5 * Jumping around a BBS sequence
7 * (c) 1999 Straylight/Edgeware
10 /*----- Licensing notice --------------------------------------------------*
12 * This file is part of Catacomb.
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
30 /*----- Header files ------------------------------------------------------*/
34 #include "mpbarrett.h"
38 /*----- Main code ---------------------------------------------------------*/
42 * Arguments: @bbs *b@ = pointer to BBS generator context
43 * @const bbs_priv *bp@ = pointer to BBS modulus factors
44 * @mp *n@ = number of steps to move
45 * @mp *px@ = exponent mod @p@ for a one-step jump
46 * @mp *qx@ = exponent mod @q@ for a one-step jump
50 * Use: Jumps a BBS context a certain number of places (assuming the
51 * arguments are right).
53 * Let the BBS modulus be %$n = pq$% and the current residue be
54 * %$x$%. Then the computations performed are:
56 * * Calculate %$x_p = x \bmod p$% and %$x_q = x \bmod q$%.
58 * * Determine %$e_p = px^n \bmod (p - 1)$% and similarly
59 * %$e_q = qx^n \bmod (p - 1)$%.
61 * * Calculate %$x_p' = x_p^{e_p} \bmod p$% and
62 * %$x_q' = x_q^{e_q} \bmod q$%.
64 * * Combine %$x_p'$% and %$x_q'$% using the Chinese Remainder
67 * If you want to step the generator forwards, simply set
68 * %$px = qx = 2$%. If you want to step backwards, make
69 * %$px = (p + 1)/4$% and %$qx = (q + 1)/4$%. Note that, if
70 * %$x$% is a quadratic residue mod $%p$%, then
72 * %$(x^2) ^ {(p + 1)/4}$%
73 * %${} = x^{(p + 1)/2}$%
74 * %${} = x \cdot x^{(p - 1)/2}$%
77 * Simple, no? (Note that the division works because
78 * %$p \equiv 3 \pmod 4$%.)
81 static void jump(bbs *b, const bbs_priv *bp, mp *n,
85 mp *v[2] = { MP_NEW, MP_NEW };
87 /* --- First work out the exponents --- */
93 m = mp_sub(MP_NEW, bp->p, MP_ONE);
94 mpbarrett_create(&mb, m);
95 ep = mpbarrett_exp(&mb, MP_NEW, px, n);
96 mpbarrett_destroy(&mb);
100 m = mp_sub(m, bp->q, MP_ONE);
101 mpbarrett_create(&mb, m);
102 eq = mpbarrett_exp(&mb, MP_NEW, qx, n);
103 mpbarrett_destroy(&mb);
109 /* --- Now calculate the residues of @x@ --- */
111 mp_div(0, &v[0], b->x, bp->p);
112 mp_div(0, &v[1], b->x, bp->q);
114 /* --- Exponentiate --- */
119 mpbarrett_create(&mb, bp->p);
120 v[0] = mpbarrett_exp(&mb, v[0], v[0], ep);
121 mpbarrett_destroy(&mb);
123 mpbarrett_create(&mb, bp->q);
124 v[1] = mpbarrett_exp(&mb, v[1], v[1], eq);
125 mpbarrett_destroy(&mb);
131 /* --- Sort out the result using the Chinese Remainder Theorem --- */
138 mv[0].m = MP_COPY(bp->p);
139 mv[1].m = MP_COPY(bp->q);
140 for (i = 0; i < 2; i++)
141 mv[i].n = mv[i].ni = mv[i].nni = MP_NEW;
142 mpcrt_create(&c, mv, 2, b->mb.m);
143 b->x = mpcrt_solve(&c, b->x, v);
147 /* --- Tidy away --- */
155 /* --- @bbs_{ff,rew}{,n}@ --- *
157 * Arguments: @bbs *b@ = pointer to a BBS generator state
158 * @const bbs_priv *bp@ = pointer to BBS modulus factors
159 * @mp *n@, @unsigned long n@ = number of steps to make
163 * Use: `Fast-forwards' or rewinds a Blum-Blum-Shub generator by @n@
164 * steps. The @...n@ versions take an @unsigned long@ argument;
165 * the non-@...n@ versions a multiprecision integer. If @n@ is
166 * negative then the generator is stepped in the reverse
170 static void ff(bbs *b, const bbs_priv *bp, mp *n)
171 { jump(b, bp, n, MP_TWO, MP_TWO); }
173 static void rew(bbs *b, const bbs_priv *bp, mp *n)
175 mp *px = mp_lsr(MP_NEW, bp->p, 2);
176 mp *qx = mp_lsr(MP_NEW, bp->q, 2);
177 px = mp_add(px, px, MP_ONE);
178 qx = mp_add(qx, qx, MP_ONE);
179 jump(b, bp, n, px, qx);
184 void bbs_ff(bbs *b, const bbs_priv *bp, mp *n)
189 n = mp_neg(MP_NEW, n);
195 void bbs_ffn(bbs *b, const bbs_priv *bp, unsigned long n)
196 { mp *nn = mp_fromulong(MP_NEW, n); ff(b, bp, nn); mp_drop(nn); }
198 void bbs_rew(bbs *b, const bbs_priv *bp, mp *n)
203 n = mp_neg(MP_NEW, n);
209 void bbs_rewn(bbs *b, const bbs_priv *bp, unsigned long n)
210 { mp *nn = mp_fromulong(MP_NEW, n); bbs_rew(b, bp, nn); mp_drop(nn); }
212 /*----- Test rig ----------------------------------------------------------*/
216 static int verify(dstr *v)
226 bp.p = *(mp **)v[0].buf;
227 bp.q = *(mp **)v[1].buf;
228 bp.n = mp_mul(MP_NEW, bp.p, bp.q);
229 x = *(mp **)v[2].buf;
230 n = *(unsigned long *)v[3].buf;
232 bbs_create(&b, bp.n, x);
233 p = bbs_bits(&b, 32);
236 for (i = 0; i < n; i++)
238 q = bbs_bits(&b, 32);
241 bbs_rewn(&b, &bp, n + (32 + b.k - 1) / b.k);
242 r = bbs_bits(&b, 32);
245 fputs("\n*** bbs rewind failure\n", stderr);
246 fputs("p = ", stderr); mp_writefile(bp.p, stderr, 10); fputc('\n', stderr);
247 fputs("q = ", stderr); mp_writefile(bp.q, stderr, 10); fputc('\n', stderr);
248 fputs("n = ", stderr); mp_writefile(bp.n, stderr, 10); fputc('\n', stderr);
249 fputs("x = ", stderr); mp_writefile(x, stderr, 10); fputc('\n', stderr);
250 fprintf(stderr, "stepped %lu back\n", n + (32 + b.k - 1) / b.k);
251 fprintf(stderr, "expected output = %08lx, found %08lx\n",
252 (unsigned long)p, (unsigned long)r);
258 r = bbs_bits(&b, 32);
261 fputs("\n*** bbs fastforward failure\n", stderr);
262 fputs("p = ", stderr); mp_writefile(bp.p, stderr, 10); fputc('\n', stderr);
263 fputs("q = ", stderr); mp_writefile(bp.q, stderr, 10); fputc('\n', stderr);
264 fputs("n = ", stderr); mp_writefile(bp.n, stderr, 10); fputc('\n', stderr);
265 fputs("x = ", stderr); mp_writefile(x, stderr, 10); fputc('\n', stderr);
266 fprintf(stderr, "stepped %lu back\n", n + (32 + b.k - 1) / b.k);
267 fprintf(stderr, "expected output = %08lx, found %08lx\n",
268 (unsigned long)q, (unsigned long)r);
278 assert(mparena_count(MPARENA_GLOBAL) == 0);
282 static test_chunk tests[] = {
283 { "bbs-jump", verify, { &type_mp, &type_mp, &type_mp, &type_ulong, 0 } },
287 int main(int argc, char *argv[])
290 test_run(argc, argv, tests, SRCDIR "/tests/bbs");
296 /*----- That's all, folks -------------------------------------------------*/