3 * Extended GCD calculation
5 * (c) 1999 Straylight/Edgeware
8 /*----- Licensing notice --------------------------------------------------*
10 * This file is part of Catacomb.
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
28 /*----- Header files ------------------------------------------------------*/
32 /*----- Main code ---------------------------------------------------------*/
36 * Arguments: @mp **gcd, **xx, **yy@ = where to write the results
37 * @mp *a, *b@ = sources (must be nonzero)
41 * Use: Calculates @gcd(a, b)@, and two numbers @x@ and @y@ such that
42 * @ax + by = gcd(a, b)@. This is useful for computing modular
46 void mp_gcd(mp **gcd, mp **xx, mp **yy, mp *a, mp *b)
48 mp *x = MP_ONE, *X = MP_ZERO;
49 mp *y = MP_ZERO, *Y = MP_ONE;
51 mp *q = MP_NEW, *t, *spare = MP_NEW;
59 /* --- Sort out some initial flags --- */
69 /* --- Ensure that @a@ is larger than @b@ --- *
71 * Use absolute values here!
74 if (MPX_UCMP(a->v, a->vl, <, b->v, b->vl)) {
79 /* --- Check for zeroness --- */
83 /* --- Store %$|a|$% as the GCD --- */
86 if (*gcd) MP_DROP(*gcd);
96 /* --- Store %$1$% and %$0$% in the appropriate bins --- */
100 mp **tt = xx; xx = yy; yy = tt;
103 if (*xx) MP_DROP(*xx);
104 if (MP_EQ(a, MP_ZERO))
112 if (*yy) MP_DROP(*yy);
119 /* --- Force the signs on the arguments and take copies --- */
124 MP_SPLIT(a); a->f &= ~MP_NEG;
125 MP_SPLIT(b); b->f &= ~MP_NEG;
130 /* --- Main extended Euclidean algorithm --- */
132 while (!MP_ZEROP(v)) {
133 mp_div(&q, &u, u, v);
135 t = mp_mul(spare, X, q);
137 spare = x; x = X; X = t;
138 t = mp_mul(spare, Y, q);
140 spare = y; y = Y; Y = t;
145 MP_DROP(q); if (spare) MP_DROP(spare);
149 if (*gcd) MP_DROP(*gcd);
154 /* --- Perform a little normalization --- *
156 * Ensure that the coefficient returned is positive, if there is only one.
157 * If there are two, favour @y@. Of course, if the original arguments were
158 * negative then I'll need to twiddle their signs as well.
163 /* --- If @a@ and @b@ got swapped, swap the coefficients back --- */
170 /* --- Sort out the signs --- *
172 * Note that %$ax + by = a(x - b) + b(y + a)$%.
174 * This is currently bodgy. It needs sorting out at some time.
182 } while (MP_NEGP(y));
184 while (MP_CMP(y, >=, a)) {
195 while (MP_CMP(x, >=, b))
200 /* --- Twiddle the signs --- */
207 /* --- Store the results --- */
212 if (*xx) MP_DROP(*xx);
219 if (*yy) MP_DROP(*yy);
225 MP_DROP(X); MP_DROP(Y);
226 MP_DROP(a); MP_DROP(b);
229 /* -- @mp_modinv@ --- *
231 * Arguments: @mp *d@ = destination
235 * Returns: The inverse %$x^{-1} \bmod p$%.
237 * Use: Computes a modular inverse. An assertion fails if %$p$%
241 mp *mp_modinv(mp *d, mp *x, mp *p)
244 mp_gcd(&g, 0, &d, p, x);
245 assert(MP_EQ(g, MP_ONE));
250 /*----- Test rig ----------------------------------------------------------*/
254 static int modinv(dstr *v)
257 mp *x = *(mp **)v[0].buf;
258 mp *m = *(mp **)v[1].buf;
259 mp *r = *(mp **)v[2].buf;
261 mp *y = mp_modinv(MP_NEW, x, m);
263 fputs("\n*** mp_modinv failed", stderr);
264 fputs("\nx = ", stderr); mp_writefile(x, stderr, 10);
265 fputs("\nm = ", stderr); mp_writefile(m, stderr, 10);
266 fputs("\nexpect = ", stderr); mp_writefile(r, stderr, 10);
267 fputs("\nresult = ", stderr); mp_writefile(y, stderr, 10);
270 MP_DROP(x); MP_DROP(m); MP_DROP(r); MP_DROP(y);
271 assert(mparena_count(MPARENA_GLOBAL) == 0);
275 static int gcd(dstr *v)
278 mp *a = *(mp **)v[0].buf;
279 mp *b = *(mp **)v[1].buf;
280 mp *g = *(mp **)v[2].buf;
281 mp *x = *(mp **)v[3].buf;
282 mp *y = *(mp **)v[4].buf;
284 mp *gg = MP_NEW, *xx = MP_NEW, *yy = MP_NEW;
285 mp_gcd(&gg, &xx, &yy, a, b);
287 fputs("\n*** mp_gcd(x) failed", stderr);
288 fputs("\na = ", stderr); mp_writefile(a, stderr, 10);
289 fputs("\nb = ", stderr); mp_writefile(b, stderr, 10);
290 fputs("\nexpect = ", stderr); mp_writefile(x, stderr, 10);
291 fputs("\nresult = ", stderr); mp_writefile(xx, stderr, 10);
296 fputs("\n*** mp_gcd(y) failed", stderr);
297 fputs("\na = ", stderr); mp_writefile(a, stderr, 10);
298 fputs("\nb = ", stderr); mp_writefile(b, stderr, 10);
299 fputs("\nexpect = ", stderr); mp_writefile(y, stderr, 10);
300 fputs("\nresult = ", stderr); mp_writefile(yy, stderr, 10);
306 mp *ax = mp_mul(MP_NEW, a, xx);
307 mp *by = mp_mul(MP_NEW, b, yy);
308 ax = mp_add(ax, ax, by);
310 fputs("\n*** (Alternative result found.)\n", stderr);
316 fputs("\n*** mp_gcd(gcd) failed", stderr);
317 fputs("\na = ", stderr); mp_writefile(a, stderr, 10);
318 fputs("\nb = ", stderr); mp_writefile(b, stderr, 10);
319 fputs("\nexpect = ", stderr); mp_writefile(g, stderr, 10);
320 fputs("\nresult = ", stderr); mp_writefile(gg, stderr, 10);
324 MP_DROP(a); MP_DROP(b); MP_DROP(g); MP_DROP(x); MP_DROP(y);
325 MP_DROP(gg); MP_DROP(xx); MP_DROP(yy);
326 assert(mparena_count(MPARENA_GLOBAL) == 0);
330 static test_chunk tests[] = {
331 { "gcd", gcd, { &type_mp, &type_mp, &type_mp, &type_mp, &type_mp, 0 } },
332 { "modinv", modinv, { &type_mp, &type_mp, &type_mp, 0 } },
336 int main(int argc, char *argv[])
339 test_run(argc, argv, tests, SRCDIR "/t/mp");
345 /*----- That's all, folks -------------------------------------------------*/