3 * Chinese Remainder Theorem computations (Gauss's algorithm)
5 * (c) 1999 Straylight/Edgeware
8 /*----- Licensing notice --------------------------------------------------*
10 * This file is part of Catacomb.
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
28 /*----- Header files ------------------------------------------------------*/
33 #include "mpbarrett.h"
35 /*----- Main code ---------------------------------------------------------*/
37 /* --- @mpcrt_create@ --- *
39 * Arguments: @mpcrt *c@ = pointer to CRT context
40 * @mpcrt_mod *v@ = pointer to vector of moduli
41 * @size_t k@ = number of moduli
42 * @mp *n@ = product of all moduli (@MP_NEW@ if unknown)
46 * Use: Initializes a context for solving Chinese Remainder Theorem
47 * problems. The vector of moduli can be incomplete. Omitted
48 * items must be left as null pointers. Not all combinations of
49 * missing things can be coped with, even if there is
50 * technically enough information to cope. For example, if @n@
51 * is unspecified, all the @m@ values must be present, even if
52 * there is one modulus with both @m@ and @n@ (from which the
53 * product of all moduli could clearly be calculated).
56 void mpcrt_create(mpcrt *c, mpcrt_mod *v, size_t k, mp *n)
60 /* --- Simple initialization things --- */
65 /* --- Work out @n@ if I don't have it already --- */
72 for (i = 0; i < k; i++)
73 mpmul_add(&mm, v[i].m);
77 /* --- A quick hack if %$k = 2$% --- */
81 /* --- The %$n / n_i$% values are trivial in this case --- */
84 v[0].n = MP_COPY(v[1].m);
86 v[1].n = MP_COPY(v[0].m);
88 /* --- Now sort out the inverses --- *
90 * @mp_gcd@ will ensure that the first argument is negative.
93 if (!v[0].ni && !v[1].ni) {
95 mp_gcd(&g, &v[0].ni, &v[1].ni, v[0].n, v[1].n);
96 assert(MP_EQ(g, MP_ONE));
98 v[0].ni = mp_add(v[0].ni, v[0].ni, v[1].n);
108 x = mp_mul(MP_NEW, v[j].n, v[j].ni);
109 x = mp_sub(x, x, MP_ONE);
110 mp_div(&x, 0, x, v[i].n);
115 /* --- Set up the Barrett context --- */
117 mpbarrett_create(&c->mb, n);
119 /* --- Walk through filling in @n@, @ni@ and @nnir@ --- */
121 for (i = 0; i < k; i++) {
123 mp_div(&v[i].n, 0, n, v[i].m);
125 v[i].ni = mp_modinv(MP_NEW, v[i].n, v[i].m);
127 v[i].nni = mp_mul(MP_NEW, v[i].n, v[i].ni);
135 /* --- @mpcrt_destroy@ --- *
137 * Arguments: @mpcrt *c@ - pointer to CRT context
141 * Use: Destroys a CRT context, releasing all the resources it holds.
144 void mpcrt_destroy(mpcrt *c)
148 for (i = 0; i < c->k; i++) {
149 if (c->v[i].m) mp_drop(c->v[i].m);
150 if (c->v[i].n) mp_drop(c->v[i].n);
151 if (c->v[i].ni) mp_drop(c->v[i].ni);
152 if (c->v[i].nni) mp_drop(c->v[i].nni);
154 mpbarrett_destroy(&c->mb);
157 /* --- @mpcrt_solve@ --- *
159 * Arguments: @mpcrt *c@ = pointer to CRT context
160 * @mp *d@ = fake destination
161 * @mp **v@ = array of residues
163 * Returns: The unique solution modulo the product of the individual
164 * moduli, which leaves the given residues.
166 * Use: Constructs a result given its residue modulo an array of
167 * coprime integers. This can be used to improve performance of
168 * RSA encryption or Blum-Blum-Shub generation if the factors
169 * of the modulus are known, since results can be computed mod
170 * each of the individual factors and then combined at the end.
171 * This is rather faster than doing the full-scale modular
175 mp *mpcrt_solve(mpcrt *c, mp *d, mp **v)
181 for (i = 0; i < c->k; i++) {
182 x = mp_mul(x, c->v[i].nni, v[i]);
183 x = mpbarrett_reduce(&c->mb, x, x);
188 a = mpbarrett_reduce(&c->mb, a, a);
194 /*----- Test rig ----------------------------------------------------------*/
198 static int verify(size_t n, dstr *v)
200 mpcrt_mod *m = xmalloc(n * sizeof(mpcrt_mod));
201 mp **r = xmalloc(n * sizeof(mp *));
207 for (i = 0; i < n; i++) {
208 r[i] = *(mp **)v[2 * i].buf;
209 m[i].m = *(mp **)v[2 * i + 1].buf;
214 a = *(mp **)v[2 * n].buf;
216 mpcrt_create(&c, m, n, 0);
217 b = mpcrt_solve(&c, MP_NEW, r);
220 fputs("\n*** failed\n", stderr);
221 fputs("n = ", stderr);
222 mp_writefile(c.mb.m, stderr, 10);
223 for (i = 0; i < n; i++) {
224 fprintf(stderr, "\nr[%u] = ", i);
225 mp_writefile(r[i], stderr, 10);
226 fprintf(stderr, "\nm[%u] = ", i);
227 mp_writefile(m[i].m, stderr, 10);
228 fprintf(stderr, "\nN[%u] = ", i);
229 mp_writefile(m[i].n, stderr, 10);
230 fprintf(stderr, "\nM[%u] = ", i);
231 mp_writefile(m[i].ni, stderr, 10);
233 fputs("\nresult = ", stderr);
234 mp_writefile(b, stderr, 10);
235 fputs("\nexpect = ", stderr);
236 mp_writefile(a, stderr, 10);
241 for (i = 0; i < n; i++)
248 assert(mparena_count(MPARENA_GLOBAL) == 0);
252 static int crt1(dstr *v) { return verify(1, v); }
253 static int crt2(dstr *v) { return verify(2, v); }
254 static int crt3(dstr *v) { return verify(3, v); }
255 static int crt4(dstr *v) { return verify(4, v); }
256 static int crt5(dstr *v) { return verify(5, v); }
258 static test_chunk tests[] = {
259 { "crt-1", crt1, { &type_mp, &type_mp,
261 { "crt-2", crt2, { &type_mp, &type_mp,
264 { "crt-3", crt3, { &type_mp, &type_mp,
268 { "crt-4", crt4, { &type_mp, &type_mp,
273 { "crt-5", crt5, { &type_mp, &type_mp,
282 int main(int argc, char *argv[])
285 test_run(argc, argv, tests, SRCDIR "/t/mpcrt");
291 /*----- That's all, folks -------------------------------------------------*/