3 * Simple multiprecision arithmetic
5 * (c) 1999 Straylight/Edgeware
8 /*----- Licensing notice --------------------------------------------------*
10 * This file is part of Catacomb.
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
35 /*----- Header files ------------------------------------------------------*/
42 #ifndef CATACOMB_MPW_H
46 #ifndef CATACOMB_ARENA_H
50 #ifndef CATACOMB_MPARENA_H
54 #ifndef CATACOMB_MPX_H
58 /*----- Data structures ---------------------------------------------------*/
60 /* --- A multiprecision integer --- */
63 mpw *v, *vl; /* Vector of digits, current limit */
64 size_t sz; /* Size of digit buffer in words */
65 mparena *a; /* Arena for buffer allocation */
66 unsigned f; /* Flags (see below) */
67 unsigned ref; /* Reference counter */
70 #define MP_NEG 1u /* Negative (signed magnitude) */
71 #define MP_BURN 2u /* Secret (viral flag) */
72 #define MP_CONST 4u /* Uses strange memory allocation */
73 #define MP_UNDEF 8u /* Contains nothing interesting */
74 #define MP_DESTROYED 16u /* Has been destroyed */
76 /* --- A factor for simultaneous exponentation --- *
78 * Used by the Montgomery and Barrett exponentiators.
81 typedef struct mp_expfactor {
86 /*----- Useful constants --------------------------------------------------*/
90 #define MP_ZERO (&mp_const[0])
91 #define MP_ONE (&mp_const[1])
92 #define MP_TWO (&mp_const[2])
93 #define MP_THREE (&mp_const[3])
94 #define MP_FOUR (&mp_const[4])
95 #define MP_FIVE (&mp_const[5])
96 #define MP_TEN (&mp_const[6])
97 #define MP_256 (&mp_const[7])
98 #define MP_MONE (&mp_const[8])
100 #define MP_NEW ((mp *)0)
101 #define MP_NEWSEC (&mp_const[9])
103 /*----- Trivial macros ----------------------------------------------------*/
105 /* --- @MP_LEN@ --- *
107 * Arguments: @mp *m@ = pointer to a multiprecision integer
109 * Returns: Length of the integer, in words.
112 #define MP_LEN(m) ((m)->vl - ((m)->v))
114 /*----- Memory management and reference counting --------------------------*/
116 /* --- @mp_new@ --- *
118 * Arguments: @size_t sz@ = size of vector required
119 * @unsigned f@ = flags to set
121 * Returns: Pointer to a new MP structure.
123 * Use: Allocates a new multiprecision integer. The data space is
124 * allocated from either the standard global or secret arena,
125 * depending on the initial flags requested.
128 extern mp *mp_new(size_t /*sz*/, unsigned /*f*/);
130 /* --- @mp_create@ --- *
132 * Arguments: @size_t sz@ = size of vector required
134 * Returns: Pointer to pristine new MP structure with enough memory
137 * Use: Creates a new multiprecision integer with indeterminate
138 * contents. The integer has a single reference.
141 extern mp *mp_create(size_t /*sz*/);
143 /* --- @mp_createsecure@ --- *
145 * Arguments: @size_t sz@ = size of vector required
147 * Returns: Pointer to pristine new MP structure with enough memory
150 * Use: Creates a new multiprecision integer with indeterminate
151 * contents. The integer has a single reference. The integer's
152 * data space is allocated from the secure arena. Its burn flag
156 extern mp *mp_createsecure(size_t /*sz*/);
158 /* --- @mp_build@ --- *
160 * Arguments: @mp *m@ = pointer to an MP block to fill in
161 * @mpw *v@ = pointer to a word array
162 * @mpw *vl@ = pointer just past end of array
166 * Use: Creates a multiprecision integer representing some smallish
167 * number. You must provide storage for the number and dispose
168 * of it when you've finished with it. The number is marked as
169 * constant while it exists.
172 extern void mp_build(mp */*m*/, mpw */*v*/, mpw */*vl*/);
174 /* --- @mp_destroy@ --- *
176 * Arguments: @mp *m@ = pointer to a multiprecision integer
180 * Use: Destroys a multiprecision integer. The reference count isn't
181 * checked. Don't use this function if you don't know what
182 * you're doing: use @mp_drop@ instead.
185 extern void mp_destroy(mp */*m*/);
187 /* --- @mp_copy@ --- *
189 * Arguments: @mp *m@ = pointer to a multiprecision integer
191 * Returns: A copy of the given multiprecision integer.
193 * Use: Copies the given integer. In fact you just get another
194 * reference to the same old one again.
197 extern mp *mp_copy(mp */*m*/);
199 #define MP_COPY(m) ((m)->ref++, (m))
201 /* --- @mp_drop@ --- *
203 * Arguments: @mp *m@ = pointer to a multiprecision integer
207 * Use: Drops a reference to an integer which isn't wanted any more.
208 * If there are no more references, the integer is destroyed.
211 extern void mp_drop(mp */*m*/);
213 #define MP_DROP(m) do { \
216 if (_mm->ref == 0 && !(_mm->f & MP_CONST)) \
220 /* --- @mp_split@ --- *
222 * Arguments: @mp *m@ = pointer to a multiprecision integer
224 * Returns: A reference to the same integer, possibly with a different
227 * Use: Splits off a modifiable version of the integer referred to.
230 extern mp *mp_split(mp */*m*/);
232 #define MP_SPLIT(m) do { \
234 if ((_m->f & MP_CONST) || _m->ref > 1) { \
235 size_t _len = MP_LEN(_m); \
236 mp *_mm = mp_new(_len, _m->f); \
237 if (!(_m->f & MP_UNDEF)) \
238 memcpy(_mm->v, _m->v, MPWS(_len)); \
245 /* --- @mp_resize@ --- *
247 * Arguments: @mp *m@ = pointer to a multiprecision integer
248 * @size_t sz@ = new size
252 * Use: Resizes the vector containing the integer's digits. The new
253 * size must be at least as large as the current integer's
254 * length. This isn't really intended for client use.
257 extern void mp_resize(mp */*m*/, size_t /*sz*/);
259 #define MP_RESIZE(m, ssz) do { \
261 size_t _sz = (ssz); \
262 mparena *_a = (_m->f & MP_BURN) ? MPARENA_SECURE : MPARENA_GLOBAL; \
264 size_t _len = MP_LEN(_m); \
265 assert(((void)"can't make size less than length", _sz >= _len)); \
266 _v = mpalloc(_a, _sz); \
267 if (!(_m->f & MP_UNDEF)) \
268 memcpy(_v, _m->v, MPWS(_len)); \
269 if (_m->f & MP_BURN) \
270 memset(_m->v, 0, MPWS(_m->sz)); \
271 mpfree(_m->a, _m->v); \
274 _m->vl = _v + _len; \
277 /* --- @mp_ensure@ --- *
279 * Arguments: @mp *m@ = pointer to a multiprecision integer
280 * @size_t sz@ = required size
284 * Use: Ensures that the integer has enough space for @sz@ digits.
285 * The value is not changed.
288 extern void mp_ensure(mp */*m*/, size_t /*sz*/);
290 #define MP_ENSURE(m, ssz) do { \
292 size_t _ssz = (ssz); \
293 size_t _len = MP_LEN(_m); \
294 if (_ssz >= _len) { \
296 mp_resize(_m, _ssz); \
297 if (!(_m->f & MP_UNDEF) && _ssz > _len) \
298 memset(_m->vl, 0, MPWS(_ssz - _len)); \
299 _m->vl = _m->v + _ssz; \
303 /* --- @mp_dest@ --- *
305 * Arguments: @mp *m@ = a suggested destination integer
306 * @size_t sz@ = size required for result, in digits
307 * @unsigned f@ = various flags
309 * Returns: A pointer to an appropriate destination.
311 * Use: Converts a suggested destination into a real destination with
312 * the required properties. If the real destination is @d@,
313 * then the following properties will hold:
315 * * @d@ will have exactly one reference.
317 * * If @m@ is not @MP_NEW@, then the contents of @m@ will not
318 * change, unless @f@ has the @MP_UNDEF@ flag set.
320 * * If @m@ is not @MP_NEW@, then he reference count of @m@ on
321 * entry is equal to the sum of the counts of @d@ and @m@ on
324 * * The size of @d@ will be at least @sz@.
326 * * If @f@ has the @MP_BURN@ flag set, then @d@ will be
327 * allocated from @MPARENA_SECURE@.
329 * Understanding this function is crucial to using Catacomb's
330 * multiprecision integer library effectively.
333 extern mp *mp_dest(mp */*m*/, size_t /*sz*/, unsigned /*f*/);
335 #define MP_DEST(m, ssz, f) do { \
337 size_t _ssz = (ssz); \
339 _m = mp_dest(_m, _ssz, _f); \
343 /*----- Size manipulation -------------------------------------------------*/
345 /* --- @mp_shrink@ --- *
347 * Arguments: @mp *m@ = pointer to a multiprecision integer
351 * Use: Reduces the recorded length of an integer. This doesn't
352 * reduce the amount of memory used, although it can improve
353 * performance a bit. To reduce memory, use @mp_minimize@
354 * instead. This can't change the value of an integer, and is
355 * therefore safe to use even when there are multiple
359 extern void mp_shrink(mp */*m*/);
361 #define MP_SHRINK(m) do { \
363 MPX_SHRINK(_mm->v, _mm->vl); \
368 /* --- @mp_minimize@ --- *
370 * Arguments: @mp *m@ = pointer to a multiprecision integer
374 * Use: Reduces the amount of memory an integer uses. It's best to
375 * do this to numbers which aren't going to change in the
379 extern void mp_minimize(mp */*m*/);
381 /*----- Bit scanning ------------------------------------------------------*/
383 #ifndef CATACOMB_MPSCAN_H
387 /* --- @mp_scan@ --- *
389 * Arguments: @mpscan *sc@ = pointer to bitscanner block
390 * @const mp *m@ = pointer to a multiprecision integer
394 * Use: Initializes a bitscanner on a multiprecision integer.
397 extern void mp_scan(mpscan */*sc*/, const mp */*m*/);
399 #define MP_SCAN(sc, m) do { \
400 const mp *_mm = (m); \
401 mpscan *_sc = (sc); \
402 MPSCAN_INITX(_sc, _mm->v, _mm->vl); \
405 /* --- @mp_rscan@ --- *
407 * Arguments: @mpscan *sc@ = pointer to bitscanner block
408 * @const mp *m@ = pointer to a multiprecision integer
412 * Use: Initializes a reverse bitscanner on a multiprecision
416 extern void mp_rscan(mpscan */*sc*/, const mp */*m*/);
418 #define MP_RSCAN(sc, m) do { \
419 const mp *_mm = (m); \
420 mpscan *_sc = (sc); \
421 MPSCAN_RINITX(_sc, _mm->v, _mm->vl); \
424 /* --- Other bitscanning aliases --- */
426 #define mp_step mpscan_step
427 #define mp_bit mpscan_bit
428 #define mp_rstep mpscan_rstep
429 #define mp_rbit mpscan_rbit
431 #define MP_STEP MPSCAN_STEP
432 #define MP_BIT MPSCAN_BIT
433 #define MP_RSTEP MPSCAN_RSTEP
434 #define MP_RBIT MPSCAN_RBIT
436 /*----- Loading and storing -----------------------------------------------*/
438 /* --- @mp_octets@ --- *
440 * Arguments: @const mp *m@ = a multiprecision integer
442 * Returns: The number of octets required to represent @m@.
444 * Use: Calculates the external storage required for a multiprecision
448 extern size_t mp_octets(const mp */*m*/);
450 /* --- @mp_octets2c@ --- *
452 * Arguments: @const mp *m@ = a multiprecision integer
454 * Returns: The number of octets required to represent @m@.
456 * Use: Calculates the external storage required for a multiprecision
457 * integer represented as two's complement.
460 extern size_t mp_octets2c(const mp */*m*/);
462 /* --- @mp_bits@ --- *
464 * Arguments: @const mp *m@ = a multiprecision integer
466 * Returns: The number of bits required to represent @m@.
468 * Use: Calculates the external storage required for a multiprecision
472 extern unsigned long mp_bits(const mp */*m*/);
474 /* --- @mp_loadl@ --- *
476 * Arguments: @mp *d@ = destination
477 * @const void *pv@ = pointer to source data
478 * @size_t sz@ = size of the source data
480 * Returns: Resulting multiprecision number.
482 * Use: Loads a multiprecision number from an array of octets. The
483 * first byte in the array is the least significant. More
484 * formally, if the bytes are %$b_0, b_1, \ldots, b_{n-1}$%
485 * then the result is %$N = \sum_{0 \le i < n} b_i 2^{8i}$%.
488 extern mp *mp_loadl(mp */*d*/, const void */*pv*/, size_t /*sz*/);
490 /* --- @mp_storel@ --- *
492 * Arguments: @const mp *m@ = source
493 * @void *pv@ = pointer to output array
494 * @size_t sz@ = size of the output array
498 * Use: Stores a multiprecision number in an array of octets. The
499 * first byte in the array is the least significant. If the
500 * array is too small to represent the number, high-order bits
501 * are truncated; if the array is too large, high order bytes
502 * are filled with zeros. More formally, if the number is
503 * %$N = \sum{0 \le i} b_i 2^{8i}$% where %$0 \le b_i < 256$%,
504 * then the array is %$b_0, b_1, \ldots, b_{n-1}$%.
507 extern void mp_storel(const mp */*m*/, void */*pv*/, size_t /*sz*/);
509 /* --- @mp_loadb@ --- *
511 * Arguments: @mp *d@ = destination
512 * @const void *pv@ = pointer to source data
513 * @size_t sz@ = size of the source data
515 * Returns: Resulting multiprecision number.
517 * Use: Loads a multiprecision number from an array of octets. The
518 * last byte in the array is the least significant. More
519 * formally, if the bytes are %$b_{n-1}, b_{n-2}, \ldots, b_0$%
520 * then the result is %$N = \sum_{0 \le i < n} b_i 2^{8i}$%.
523 extern mp *mp_loadb(mp */*d*/, const void */*pv*/, size_t /*sz*/);
525 /* --- @mp_storeb@ --- *
527 * Arguments: @const mp *m@ = source
528 * @void *pv@ = pointer to output array
529 * @size_t sz@ = size of the output array
533 * Use: Stores a multiprecision number in an array of octets. The
534 * last byte in the array is the least significant. If the
535 * array is too small to represent the number, high-order bits
536 * are truncated; if the array is too large, high order bytes
537 * are filled with zeros. More formally, if the number is
538 * %$N = \sum{0 \le i} b_i 2^{8i}$% where %$0 \le b_i < 256$%,
539 * then the array is %$b_{n-1}, b_{n-2}, \ldots, b_0$%.
542 extern void mp_storeb(const mp */*m*/, void */*pv*/, size_t /*sz*/);
544 /* --- @mp_loadl2c@ --- *
546 * Arguments: @mp *d@ = destination
547 * @const void *pv@ = pointer to source data
548 * @size_t sz@ = size of the source data
550 * Returns: Resulting multiprecision number.
552 * Use: Loads a multiprecision number from an array of octets as
553 * two's complement. The first byte in the array is the least
557 extern mp *mp_loadl2c(mp */*d*/, const void */*pv*/, size_t /*sz*/);
559 /* --- @mp_storel2c@ --- *
561 * Arguments: @const mp *m@ = source
562 * @void *pv@ = pointer to output array
563 * @size_t sz@ = size of the output array
567 * Use: Stores a multiprecision number in an array of octets as two's
568 * complement. The first byte in the array is the least
569 * significant. If the array is too small to represent the
570 * number, high-order bits are truncated; if the array is too
571 * large, high order bytes are sign-extended.
574 extern void mp_storel2c(const mp */*m*/, void */*pv*/, size_t /*sz*/);
576 /* --- @mp_loadb2c@ --- *
578 * Arguments: @mp *d@ = destination
579 * @const void *pv@ = pointer to source data
580 * @size_t sz@ = size of the source data
582 * Returns: Resulting multiprecision number.
584 * Use: Loads a multiprecision number from an array of octets as
585 * two's complement. The last byte in the array is the least
589 extern mp *mp_loadb2c(mp */*d*/, const void */*pv*/, size_t /*sz*/);
591 /* --- @mp_storeb2c@ --- *
593 * Arguments: @const mp *m@ = source
594 * @void *pv@ = pointer to output array
595 * @size_t sz@ = size of the output array
599 * Use: Stores a multiprecision number in an array of octets, as
600 * two's complement. The last byte in the array is the least
601 * significant. If the array is too small to represent the
602 * number, high-order bits are truncated; if the array is too
603 * large, high order bytes are sign-extended.
606 extern void mp_storeb2c(const mp */*m*/, void */*pv*/, size_t /*sz*/);
608 /*----- Bit operations ----------------------------------------------------*/
610 /* --- @mp_not@ --- *
612 * Arguments: @mp *d@ = destination
615 * Returns: The bitwise complement of the source.
618 extern mp *mp_not(mp */*d*/, mp */*a*/);
620 /* --- @mp_bitop@ --- *
622 * Arguments: @mp *d@ = destination
623 * @mp *a, *b@ = sources
625 * Returns: The result of the given bitwise operation. These functions
626 * don't handle negative numbers at all sensibly. For that, use
627 * the @...2c@ variants. The functions are named after the
628 * truth tables they generate:
635 #define MP_BITDECL(string) \
636 extern mp *mp_bit##string(mp */*d*/, mp */*a*/, mp */*b*/);
637 MPX_DOBIN(MP_BITDECL)
639 /* --- @mp_[n]and@, @mp_[n]or@, @mp_[n]xor@, @mp_not@ --- *
641 * Synonyms for the commonly-used functions.
644 #define mp_and mp_bit0001
645 #define mp_or mp_bit0111
646 #define mp_nand mp_bit1110
647 #define mp_nor mp_bit1000
648 #define mp_xor mp_bit0110
650 /* --- @mp_testbit@ --- *
652 * Arguments: @mp *x@ = a large integer
653 * @unsigned long n@ = which bit to test
655 * Returns: Nonzero if the bit is set, zero if not.
658 extern int mp_testbit(mp */*x*/, unsigned long /*n*/);
660 /* --- @mp_setbit@, @mp_clearbit@ --- *
662 * Arguments: @mp *d@ = a destination
663 * @mp *x@ = a large integer
664 * @unsigned long n@ = which bit to modify
666 * Returns: The argument @x@, with the appropriate bit set or cleared.
669 extern mp *mp_setbit(mp */*d*/, mp */*x*/, unsigned long /*n*/);
670 extern mp *mp_clearbit(mp */*d*/, mp */*x*/, unsigned long /*n*/);
672 /* --- @mp_lsl@, @mp_lslc@, @mp_lsr@ --- *
674 * Arguments: @mp *d@ = destination
676 * @size_t n@ = number of bits to move
678 * Returns: Result, @a@ shifted left or right by @n@.
680 * Use: Bitwise shift operators. @mp_lslc@ fills the bits introduced
681 * on the right with ones instead of zeroes: it's used
682 * internally by @mp_lsl2c@, though it may be useful on its
686 extern mp *mp_lsl(mp */*d*/, mp */*a*/, size_t /*n*/);
687 extern mp *mp_lslc(mp */*d*/, mp */*a*/, size_t /*n*/);
688 extern mp *mp_lsr(mp */*d*/, mp */*a*/, size_t /*n*/);
690 /* --- @mp_not2c@ --- *
692 * Arguments: @mp *d@ = destination
695 * Returns: The sign-extended complement of the argument.
698 extern mp *mp_not2c(mp */*d*/, mp */*a*/);
700 /* --- @mp_bitop2c@ --- *
702 * Arguments: @mp *d@ = destination
703 * @mp *a, *b@ = sources
705 * Returns: The result of the given bitwise operation. Negative numbers
706 * are treated as two's complement, sign-extended infinitely to
707 * the left. The functions are named after the truth tables
715 #define MP_BIT2CDECL(string) \
716 extern mp *mp_bit##string##2c(mp */*d*/, mp */*a*/, mp */*b*/);
717 MPX_DOBIN(MP_BIT2CDECL)
719 /* --- @mp_[n]and@, @mp_[n]or@, @mp_[n]xor@, @mp_not@ --- *
721 * Synonyms for the commonly-used functions.
724 #define mp_and2c mp_bit00012c
725 #define mp_or2c mp_bit01112c
726 #define mp_nand2c mp_bit11102c
727 #define mp_nor2c mp_bit10002c
728 #define mp_xor2c mp_bit01102c
730 /* --- @mp_lsl2c@, @mp_lsr2c@ --- *
732 * Arguments: @mp *d@ = destination
734 * @size_t n@ = number of bits to move
736 * Returns: Result, @a@ shifted left or right by @n@. Handles the
737 * pretence of sign-extension for negative numbers.
740 extern mp *mp_lsl2c(mp */*d*/, mp */*a*/, size_t /*n*/);
741 extern mp *mp_lsr2c(mp */*d*/, mp */*a*/, size_t /*n*/);
743 /* --- @mp_testbit2c@ --- *
745 * Arguments: @mp *x@ = a large integer
746 * @unsigned long n@ = which bit to test
748 * Returns: Nonzero if the bit is set, zero if not. Fakes up two's
749 * complement representation.
752 extern int mp_testbit2c(mp */*x*/, unsigned long /*n*/);
754 /* --- @mp_setbit2c@, @mp_clearbit2c@ --- *
756 * Arguments: @mp *d@ = a destination
757 * @mp *x@ = a large integer
758 * @unsigned long n@ = which bit to modify
760 * Returns: The argument @x@, with the appropriate bit set or cleared.
761 * Fakes up two's complement representation.
764 extern mp *mp_setbit2c(mp */*d*/, mp */*x*/, unsigned long /*n*/);
765 extern mp *mp_clearbit2c(mp */*d*/, mp */*x*/, unsigned long /*n*/);
767 /*----- Comparisons -------------------------------------------------------*/
771 * Arguments: @const mp *a, *b@ = two numbers
773 * Returns: Nonzero if the numbers are equal.
776 extern int mp_eq(const mp */*a*/, const mp */*b*/);
778 #define MP_EQ(a, b) \
779 ((((a)->f ^ (b)->f) & MP_NEG) == 0 && \
780 mpx_ueq((a)->v, (a)->vl, (b)->v, (b)->vl))
782 /* --- @mp_cmp@ --- *
784 * Arguments: @const mp *a, *b@ = two numbers
786 * Returns: Less than, equal to or greater than zero, according to
787 * whether @a@ is less than, equal to or greater than @b@.
790 extern int mp_cmp(const mp */*a*/, const mp */*b*/);
792 #define MP_CMP(a, op, b) (mp_cmp((a), (b)) op 0)
794 /* --- Other handy macros --- */
796 #define MP_NEGP(x) ((x)->f & MP_NEG)
797 #define MP_ZEROP(x) (!MP_LEN(x))
798 #define MP_POSP(x) (!MP_NEGP(x) && !MP_ZEROP(x))
799 #define MP_ODDP(x) (!MP_ZEROP(x) && ((x)->v[0] & 1u))
800 #define MP_EVENP(x) (!MP_ODDP(x))
802 /*----- Arithmetic operations ---------------------------------------------*/
804 /* --- @mp_neg@ --- *
806 * Arguments: @mp *d@ = destination
809 * Returns: The negation of the argument.
811 * Use: Negates its argument.
814 extern mp *mp_neg(mp */*d*/, mp */*a*/);
816 /* --- @mp_add@ --- *
818 * Arguments: @mp *d@ = destination
819 * @mp *a, *b@ = sources
821 * Returns: Result, @a@ added to @b@.
824 extern mp *mp_add(mp */*d*/, mp */*a*/, mp */*b*/);
826 /* --- @mp_sub@ --- *
828 * Arguments: @mp *d@ = destination
829 * @mp *a, *b@ = sources
831 * Returns: Result, @b@ subtracted from @a@.
834 extern mp *mp_sub(mp */*d*/, mp */*a*/, mp */*b*/);
836 /* --- @mp_mul@ --- *
838 * Arguments: @mp *d@ = destination
839 * @mp *a, *b@ = sources
841 * Returns: Result, @a@ multiplied by @b@.
844 extern mp *mp_mul(mp */*d*/, mp */*a*/, mp */*b*/);
846 /* --- @mp_sqr@ --- *
848 * Arguments: @mp *d@ = destination
851 * Returns: Result, @a@ squared.
854 extern mp *mp_sqr(mp */*d*/, mp */*a*/);
856 /* --- @mp_div@ --- *
858 * Arguments: @mp **qq, **rr@ = destination, quotient and remainder
859 * @mp *a, *b@ = sources
861 * Use: Calculates the quotient and remainder when @a@ is divided by
865 extern void mp_div(mp **/*qq*/, mp **/*rr*/, mp */*a*/, mp */*b*/);
867 /* --- @mp_exp@ --- *
869 * Arguments: @mp *d@ = fake destination
873 * Returns: Result, %$a^e$%.
876 extern mp *mp_exp(mp */*d*/, mp */*a*/, mp */*e*/);
878 /* --- @mp_odd@ --- *
880 * Arguments: @mp *d@ = pointer to destination integer
881 * @mp *m@ = pointer to source integer
882 * @size_t *s@ = where to store the power of 2
884 * Returns: An odd integer integer %$t$% such that %$m = 2^s t$%.
886 * Use: Computes a power of two and an odd integer which, when
887 * multiplied, give a specified result. This sort of thing is
888 * useful in number theory quite often.
891 extern mp *mp_odd(mp */*d*/, mp */*m*/, size_t */*s*/);
893 /*----- More advanced algorithms ------------------------------------------*/
895 /* --- @mp_sqrt@ --- *
897 * Arguments: @mp *d@ = pointer to destination integer
898 * @mp *a@ = (nonnegative) integer to take square root of
900 * Returns: The largest integer %$x$% such that %$x^2 \le a$%.
902 * Use: Computes integer square roots.
904 * The current implementation isn't very good: it uses the
905 * Newton-Raphson method to find an approximation to %$a$%. If
906 * there's any demand for a better version, I'll write one.
909 extern mp *mp_sqrt(mp */*d*/, mp */*a*/);
911 /* --- @mp_gcd@ --- *
913 * Arguments: @mp **gcd, **xx, **yy@ = where to write the results
914 * @mp *a, *b@ = sources (must be nonzero)
918 * Use: Calculates @gcd(a, b)@, and two numbers @x@ and @y@ such that
919 * @ax + by = gcd(a, b)@. This is useful for computing modular
920 * inverses. Neither @a@ nor @b@ may be zero.
923 extern void mp_gcd(mp **/*gcd*/, mp **/*xx*/, mp **/*yy*/,
924 mp */*a*/, mp */*b*/);
926 /* -- @mp_modinv@ --- *
928 * Arguments: @mp *d@ = destination
932 * Returns: The inverse %$x^{-1} \bmod p$%.
934 * Use: Computes a modular inverse. An assertion fails if %$p$%
938 extern mp *mp_modinv(mp */*d*/, mp */*x*/, mp */*p*/);
940 /* --- @mp_jacobi@ --- *
942 * Arguments: @mp *a@ = an integer
943 * @mp *n@ = another integer
945 * Returns: @-1@, @0@ or @1@ -- the Jacobi symbol %$J(a, n)$%.
947 * Use: Computes the Kronecker symbol %$\jacobi{a}{n}$%. If @n@ is
948 * prime, this is the Legendre symbol and is equal to 1 if and
949 * only if @a@ is a quadratic residue mod @n@. The result is
950 * zero if and only if @a@ and @n@ have a common factor greater
953 * If @n@ is composite, then this computes the Kronecker symbol
955 * %$\jacobi{a}{n}=\jacobi{a}{u}\prod_i\jacobi{a}{p_i}^{e_i}$%
957 * where %$n = u p_0^{e_0} \ldots p_{n-1}^{e_{n-1}}$% is the
958 * prime factorization of %$n$%. The missing bits are:
960 * * %$\jacobi{a}{1} = 1$%;
961 * * %$\jacobi{a}{-1} = 1$% if @a@ is negative, or 1 if
963 * * %$\jacobi{a}{0} = 0$%;
964 * * %$\jacobi{a}{2}$ is 0 if @a@ is even, 1 if @a@ is
965 * congruent to 1 or 7 (mod 8), or %$-1$% otherwise.
967 * If %$n$% is positive and odd, then this is the Jacobi
968 * symbol. (The Kronecker symbol is a consistant domain
969 * extension; the Jacobi symbol was implemented first, and the
973 extern int mp_jacobi(mp */*a*/, mp */*n*/);
975 /* --- @mp_modsqrt@ --- *
977 * Arguments: @mp *d@ = destination integer
978 * @mp *a@ = source integer
979 * @mp *p@ = modulus (must be prime)
981 * Returns: If %$a$% is a quadratic residue, a square root of %$a$%; else
984 * Use: Returns an integer %$x$% such that %$x^2 \equiv a \pmod{p}$%,
985 * if one exists; else a null pointer. This function will not
986 * work if %$p$% is composite: you must factor the modulus, take
987 * a square root mod each factor, and recombine the results
988 * using the Chinese Remainder Theorem.
990 * We guarantee that the square root returned is the smallest
991 * one (i.e., the `positive' square root).
994 extern mp *mp_modsqrt(mp */*d*/, mp */*a*/, mp */*p*/);
996 /* --- @mp_modexp@ --- *
998 * Arguments: @mp *d@ = fake destination
999 * @mp *x@ = base of exponentiation
1000 * @mp *e@ = exponent
1001 * @mp *n@ = modulus (must be positive)
1003 * Returns: The value %$x^e \bmod n$%.
1006 extern mp *mp_modexp(mp */*d*/, mp */*x*/, mp */*e*/, mp */*n*/);
1008 /*----- Test harness support ----------------------------------------------*/
1010 #include <mLib/testrig.h>
1012 #ifndef CATACOMB_MPTEXT_H
1013 # include "mptext.h"
1016 extern const test_type type_mp;
1018 /*----- That's all, folks -------------------------------------------------*/