3 * Compute square roots modulo a prime
5 * (c) 2000 Straylight/Edgeware
8 /*----- Licensing notice --------------------------------------------------*
10 * This file is part of Catacomb.
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
28 /*----- Header files ------------------------------------------------------*/
36 /*----- Main code ---------------------------------------------------------*/
38 /* --- @mp_modsqrt@ --- *
40 * Arguments: @mp *d@ = destination integer
41 * @mp *a@ = source integer
42 * @mp *p@ = modulus (must be prime)
44 * Returns: If %$a$% is a quadratic residue, a square root of %$a$%; else
47 * Use: Returns an integer %$x$% such that %$x^2 \equiv a \pmod{p}$%,
48 * if one exists; else a null pointer. This function will not
49 * work if %$p$% is composite: you must factor the modulus, take
50 * a square root mod each factor, and recombine the results
51 * using the Chinese Remainder Theorem.
53 * We guarantee that the square root returned is the smallest
54 * one (i.e., the `positive' square root).
57 mp *mp_modsqrt(mp *d, mp *a, mp *p)
68 /* --- Cope if %$a \not\in Q_p$% --- */
70 if (mp_jacobi(a, p) != 1) {
75 /* --- Choose some quadratic non-residue --- */
78 grand *g = fibrand_create(0);
82 b = mprand_range(b, p, g, 0);
83 while (mp_jacobi(b, p) != -1);
87 /* --- Find the inverse of %$a$% --- */
89 ainv = mp_modinv(MP_NEW, a, p);
91 /* --- Split %$p - 1$% into a power of two and an odd number --- */
93 t = mp_sub(MP_NEW, p, MP_ONE);
96 /* --- Now to really get going --- */
98 mpmont_create(&mm, p);
99 b = mpmont_mul(&mm, b, b, mm.r2);
100 c = mpmont_expr(&mm, b, b, t);
101 t = mp_add(t, t, MP_ONE);
103 dd = mpmont_mul(&mm, MP_NEW, a, mm.r2);
104 r = mpmont_expr(&mm, t, dd, t);
106 ainv = mpmont_mul(&mm, ainv, ainv, mm.r2);
108 mone = mp_sub(MP_NEW, p, mm.r);
112 for (i = 1; i < s; i++) {
114 /* --- Compute %$d_0 = r^2a^{-1}$% --- */
117 dd = mpmont_reduce(&mm, dd, dd);
118 dd = mpmont_mul(&mm, dd, dd, ainv);
120 /* --- Now %$d = d_0^{2^{s - i - 1}}$% --- */
122 for (j = i; j < s - 1; j++) {
124 dd = mpmont_reduce(&mm, dd, dd);
127 /* --- Fiddle at the end --- */
130 r = mpmont_mul(&mm, r, r, c);
132 c = mpmont_reduce(&mm, c, c);
135 /* --- Done, so tidy up --- *
137 * Canonify the answer.
140 d = mpmont_reduce(&mm, d, r);
142 if (MP_CMP(r, <, d)) { mp *tt = r; r = d; d = tt; }
144 mp_drop(r); mp_drop(c);
152 /*----- Test rig ----------------------------------------------------------*/
156 #include <mLib/testrig.h>
158 static int verify(dstr *v)
160 mp *a = *(mp **)v[0].buf;
161 mp *p = *(mp **)v[1].buf;
162 mp *rr = *(mp **)v[2].buf;
163 mp *r = mp_modsqrt(MP_NEW, a, p);
168 else if (MP_EQ(r, rr))
172 fputs("\n*** fail\n", stderr);
173 fputs("a = ", stderr); mp_writefile(a, stderr, 10); fputc('\n', stderr);
174 fputs("p = ", stderr); mp_writefile(p, stderr, 10); fputc('\n', stderr);
176 fputs("r = ", stderr);
177 mp_writefile(r, stderr, 10);
180 fputs("r = <undef>\n", stderr);
181 fputs("rr = ", stderr); mp_writefile(rr, stderr, 10); fputc('\n', stderr);
189 assert(mparena_count(MPARENA_GLOBAL) == 0);
193 static test_chunk tests[] = {
194 { "modsqrt", verify, { &type_mp, &type_mp, &type_mp, 0 } },
198 int main(int argc, char *argv[])
201 test_run(argc, argv, tests, SRCDIR "/t/mp");
207 /*----- That's all, folks -------------------------------------------------*/