3 * The Ed25519 signature scheme
5 * (c) 2017 Straylight/Edgeware
8 /*----- Licensing notice --------------------------------------------------*
10 * This file is part of Catacomb.
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
28 /*----- Header files ------------------------------------------------------*/
37 /*----- Key fetching ------------------------------------------------------*/
39 const key_fetchdef ed25519_pubfetch[] = {
40 { "pub", offsetof(ed25519_pub, pub), KENC_BINARY, 0 },
44 static const key_fetchdef priv[] = {
45 { "priv", offsetof(ed25519_priv, priv), KENC_BINARY, 0 },
49 const key_fetchdef ed25519_privfetch[] = {
50 { "pub", offsetof(ed25519_priv, pub), KENC_BINARY, 0 },
51 { "private", 0, KENC_STRUCT, priv },
55 /*----- A number of magic numbers -----------------------------------------*/
59 static const scaf_piece l[] = {
60 0xf5d3ed, 0x631a5c, 0xd65812, 0xa2f79c, 0xdef9de, 0x000014,
61 0x000000, 0x000000, 0x000000, 0x000000, 0x001000
63 static const scaf_piece mu[] = {
64 0x1b3994, 0x0a2c13, 0x9ce5a3, 0x29a7ed, 0x5d0863, 0x210621,
65 0xffffeb, 0xffffff, 0xffffff, 0xffffff, 0xffffff, 0x000fff
71 static const scaf_piece l[] = {
72 0x3ed, 0xf5d, 0xa5c, 0x631, 0x812, 0xd65,
73 0x79c, 0xa2f, 0x9de, 0xdef, 0x014, 0x000,
74 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,
75 0x000, 0x000, 0x000, 0x001
77 static const scaf_piece mu[] = {
78 0x994, 0x1b3, 0xc13, 0x0a2, 0x5a3, 0x9ce,
79 0x7ed, 0x29a, 0x863, 0x5d0, 0x621, 0x210,
80 0xfeb, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff,
81 0xfff, 0xfff, 0xfff, 0xfff, 0xfff
85 #define NPIECE SCAF_NPIECE(255, PIECEWD)
89 static const f25519_piece bx_pieces[] = {
90 -14297830, -7645148, 16144683, -16471763, 27570974,
91 -2696100, -26142465, 8378389, 20764389, 8758491
93 -26843541, -6710886, 13421773, -13421773, 26843546,
94 6710886, -13421773, 13421773, -26843546, -6710886
96 -10913610, 13857413, -15372611, 6949391, 114729,
97 -8787816, -6275908, -3247719, -18696448, -12055116
100 #if F25519_IMPL == 10
102 static const f25519_piece bx_pieces[] = {
103 282, 373, 242, 386, -467, 86, -423, 318, -437,
104 75, 236, -308, 421, 92, 439, -35, 400, 452,
105 82, -40, 160, 441, -51, 437, -365, 134
107 -405, 410, -410, 410, -410, -102, 205, -205, 205,
108 -205, 205, -410, 410, -410, 410, 102, -205, 205,
109 -205, 205, -205, 410, -410, 410, -410, -102
111 182, -418, 310, -216, -178, -133, 367, -315, -380,
112 -351, -182, -255, 2, 152, -390, -136, -52, -383,
113 -412, -398, -12, 448, -469, -196, 55, -184
117 static const f25519_piece bz_pieces[NPIECE] = { 1, 0, /* ... */ };
118 #define BX ((const f25519 *)bx_pieces)
119 #define BY ((const f25519 *)by_pieces)
120 #define BZ ((const f25519 *)bz_pieces)
121 #define D ((const f25519 *)d_pieces)
123 /*----- Point encoding and decoding ---------------------------------------*/
125 static void ptencode(octet q[32],
126 const f25519 *X, const f25519 *Y, const f25519 *Z)
131 f25519_inv(&t, Z); f25519_mul(&x, X, &t); f25519_mul(&y, Y, &t);
132 f25519_store(q, &y); f25519_store(b, &x); q[31] |= (b[0]&1u) << 7;
135 static int ptdecode(f25519 *X, f25519 *Y, f25519 *Z, const octet q[32])
143 /* Load the y-coordinate. */
144 memcpy(b, q, 32); b[31] &= 0x7fu; f25519_load(Y, b);
146 /* Check that the coordinate was in range. If we store it, we'll get a
147 * canonical version which we can compare against Q; be careful not to
151 for (i = a = 0; i < 31; i++) a |= b[i] ^ q[i];
152 a |= (b[31] ^ q[31])&0x7fu;
153 a = ((a - 1) >> 8)&0x01u; /* 0 |-> 1, non-0 |-> 0 */
156 /* Decompress the x-coordinate. */
157 f25519_sqr(&t, Y); f25519_mul(&u, &t, D); t.P[0] -= 1; u.P[0] += 1;
158 rc |= f25519_quosqrt(X, &t, &u);
159 f25519_store(b, X); m = -(uint32)(((q[31] >> 7) ^ b[0])&0x1u);
160 f25519_condneg(X, X, m);
165 /* And we're done. */
169 /*----- Edwards curve arithmetic ------------------------------------------*/
171 static void ptadd(f25519 *X, f25519 *Y, f25519 *Z,
172 const f25519 *X0, const f25519 *Y0, const f25519 *Z0,
173 const f25519 *X1, const f25519 *Y1, const f25519 *Z1)
175 f25519 t0, t1, t2, t3;
177 /* Bernstein, Birkner, Joye, Lange, and Peters, `Twisted Edwards Curves',
178 * 2008-03-13, https://cr.yp.to/newelliptic/twisted-20080313.pdf shows the
181 * A = Z1 Z2; B = A^2; C = X1 X2; D = Y1 Y2;
182 * E = d C D; F = B - E; G = B + E;
183 * X3 = A F ((X1 + Y1) (X2 + Y2) - C - D);
184 * Y3 = A G (D - a C); Z3 = F G.
186 * Note that a = -1, which things easier.
189 f25519_mul(&t0, Z0, Z1); /* t0 = A = Z0 Z1 */
190 f25519_add(&t1, X0, Y0); /* t1 = X0 + Y0 */
191 f25519_add(&t2, X1, Y1); /* t2 = X1 + Y1 */
192 f25519_mul(&t1, &t1, &t2); /* t1 = (X0 + Y0) (X1 + Y1) */
193 f25519_mul(&t2, X0, X1); /* t2 = C = X0 X1 */
194 f25519_mul(&t3, Y0, Y1); /* t3 = D = Y0 Y1 */
195 f25519_add(Y, &t2, &t3); /* Y = C + D = D - a C */
196 f25519_sub(X, &t1, Y); /* X = (X0 + Y0) (X1 + Y1) - C - D */
197 f25519_mul(X, X, &t0); /* X = A ((X0 + Y0) (X1 + Y1) - C - D) */
198 f25519_mul(Y, Y, &t0); /* Y = A (D - a C) */
199 f25519_sqr(&t0, &t0); /* t0 = B = A^2 */
200 f25519_mul(&t1, &t2, &t3); /* t1 = C D */
201 f25519_mul(&t1, &t1, D); /* t1 = E = d C D */
202 f25519_sub(&t2, &t0, &t1); /* t2 = F = B - E */
203 f25519_add(&t1, &t0, &t1); /* t1 = G = B + E */
204 f25519_mul(X, X, &t2); /* X = A F ((X0 + Y0) (X1 + Y1) - C - D) */
205 f25519_mul(Y, Y, &t1); /* Y = A G (D - a C) */
206 f25519_mul(Z, &t1, &t2); /* Z = F G */
209 static void ptdbl(f25519 *X, f25519 *Y, f25519 *Z,
210 const f25519 *X0, const f25519 *Y0, const f25519 *Z0)
214 /* Bernstein, Birkner, Joye, Lange, and Peters, `Twisted Edwards Curves',
215 * 2008-03-13, https://cr.yp.to/newelliptic/twisted-20080313.pdf shows the
218 * B = (X1 + Y1)^2; C = X1^2; D = Y1^2; E = a C;
219 * F = E + D; H = Z1^2; J = F - 2 H;
220 * X3 = (B - C - D) J; Y3 = F (E - D); Z3 = F J.
222 * Note that a = -1, which things easier.
225 f25519_add(&t0, X0, Y0); /* t0 = X0 + Y0 */
226 f25519_sqr(&t0, &t0); /* t0 = B = (X0 + Y0)^2 */
227 f25519_sqr(&t1, X0); /* t1 = C = X0^2 */
228 f25519_sqr(&t2, Y0); /* t2 = D = Y0^2 */
229 f25519_add(Y, &t1, &t2); /* Y = C + D = -(E - D) */
230 f25519_sub(X, &t0, Y); /* X = B - C - D */
232 f25519_sub(&t0, &t2, &t1); /* t0 = F = D - C = E + D */
233 f25519_sqr(&t1, Z0); /* t1 = H = Z0^2 */
234 f25519_mulconst(&t1, &t1, 2); /* t1 = 2 H */
235 f25519_sub(&t1, &t0, &t1); /* t1 = J = F - 2 H */
236 f25519_mul(X, X, &t1); /* X = (B - C - D) J */
237 f25519_mul(Y, Y, &t0); /* Y = -F (E - D) */
238 f25519_neg(Y, Y); /* Y = F (E - D) */
239 f25519_mul(Z, &t0, &t1); /* Z = F J */
242 static void ptmul(f25519 *X, f25519 *Y, f25519 *Z,
243 const scaf_piece n[NPIECE],
244 const f25519 *X0, const f25519 *Y0, const f25519 *Z0)
246 /* We assume that the window width divides the scalar piece width. */
248 #define WINLIM (1 << WINWD)
249 #define WINMASK (WINLIM - 1)
250 #define TABSZ (WINLIM/2 + 1)
252 f25519 VX[TABSZ], VY[TABSZ], VZ[TABSZ];
253 f25519 TX, TY, TZ, UX, UY, UZ;
258 /* Build a table of small multiples. */
259 f25519_set(&VX[0], 0); f25519_set(&VY[0], 1); f25519_set(&VZ[0], 1);
260 VX[1] = *X0; VY[1] = *Y0; VZ[1] = *Z0;
261 ptdbl(&VX[2], &VY[2], &VZ[2], &VX[1], &VY[1], &VZ[1]);
262 for (i = 3; i < TABSZ; i += 2) {
263 ptadd(&VX[i], &VY[i], &VZ[i],
264 &VX[i - 1], &VY[i - 1], &VZ[i - 1], X0, Y0, Z0);
265 ptdbl(&VX[i + 1], &VY[i + 1], &VZ[i + 1],
266 &VX[(i + 1)/2], &VY[(i + 1)/2], &VZ[(i + 1)/2]);
269 /* Now do the multiplication. We lag a window behind the cursor position
270 * because of the scalar recoding we do.
272 f25519_set(&TX, 0); f25519_set(&TY, 1); f25519_set(&TZ, 1);
273 for (i = NPIECE, w = 0, m_neg = 0; i--; ) {
276 /* Work through each window in the scalar piece. */
277 for (j = 0; j < PIECEWD; j += WINWD) {
279 /* Shift along by a window. */
280 for (k = 0; k < WINWD; k++) ptdbl(&TX, &TY, &TZ, &TX, &TY, &TZ);
282 /* Peek at the next window of four bits. If the top bit is set we lend
283 * a bit leftwards, into w. It's too late for this to affect the sign
284 * now, but if we negated earlier then the addition would be wrong.
286 w += (ni >> (PIECEWD - 1))&0x1u;
287 w = ((WINLIM - w)&m_neg) | (w&~m_neg);
289 /* Collect the entry from the table, and add or subtract. */
290 f25519_pickn(&UX, VX, TABSZ, w);
291 f25519_pickn(&UY, VY, TABSZ, w);
292 f25519_pickn(&UZ, VZ, TABSZ, w);
293 f25519_condneg(&UX, &UX, m_neg);
294 ptadd(&TX, &TY, &TZ, &TX, &TY, &TZ, &UX, &UY, &UZ);
296 /* Move the next window into the delay slot. If its top bit is set,
297 * then negate it and set m_neg.
299 w = (ni >> (PIECEWD - WINWD))&WINMASK;
300 m_neg = -(uint32)((w >> (WINWD - 1))&0x1u);
305 /* Do the final window. Just fix the sign and go. */
306 for (k = 0; k < WINWD; k++) ptdbl(&TX, &TY, &TZ, &TX, &TY, &TZ);
307 w = ((WINLIM - w)&m_neg) | (w&~m_neg);
308 f25519_pickn(&UX, VX, TABSZ, w);
309 f25519_pickn(&UY, VY, TABSZ, w);
310 f25519_pickn(&UZ, VZ, TABSZ, w);
311 f25519_condneg(&UX, &UX, m_neg);
312 ptadd(X, Y, Z, &TX, &TY, &TZ, &UX, &UY, &UZ);
320 static void ptsimmul(f25519 *X, f25519 *Y, f25519 *Z,
321 const scaf_piece n0[NPIECE],
322 const f25519 *X0, const f25519 *Y0, const f25519 *Z0,
323 const scaf_piece n1[NPIECE],
324 const f25519 *X1, const f25519 *Y1, const f25519 *Z1)
326 /* We assume that the window width divides the scalar piece width. */
328 #define WINLIM (1 << WINWD)
329 #define WINMASK (WINLIM - 1)
330 #define TABSZ (1 << 2*WINWD)
332 f25519 VX[TABSZ], VY[TABSZ], VZ[TABSZ];
333 f25519 TX, TY, TZ, UX, UY, UZ;
334 unsigned i, j, k, w, ni0, ni1;
336 /* Build a table of small linear combinations. */
337 f25519_set(&VX[0], 0); f25519_set(&VY[0], 1); f25519_set(&VZ[0], 1);
338 VX[1] = *X0; VX[WINLIM] = *X1;
339 VY[1] = *Y0; VY[WINLIM] = *Y1;
340 VZ[1] = *Z0; VZ[WINLIM] = *Z1;
341 for (i = 2; i < WINLIM; i <<= 1) {
342 ptdbl(&VX[i], &VY[i], &VZ[i],
343 &VX[i/2], &VY[i/2], &VZ[i/2]);
344 ptdbl(&VX[i*WINLIM], &VY[i*WINLIM], &VZ[i*WINLIM],
345 &VX[i*WINLIM/2], &VY[i*WINLIM/2], &VZ[i*WINLIM/2]);
347 for (i = 2; i < TABSZ; i <<= 1) {
348 for (j = 1; j < i; j++)
349 ptadd(&VX[i + j], &VY[i + j], &VZ[i + j],
350 &VX[i], &VY[i], &VZ[i], &VX[j], &VY[j], &VZ[j]);
353 /* Do the multiplication. */
354 f25519_set(&TX, 0); f25519_set(&TY, 1); f25519_set(&TZ, 1);
355 for (i = NPIECE; i--; ) {
356 ni0 = n0[i]; ni1 = n1[i];
358 /* Work through each window in the scalar pieces. */
359 for (j = 0; j < PIECEWD; j += WINWD) {
361 /* Shift along by a window. */
362 for (k = 0; k < WINWD; k++) ptdbl(&TX, &TY, &TZ, &TX, &TY, &TZ);
364 /* Collect the next window from the scalars. */
365 w = ((ni0 >> (PIECEWD - WINWD))&WINMASK) |
366 ((ni1 >> (PIECEWD - 2*WINWD))&(WINMASK << WINWD));
367 ni0 <<= WINWD; ni1 <<= WINWD;
369 /* Collect the entry from the table, and add. */
370 f25519_pickn(&UX, VX, TABSZ, w);
371 f25519_pickn(&UY, VY, TABSZ, w);
372 f25519_pickn(&UZ, VZ, TABSZ, w);
373 ptadd(&TX, &TY, &TZ, &TX, &TY, &TZ, &UX, &UY, &UZ);
378 *X = TX; *Y = TY; *Z = TZ;
381 /*----- Key derivation utilities ------------------------------------------*/
383 static void unpack_key(scaf_piece a[NPIECE], octet h1[32],
384 const octet *k, size_t ksz)
387 octet b[SHA512_HASHSZ];
389 sha512_init(&h); sha512_hash(&h, k, ksz); sha512_done(&h, b);
390 b[0] &= 0xf8u; b[31] = (b[31]&0x3f) | 0x40;
391 scaf_load(a, b, 32, NPIECE, PIECEWD);
392 if (h1) memcpy(h1, b + 32, 32);
395 /*----- Main code ---------------------------------------------------------*/
397 /* --- @ed25519_pubkey@ --- *
399 * Arguments: @octet K[ED25519_PUBSZ]@ = where to put the public key
400 * @const void *k@ = private key
401 * @size_t ksz@ = length of private key
405 * Use: Derives the public key from a private key.
408 void ed25519_pubkey(octet K[ED25519_PUBSZ], const void *k, size_t ksz)
410 scaf_piece a[NPIECE];
413 unpack_key(a, 0, k, ksz);
414 ptmul(&AX, &AY, &AZ, a, BX, BY, BZ);
415 ptencode(K, &AX, &AY, &AZ);
418 /* --- @ed25519_sign@ --- *
420 * Arguments: @octet sig[ED25519_SIGSZ]@ = where to put the signature
421 * @const void *k@ = private key
422 * @size_t ksz@ = length of private key
423 * @const octet K[ED25519_PUBSZ]@ = public key
424 * @const void *m@ = message to sign
425 * @size_t msz@ = length of message
429 * Use: Signs a message.
432 void ed25519_sign(octet sig[ED25519_SIGSZ],
433 const void *k, size_t ksz,
434 const octet K[ED25519_PUBSZ],
435 const void *m, size_t msz)
438 scaf_piece a[NPIECE], r[NPIECE], t[NPIECE], scratch[3*NPIECE + 1];
439 scaf_dblpiece tt[2*NPIECE];
441 octet h1[32], b[SHA512_HASHSZ];
444 /* Get my private key. */
445 unpack_key(a, h1, k, ksz);
447 /* Select the nonce and the vector part. */
449 sha512_hash(&h, h1, 32);
450 sha512_hash(&h, m, msz);
452 scaf_loaddbl(tt, b, 64, 2*NPIECE, PIECEWD);
453 scaf_reduce(r, tt, l, mu, NPIECE, PIECEWD, scratch);
454 ptmul(&RX, &RY, &RZ, r, BX, BY, BZ);
455 ptencode(sig, &RX, &RY, &RZ);
457 /* Calculate the scalar part. */
459 sha512_hash(&h, sig, 32);
460 sha512_hash(&h, K, 32);
461 sha512_hash(&h, m, msz);
463 scaf_loaddbl(tt, b, 64, 2*NPIECE, PIECEWD);
464 scaf_reduce(t, tt, l, mu, NPIECE, PIECEWD, scratch);
465 scaf_mul(tt, t, a, NPIECE);
466 for (i = 0; i < NPIECE; i++) tt[i] += r[i];
467 scaf_reduce(t, tt, l, mu, NPIECE, PIECEWD, scratch);
468 scaf_store(sig + 32, 32, t, NPIECE, PIECEWD);
471 /* --- @ed25519_verify@ --- *
473 * Arguments: @const octet K[ED25519_PUBSZ]@ = public key
474 * @const void *m@ = message to sign
475 * @size_t msz@ = length of message
476 * @const octet sig[ED25519_SIGSZ]@ = signature
478 * Returns: Zero if OK, negative on failure.
480 * Use: Verify a signature.
483 int ed25519_verify(const octet K[ED25519_PUBSZ],
484 const void *m, size_t msz,
485 const octet sig[ED25519_SIGSZ])
488 scaf_piece s[NPIECE], t[NPIECE], scratch[3*NPIECE + 1];
489 scaf_dblpiece tt[2*NPIECE];
490 f25519 AX, AY, AZ, RX, RY, RZ;
491 octet b[SHA512_HASHSZ];
493 /* Unpack the public key. Negate it: we're meant to subtract the term
494 * involving the public key point, and this is easier than negating the
497 if (ptdecode(&AX, &AY, &AZ, K)) return (-1);
498 f25519_neg(&AX, &AX);
500 /* Load the scalar and check that it's in range. The easy way is to store
501 * it again and see if the two match.
503 scaf_loaddbl(tt, sig + 32, 32, 2*NPIECE, PIECEWD);
504 scaf_reduce(s, tt, l, mu, NPIECE, PIECEWD, scratch);
505 scaf_store(b, 32, s, NPIECE, PIECEWD);
506 if (memcmp(b, sig + 32, 32) != 0) return (-1);
508 /* Check the signature. */
510 sha512_hash(&h, sig, 32);
511 sha512_hash(&h, K, 32);
512 sha512_hash(&h, m, msz);
514 scaf_loaddbl(tt, b, 64, 2*NPIECE, PIECEWD);
515 scaf_reduce(t, tt, l, mu, NPIECE, PIECEWD, scratch);
516 ptsimmul(&RX, &RY, &RZ, s, BX, BY, BZ, t, &AX, &AY, &AZ);
517 ptencode(b, &RX, &RY, &RZ);
518 if (memcmp(b, sig, 32) != 0) return (-1);
524 /*----- Test rig ----------------------------------------------------------*/
531 #include <mLib/report.h>
532 #include <mLib/testrig.h>
534 static int vrf_pubkey(dstr dv[])
536 dstr dpub = DSTR_INIT;
539 if (dv[1].len != ED25519_PUBSZ) die(1, "bad pub length");
541 dstr_ensure(&dpub, ED25519_PUBSZ); dpub.len = ED25519_PUBSZ;
542 ed25519_pubkey((octet *)dpub.buf, dv[0].buf, dv[0].len);
543 if (memcmp(dpub.buf, dv[1].buf, ED25519_PUBSZ) != 0) {
545 fprintf(stderr, "failed!");
546 fprintf(stderr, "\n\tpriv = "); type_hex.dump(&dv[0], stderr);
547 fprintf(stderr, "\n\tcalc = "); type_hex.dump(&dpub, stderr);
548 fprintf(stderr, "\n\twant = "); type_hex.dump(&dv[1], stderr);
549 fprintf(stderr, "\n");
556 static int vrf_sign(dstr dv[])
558 octet K[ED25519_PUBSZ];
559 dstr dsig = DSTR_INIT;
562 if (dv[2].len != ED25519_SIGSZ) die(1, "bad result length");
564 dstr_ensure(&dsig, ED25519_SIGSZ); dsig.len = ED25519_SIGSZ;
565 ed25519_pubkey(K, dv[0].buf, dv[0].len);
566 ed25519_sign((octet *)dsig.buf, dv[0].buf, dv[0].len, K,
567 dv[1].buf, dv[1].len);
568 if (memcmp(dsig.buf, dv[2].buf, ED25519_SIGSZ) != 0) {
570 fprintf(stderr, "failed!");
571 fprintf(stderr, "\n\tpriv = "); type_hex.dump(&dv[0], stderr);
572 fprintf(stderr, "\n\t msg = "); type_hex.dump(&dv[1], stderr);
573 fprintf(stderr, "\n\tcalc = "); type_hex.dump(&dsig, stderr);
574 fprintf(stderr, "\n\twant = "); type_hex.dump(&dv[2], stderr);
575 fprintf(stderr, "\n");
582 static int vrf_verify(dstr dv[])
584 int rc_want, rc_calc;
587 if (dv[0].len != ED25519_PUBSZ) die(1, "bad pub length");
588 if (dv[2].len != ED25519_SIGSZ) die(1, "bad sig length");
589 rc_want = *(int *)dv[3].buf;
591 rc_calc = ed25519_verify((const octet *)dv[0].buf,
592 dv[1].buf, dv[1].len,
593 (const octet *)dv[2].buf);
594 if (!rc_want != !rc_calc) {
596 fprintf(stderr, "failed!");
597 fprintf(stderr, "\n\t pub = "); type_hex.dump(&dv[0], stderr);
598 fprintf(stderr, "\n\t msg = "); type_hex.dump(&dv[1], stderr);
599 fprintf(stderr, "\n\t sig = "); type_hex.dump(&dv[2], stderr);
600 fprintf(stderr, "\n\tcalc = %d", rc_calc);
601 fprintf(stderr, "\n\twant = %d", rc_want);
602 fprintf(stderr, "\n");
608 static test_chunk tests[] = {
609 { "pubkey", vrf_pubkey, { &type_hex, &type_hex } },
610 { "sign", vrf_sign, { &type_hex, &type_hex, &type_hex } },
611 { "verify", vrf_verify, { &type_hex, &type_hex, &type_hex, &type_int } },
615 int main(int argc, char *argv[])
617 test_run(argc, argv, tests, SRCDIR "/t/ed25519");
623 /*----- That's all, folks -------------------------------------------------*/