@, with the appropriate bit set or cleared.
155 mp *mp_setbit(mp *d, mp *x, unsigned long n)
159 rq = n + MPW_BITS; rq -= rq % MPW_BITS;
164 MP_DEST(d, rq, x->f & (MP_NEG | MP_BURN));
165 d->v[n/MPW_BITS] |= 1 << n%MPW_BITS;
169 mp *mp_clearbit(mp *d, mp *x, unsigned long n)
173 rq = n + MPW_BITS; rq -= rq % MPW_BITS;
178 MP_DEST(d, rq, x->f & (MP_NEG | MP_BURN));
179 d->v[n/MPW_BITS] &= ~(1 << n%MPW_BITS);
183 /* --- @mp_setbit2c@, @mp_clearbit2c@ --- *
185 * Arguments: @mp *d@ = a destination
186 * @mp *x@ = a large integer
187 * @unsigned long n@ = which bit to modify
189 * Returns: The argument @x@, with the appropriate bit set or cleared.
190 * Fakes up two's complement representation.
193 mp *mp_setbit2c(mp *d, mp *x, unsigned long n)
196 return mp_setbit(d, x, n);
198 d = mp_clearbit(d, d, n);
203 mp *mp_clearbit2c(mp *d, mp *x, unsigned long n)
206 return mp_clearbit(d, x, n);
208 d = mp_setbit(d, d, n);
215 * Arguments: @const mp *a, *b@ = two numbers
217 * Returns: Nonzero if the numbers are equal.
220 int mp_eq(const mp *a, const mp *b) { return (MP_EQ(a, b)); }
222 /* --- @mp_cmp@ --- *
224 * Arguments: @const mp *a, *b@ = two numbers
226 * Returns: Less than, equal to or greater than zero, according to
227 * whether @a@ is less than, equal to or greater than @b@.
230 int mp_cmp(const mp *a, const mp *b)
232 if (!((a->f ^ b->f) & MP_NEG)) {
234 return (-mpx_ucmp(a->v, a->vl, b->v, b->vl));
236 return (mpx_ucmp(a->v, a->vl, b->v, b->vl));
237 } else if (a->f & MP_NEG)
243 /* --- @mp_neg@ --- *
245 * Arguments: @mp *d@ = destination
248 * Returns: The negation of the argument.
250 * Use: Negates its argument.
253 mp *mp_neg(mp *d, mp *a)
255 /* --- Surprising amounts of messing about required --- */
263 MP_DEST(a, MP_LEN(a), a->f);
268 /* --- @mp_bitop@ --- *
270 * Arguments: @mp *d@ = destination
271 * @mp *a, *b@ = sources
273 * Returns: The result of the given bitwise operation. These functions
274 * don't handle negative numbers at all sensibly. For that, use
275 * the @...2c@ variants. The functions are named after the
276 * truth tables they generate:
283 #define MP_BITBINOP(string) \
285 mp *mp_bit##string(mp *d, mp *a, mp *b) \
287 MP_DEST(d, MAX(MP_LEN(a), MP_LEN(b)), (a->f | b->f) & ~MP_NEG); \
288 mpx_bit##string(d->v, d->vl, a->v, a->vl, b->v, b->vl); \
289 d->f = (a->f | b->f) & MP_BURN; \
294 MPX_DOBIN(MP_BITBINOP)
296 /* --- @mp_not@ --- *
298 * Arguments: @mp *d@ = destination
301 * Returns: The bitwise complement of the source.
304 mp *mp_not(mp *d, mp *a)
306 MP_DEST(d, MP_LEN(a), a->f);
307 mpx_not(d->v, d->vl, a->v, a->vl);
308 d->f = a->f & MP_BURN;
313 /* --- @mp_bitop2c@ --- *
315 * Arguments: @mp *d@ = destination
316 * @mp *a, *b@ = sources
318 * Returns: The result of the given bitwise operation. Negative numbers
319 * are treated as two's complement, sign-extended infinitely to
320 * the left. The functions are named after the truth tables
328 /* --- How this actually works --- *
330 * The two arguments are inverted (with a sign-swap) if they're currently
331 * negative. This means that we end up using a different function (one which
332 * reinverts as we go) for the main operation. Also, if the sign would be
333 * negative at the end, we preinvert the output and then invert again with a
336 * Start with: wxyz WXYZ
337 * If @a@ negative: yzwx or YZWX
338 * If @b@ negative: xwzy XWZY
339 * If both negative: zyxw ZYXW
342 #define MP_BIT2CBINOP(n, base, an, bn, abn, p_base, p_an, p_bn, p_abn) \
344 mp *mp_bit##n##2c(mp *d, mp *a, mp *b) \
346 if (!((a->f | b->f) & MP_NEG)) { /* Both positive */ \
347 d = mp_bit##base(d, a, b); \
349 } else if (!(b->f & MP_NEG)) { /* Only @b@ positive */ \
351 d = mp_not2c(d, a); \
352 d = mp_bit##an(d, d, b); \
355 } else if (!(a->f & MP_NEG)) { /* Only @a@ positive */ \
357 d = mp_not2c(d, b); \
358 d = mp_bit##bn(d, a, d); \
361 } else { /* Both negative */ \
362 mp *t = mp_not2c(MP_NEW, a); \
363 d = mp_not2c(d, b); \
364 d = mp_bit##abn(d, t, d); \
371 #define NEG d = mp_not2c(d, d);
373 MP_BIT2CBINOP(0000, 0000, 0000, 0000, 0000, POS, POS, POS, POS)
374 MP_BIT2CBINOP(0001, 0001, 0100, 0010, 0111, POS, POS, POS, NEG)
375 MP_BIT2CBINOP(0010, 0010, 0111, 0001, 0100, POS, NEG, POS, POS)
376 MP_BIT2CBINOP(0011, 0011, 0011, 0011, 0011, POS, NEG, POS, NEG)
377 MP_BIT2CBINOP(0100, 0100, 0001, 0111, 0010, POS, POS, NEG, POS)
378 MP_BIT2CBINOP(0101, 0101, 0101, 0101, 0101, POS, POS, NEG, NEG)
379 MP_BIT2CBINOP(0110, 0110, 0110, 0110, 0110, POS, NEG, NEG, POS)
380 MP_BIT2CBINOP(0111, 0111, 0010, 0100, 0001, POS, NEG, NEG, NEG)
381 MP_BIT2CBINOP(1000, 0111, 0010, 0100, 0001, NEG, POS, POS, POS)
382 MP_BIT2CBINOP(1001, 0110, 0110, 0110, 0110, NEG, POS, POS, NEG)
383 MP_BIT2CBINOP(1010, 0101, 0101, 0101, 0101, NEG, NEG, POS, POS)
384 MP_BIT2CBINOP(1011, 0100, 0001, 0111, 0010, NEG, NEG, POS, NEG)
385 MP_BIT2CBINOP(1100, 0011, 0011, 0011, 0011, NEG, POS, NEG, POS)
386 MP_BIT2CBINOP(1101, 0010, 0111, 0001, 0100, NEG, POS, NEG, NEG)
387 MP_BIT2CBINOP(1110, 0001, 0100, 0010, 0111, NEG, NEG, NEG, POS)
388 MP_BIT2CBINOP(1111, 0000, 0000, 0000, 0000, NEG, NEG, NEG, NEG)
392 /* --- @mp_not2c@ --- *
394 * Arguments: @mp *d@ = destination
397 * Returns: The sign-extended complement of the argument.
400 mp *mp_not2c(mp *d, mp *a)
404 MP_DEST(d, MP_LEN(a) + 1, a->f);
407 MPX_USUBN(d->v, d->vl, 1);
409 MPX_UADDN(d->v, d->vl, 1);
412 mpx_usub(d->v, d->vl, a->v, a->vl, &one, &one + 1);
414 mpx_uadd(d->v, d->vl, a->v, a->vl, &one, &one + 1);
416 d->f = (a->f & (MP_NEG | MP_BURN)) ^ MP_NEG;
421 /* --- @mp_add@ --- *
423 * Arguments: @mp *d@ = destination
424 * @mp *a, *b@ = sources
426 * Returns: Result, @a@ added to @b@.
429 mp *mp_add(mp *d, mp *a, mp *b)
431 MP_DEST(d, MAX(MP_LEN(a), MP_LEN(b)) + 1, a->f | b->f);
432 if (!((a->f ^ b->f) & MP_NEG))
433 mpx_uadd(d->v, d->vl, a->v, a->vl, b->v, b->vl);
435 if (MPX_UCMP(a->v, a->vl, <, b->v, b->vl)) {
436 mp *t = a; a = b; b = t;
438 mpx_usub(d->v, d->vl, a->v, a->vl, b->v, b->vl);
440 d->f = ((a->f | b->f) & MP_BURN) | (a->f & MP_NEG);
445 /* --- @mp_sub@ --- *
447 * Arguments: @mp *d@ = destination
448 * @mp *a, *b@ = sources
450 * Returns: Result, @b@ subtracted from @a@.
453 mp *mp_sub(mp *d, mp *a, mp *b)
456 MP_DEST(d, MAX(MP_LEN(a), MP_LEN(b)) + 1, a->f | b->f);
457 if ((a->f ^ b->f) & MP_NEG)
458 mpx_uadd(d->v, d->vl, a->v, a->vl, b->v, b->vl);
460 if (MPX_UCMP(a->v, a->vl, <, b->v, b->vl)) {
461 mp *t = a; a = b; b = t;
464 mpx_usub(d->v, d->vl, a->v, a->vl, b->v, b->vl);
466 d->f = ((a->f | b->f) & MP_BURN) | ((a->f ^ sgn) & MP_NEG);
471 /* --- @mp_mul@ --- *
473 * Arguments: @mp *d@ = destination
474 * @mp *a, *b@ = sources
476 * Returns: Result, @a@ multiplied by @b@.
479 mp *mp_mul(mp *d, mp *a, mp *b)
484 if (MP_LEN(a) <= MPK_THRESH || MP_LEN(b) <= MPK_THRESH) {
485 MP_DEST(d, MP_LEN(a) + MP_LEN(b), a->f | b->f | MP_UNDEF);
486 mpx_umul(d->v, d->vl, a->v, a->vl, b->v, b->vl);
488 size_t m = MAX(MP_LEN(a), MP_LEN(b));
490 MP_DEST(d, 3 * m, a->f | b->f | MP_UNDEF);
491 s = mpalloc(d->a, 5 * m);
492 mpx_kmul(d->v, d->vl, a->v, a->vl, b->v, b->vl, s, s + 5 * m);
496 d->f = ((a->f | b->f) & MP_BURN) | ((a->f ^ b->f) & MP_NEG);
503 /* --- @mp_sqr@ --- *
505 * Arguments: @mp *d@ = destination
508 * Returns: Result, @a@ squared.
511 mp *mp_sqr(mp *d, mp *a)
513 size_t m = MP_LEN(a);
516 if (m > MPK_THRESH) {
518 MP_DEST(d, 3 * m, a->f | MP_UNDEF);
519 s = mpalloc(d->a, 5 * m);
520 mpx_ksqr(d->v, d->vl, a->v, a->vl, s, s + 5 * m);
523 MP_DEST(d, 2 * m + 2, a->f | MP_UNDEF);
524 mpx_usqr(d->v, d->vl, a->v, a->vl);
526 d->f = a->f & MP_BURN;
532 /* --- @mp_div@ --- *
534 * Arguments: @mp **qq, **rr@ = destination, quotient and remainder
535 * @mp *a, *b@ = sources
537 * Use: Calculates the quotient and remainder when @a@ is divided by
538 * @b@. The destinations @*qq@ and @*rr@ must be distinct.
539 * Either of @qq@ or @rr@ may be null to indicate that the
540 * result is irrelevant. (Discarding both results is silly.)
541 * There is a performance advantage if @a == *rr@.
543 * The behaviour when @a@ and @b@ have the same sign is
544 * straightforward. When the signs differ, this implementation
545 * chooses @r@ to have the same sign as @b@, rather than the
546 * more normal choice that the remainder has the same sign as
547 * the dividend. This makes modular arithmetic a little more
551 void mp_div(mp **qq, mp **rr, mp *a, mp *b)
553 mp *r = rr ? *rr : MP_NEW;
554 mp *q = qq ? *qq : MP_NEW;
557 /* --- Set the remainder up right --- *
559 * Just in case the divisor is larger, be able to cope with this. It's not
560 * important in @mpx_udiv@, but it is here because of the sign correction.
568 MP_DEST(r, MAX(MP_LEN(a), MP_LEN(b)) + 2, a->f | b->f);
570 /* --- Fix up the quotient too --- */
573 MP_DEST(q, MP_LEN(r), r->f | MP_UNDEF);
576 /* --- Set up some temporary workspace --- */
579 size_t rq = MP_LEN(b) + 1;
580 sv = mpalloc(r->a, rq);
584 /* --- Perform the calculation --- */
586 mpx_udiv(q->v, q->vl, r->v, r->vl, b->v, b->vl, sv, svl);
588 /* --- Sort out the sign of the results --- *
590 * If the signs of the arguments differ, and the remainder is nonzero, I
591 * must add one to the absolute value of the quotient and subtract the
592 * remainder from @b@.
595 q->f = ((r->f | b->f) & MP_BURN) | ((r->f ^ b->f) & MP_NEG);
598 for (v = r->v; v < r->vl; v++) {
600 MPX_UADDN(q->v, q->vl, 1);
601 mpx_usub(r->v, r->vl, b->v, b->vl, r->v, r->vl);
607 r->f = ((r->f | b->f) & MP_BURN) | (b->f & MP_NEG);
609 /* --- Store the return values --- */
629 /* --- @mp_odd@ --- *
631 * Arguments: @mp *d@ = pointer to destination integer
632 * @mp *m@ = pointer to source integer
633 * @size_t *s@ = where to store the power of 2
635 * Returns: An odd integer integer %$t$% such that %$m = 2^s t$%.
637 * Use: Computes a power of two and an odd integer which, when
638 * multiplied, give a specified result. This sort of thing is
639 * useful in number theory quite often.
642 mp *mp_odd(mp *d, mp *m, size_t *s)
649 for (; !*v && v < vl; v++)
656 mpw mask = ((mpw)1 << z) - 1;
669 return (mp_lsr(d, m, ss));
672 /*----- Test rig ----------------------------------------------------------*/
676 static int verify(const char *op, mp *expect, mp *result, mp *a, mp *b)
678 if (!MP_EQ(expect, result)) {
679 fprintf(stderr, "\n*** %s failed", op);
680 fputs("\n*** a = ", stderr); mp_writefile(a, stderr, 10);
681 fputs("\n*** b = ", stderr); mp_writefile(b, stderr, 10);
682 fputs("\n*** result = ", stderr); mp_writefile(result, stderr, 10);
683 fputs("\n*** expect = ", stderr); mp_writefile(expect, stderr, 10);
690 #define RIG(name, op) \
691 static int t##name(dstr *v) \
693 mp *a = *(mp **)v[0].buf; \
694 mpw n = *(int *)v[1].buf; \
696 mp *r = *(mp **)v[2].buf; \
697 mp *c = op(MP_NEW, a, n); \
699 mp_build(&b, &n, &n + 1); \
700 ok = verify(#name, r, c, a, &b); \
701 mp_drop(a); mp_drop(c); mp_drop(r); \
702 assert(mparena_count(MPARENA_GLOBAL) == 0); \
713 #define RIG(name, op) \
714 static int t##name(dstr *v) \
716 mp *a = *(mp **)v[0].buf; \
717 mp *b = *(mp **)v[1].buf; \
718 mp *r = *(mp **)v[2].buf; \
719 mp *c = op(MP_NEW, a, b); \
720 int ok = verify(#name, r, c, a, b); \
721 mp_drop(a); mp_drop(b); mp_drop(c); mp_drop(r); \
722 assert(mparena_count(MPARENA_GLOBAL) == 0); \
733 static int tdiv(dstr *v)
735 mp *a = *(mp **)v[0].buf;
736 mp *b = *(mp **)v[1].buf;
737 mp *q = *(mp **)v[2].buf;
738 mp *r = *(mp **)v[3].buf;
739 mp *c = MP_NEW, *d = MP_NEW;
741 mp_div(&c, &d, a, b);
742 ok &= verify("div(quotient)", q, c, a, b);
743 ok &= verify("div(remainder)", r, d, a, b);
744 mp_drop(a); mp_drop(b); mp_drop(c); mp_drop(d); mp_drop(r); mp_drop(q);
745 assert(mparena_count(MPARENA_GLOBAL) == 0);
749 static int tbin(dstr *v)
751 static mp *(*fn[])(mp *, mp *, mp *) = {
752 #define DO(string) mp_bit##string##2c,
758 mp *a = *(mp **)v[1].buf;
759 mp *b = *(mp **)v[2].buf;
760 mp *r = *(mp **)v[3].buf;
763 if (strcmp(v[0].buf, "and") == 0) op = 1;
764 else if (strcmp(v[0].buf, "or") == 0) op = 7;
765 else if (strcmp(v[0].buf, "nand") == 0) op = 14;
766 else if (strcmp(v[0].buf, "nor") == 0) op = 8;
767 else if (strcmp(v[0].buf, "xor") == 0) op = 6;
777 c = fn[op](MP_NEW, a, b);
778 ok = verify(v[0].buf, r, c, a, b);
779 mp_drop(a); mp_drop(b); mp_drop(r); mp_drop(c);
780 assert(mparena_count(MPARENA_GLOBAL) == 0);
784 static int tset(dstr *v)
786 mp *a = *(mp **)v[0].buf;
787 unsigned long n = *(unsigned long *)v[1].buf;
788 mp *r = *(mp **)v[2].buf;
792 c = mp_setbit2c(MP_NEW, a, n);
795 fprintf(stderr, "\n***setbit (set) failed");
796 fputs("\n*** a = ", stderr); mp_writefile(a, stderr, 16);
797 fprintf(stderr, "\n*** n = %lu", n);
798 fputs("\n*** r = ", stderr); mp_writefile(r, stderr, 16);
799 fputs("\n*** c = ", stderr); mp_writefile(c, stderr, 16);
802 if (!mp_testbit2c(r, n)) {
804 fprintf(stderr, "\n***setbit (test) failed");
805 fprintf(stderr, "\n*** n = %lu", n);
806 fputs("\n*** r = ", stderr); mp_writefile(r, stderr, 16);
812 assert(mparena_count(MPARENA_GLOBAL) == 0);
816 static int tclr(dstr *v)
818 mp *a = *(mp **)v[0].buf;
819 unsigned long n = *(unsigned long *)v[1].buf;
820 mp *r = *(mp **)v[2].buf;
824 c = mp_clearbit2c(MP_NEW, a, n);
827 fprintf(stderr, "\n***clrbit (set) failed");
828 fputs("\n*** a = ", stderr); mp_writefile(a, stderr, 16);
829 fprintf(stderr, "\n*** n = %lu", n);
830 fputs("\n*** r = ", stderr); mp_writefile(r, stderr, 16);
831 fputs("\n*** c = ", stderr); mp_writefile(c, stderr, 16);
834 if (mp_testbit2c(r, n)) {
836 fprintf(stderr, "\n***clrbit (test) failed");
837 fprintf(stderr, "\n*** n = %lu", n);
838 fputs("\n*** r = ", stderr); mp_writefile(r, stderr, 16);
844 assert(mparena_count(MPARENA_GLOBAL) == 0);
848 static int tneg(dstr *v)
850 mp *a = *(mp **)v[0].buf;
851 mp *r = *(mp **)v[1].buf;
853 mp *n = mp_neg(MP_NEW, a);
856 fprintf(stderr, "\n*** neg failed\n");
857 fputs("\n*** a = ", stderr); mp_writefile(a, stderr, 10);
858 fputs("\n*** r = ", stderr); mp_writefile(r, stderr, 10);
859 fputs("\n*** n = ", stderr); mp_writefile(n, stderr, 10);
866 fprintf(stderr, "\n*** neg failed\n");
867 fputs("\n*** a* = ", stderr); mp_writefile(a, stderr, 10);
868 fputs("\n*** r = ", stderr); mp_writefile(r, stderr, 10);
869 fputs("\n*** n = ", stderr); mp_writefile(n, stderr, 10);
874 assert(mparena_count(MPARENA_GLOBAL) == 0);
878 static int todd(dstr *v)
880 mp *a = *(mp **)v[0].buf;
881 size_t rs = *(uint32 *)v[1].buf;
882 mp *rt = *(mp **)v[2].buf;
886 t = mp_odd(MP_NEW, a, &s);
887 if (s != rs || !MP_EQ(t, rt)) {
889 fprintf(stderr, "\n*** odd failed");
890 fputs("\n*** a = ", stderr); mp_writefile(a, stderr, 10);
891 fprintf(stderr, "\n*** s = %lu", (unsigned long)s);
892 fputs("\n*** t = ", stderr); mp_writefile(t, stderr, 10);
893 fprintf(stderr, "\n*** rs = %lu", (unsigned long)rs);
894 fputs("\n*** rt = ", stderr); mp_writefile(rt, stderr, 10);
900 assert(mparena_count(MPARENA_GLOBAL) == 0);
904 static test_chunk tests[] = {
905 { "lsl", tlsl, { &type_mp, &type_int, &type_mp, 0 } },
906 { "lsr", tlsr, { &type_mp, &type_int, &type_mp, 0 } },
907 { "lsl2c", tlsl2c, { &type_mp, &type_int, &type_mp, 0 } },
908 { "lsr2c", tlsr2c, { &type_mp, &type_int, &type_mp, 0 } },
909 { "setbit", tset, { &type_mp, &type_ulong, &type_mp, 0 } },
910 { "clrbit", tclr, { &type_mp, &type_ulong, &type_mp, 0 } },
911 { "add", tadd, { &type_mp, &type_mp, &type_mp, 0 } },
912 { "sub", tsub, { &type_mp, &type_mp, &type_mp, 0 } },
913 { "mul", tmul, { &type_mp, &type_mp, &type_mp, 0 } },
914 { "div", tdiv, { &type_mp, &type_mp, &type_mp, &type_mp, 0 } },
915 { "exp", texp, { &type_mp, &type_mp, &type_mp, 0 } },
916 { "bin2c", tbin, { &type_string, &type_mp, &type_mp, &type_mp, 0 } },
917 { "odd", todd, { &type_mp, &type_uint32, &type_mp, 0 } },
918 { "neg", tneg, { &type_mp, &type_mp, 0 } },
922 int main(int argc, char *argv[])
925 test_run(argc, argv, tests, SRCDIR "/tests/mp");
931 /*----- That's all, folks -------------------------------------------------*/