3 * Compute the %$n$%th Fibonacci number
5 * (c) 2013 Straylight/Edgeware
8 /*----- Licensing notice --------------------------------------------------*
10 * This file is part of Catacomb.
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
28 /*----- Header files ------------------------------------------------------*/
33 /*----- About the algorithm -----------------------------------------------*
35 * Define %$F_0 = 0$% and %$F_1 = 1$%, and %$F_{k+1} = F_k + F_{k-1}$% for
36 * all %$k$%. (This defines %$F_k$% for negative %$k$% too, by
37 * %$F_{k-1} = F_{k+1} - F_k$%; in particular, %$F_{-1} = 1$% and
38 * %$F_{-2} = -1$%.) We say that %$F_k$% is the %$k$%th Fibonacci number.
40 * We work in the ring %$\ZZ[t]/(t^2 - t -1)$%. Every residue class in this
41 * ring contains a unique representative with degree at most 1. I claim that
42 * %$t^k = F_k t + F_{k-1}$% for all %$k$%. Certainly %$t = F_1 t + F_0$%.
43 * Note that %$t (F_{-1} t + F_{-2}) = t (t - 1) = t^2 - t = 1$%, so the
44 * claim holds for %$k = -1$%. Suppose, inductively, that it holds for
45 * %$k$%; then %$t^{k+1} = t \cdot t^k = F_k t^2 + F_{k-1} t = {}$%
46 * %$(F_k + F_{k-1}) t + F_k = F_{k+1} t + F_k$%; and %$t^{k-1} = {}$%
47 * %$t^{-1} t^k = (t - 1) t^k = t^{k+1} - t^k = {}$%
48 * %$(F_{k+1} - F_k) t + (F_k - F_{k-1}) = F_{k-1} t + F_{k-2}$%, proving the
51 * So we can compute Fibonacci numbers by exponentiating in this ring.
52 * Squaring and multiplication work like this.
54 * * Square: %$(a t + b)^2 = a^2 t^2 + 2 a b t + b^2 = {}$%
55 * %$(a^2 + 2 a b) t + (a^2 + b^2)$%
57 * * Multiply: %$(a t + b)(c t + d) = a c t^2 + (a d + b c) t + b d = {}$%
58 * %$(a c + a d + b c) t + (a c + b d)$%.
61 /*----- Exponentiation machinery ------------------------------------------*/
63 /* --- @struct fib@ --- *
65 * A simple structure tracking polynomial coefficients.
69 int n; /* Exponent for this entry */
70 mp *a, *b; /* Coefficients: %$a t + b$% */
73 #define MAX 100 /* Saturation bounds for exponent */
78 * Clamp @n@ within the upper and lower bounds.
81 #define CLAMP(n) do { \
82 if (n > MAX) n = MAX; else if (n < MIN) n = MIN; \
85 /* --- Basic structure maintenance functions --- */
87 static void fib_init(struct fib *f)
88 { f->a = f->b = MP_NEW; }
90 static void fib_drop(struct fib *f)
91 { if (f->a) MP_DROP(f->a); if (f->b) MP_DROP(f->b); }
93 static void fib_copy(struct fib *d, struct fib *x)
94 { d->n = x->n; d->a = MP_COPY(x->a); d->b = MP_COPY(x->b); }
96 /* --- @fib_sqr@ --- *
98 * Arguments: @struct fib *d@ = destination structure
99 * @struct fib *x@ = operand
103 * Use: Set @d@ to the square of @x@.
106 static void fib_sqr(struct fib *d, struct fib *x)
110 /* --- Special case: if @x@ is the identity then just copy --- */
113 if (d != x) { fib_drop(d); fib_copy(d, x); }
117 /* --- Compute the result --- */
119 aa = mp_sqr(MP_NEW, x->a); /* %$a^2$% */
121 t = mp_mul(d->a, x->a, x->b); /* %$t = a b$% */
122 t = mp_lsl(t, t, 1); /* %$t = 2 a b$% */
123 d->a = mp_add(t, t, aa); /* %$a' = a^2 + 2 a b$% */
125 t = mp_sqr(d->b, x->b); /* %$t = b^2$% */
126 d->b = mp_add(t, t, aa); /* %$b' = a^2 + b^2$% */
128 /* --- Sort out the exponent on the result --- */
130 d->n = 2*x->n; CLAMP(d->n);
137 /* --- @fib_mul@ --- *
139 * Arguments: @struct fib *d@ = destination structure
140 * @struct fib *x, *y@ = operands
144 * Use: Set @d@ to the product of @x@ and @y@.
147 static void fib_mul(struct fib *d, struct fib *x, struct fib *y)
151 /* --- Lots of special cases for low exponents --- */
155 if (d != x) { fib_drop(d); fib_copy(d, x); }
157 } else if (x->n == 0) { x = y; goto copy_x; }
158 else if (y->n == -1) {
160 t = mp_sub(d->a, x->a, x->b);
161 d->a = MP_COPY(x->b); if (d->b) MP_DROP(d->b); d->b = t;
162 d->n = x->n - 1; CLAMP(d->n);
164 } else if (y->n == +1) {
166 t = mp_add(d->b, x->a, x->b);
167 d->b = MP_COPY(x->a); if (d->a) MP_DROP(d->a); d->a = t;
168 d->n = x->n + 1; CLAMP(d->n);
170 } else if (x->n == -1) { x = y; goto dec_x; }
171 else if (x->n == +1) { x = y; goto inc_x; }
173 /* --- Compute the result --- */
175 bd = mp_mul(MP_NEW, x->b, y->b); /* %$b d$% */
176 t = mp_add(MP_NEW, x->a, x->b); /* %$t = a + b$% */
177 u = mp_add(MP_NEW, y->a, y->b); /* %$u = c + d$% */
178 t = mp_mul(t, t, u); /* %$t = (a + b)(c + d)$% */
179 u = mp_mul(u, x->a, y->a); /* %$u = a c$% */
181 d->a = mp_sub(d->a, t, bd); /* %$a' = a c + a d + b c$% */
182 d->b = mp_add(d->b, u, bd); /* %$b' = a c + b d$% */
184 /* --- Sort out the exponent on the result --- */
186 if (x->n == MIN || x->n == MAX) d->n = x->n;
187 else if (y->n == MIN || y->n == MAX) d->n = y->n;
188 else { d->n = x->n + y->n; CLAMP(d->n); }
192 MP_DROP(bd); MP_DROP(t); MP_DROP(u);
195 /* --- Exponentiation --- */
197 #define EXP_TYPE struct fib
198 #define EXP_COPY(d, x) fib_copy(&d, &x)
199 #define EXP_DROP(x) fib_drop(&x)
202 #define EXP_SQR(x) fib_sqr(&x, &x)
203 #define EXP_MUL(x, y) fib_mul(&x, &x, &y)
204 #define EXP_SETSQR(d, x) fib_init(&d); fib_sqr(&d, &x)
205 #define EXP_SETMUL(d, x, y) fib_init(&d); fib_mul(&d, &x, &y)
209 /*----- Main code ---------------------------------------------------------*/
211 /* --- @mp_fibonacci@ --- *
213 * Arguments: @long n@ = index desired (may be negative)
215 * Returns: The %$n$%th Fibonacci number.
218 mp *mp_fibonacci(long n)
223 d.n = 0; d.a = MP_ZERO; d.b = MP_ONE;
224 if (n >= 0) { g.n = 1; g.a = MP_ONE; g.b = MP_ZERO; }
225 else { g.n = -1; g.a = MP_ONE; g.b = MP_MONE; n = -n; }
226 nn = mp_fromlong(MP_NEW, n);
228 EXP_WINDOW(d, g, nn);
230 MP_DROP(nn); fib_drop(&g); MP_DROP(d.b);
234 /*----- Test rig ----------------------------------------------------------*/
238 #include <mLib/testrig.h>
240 static int vfib(dstr *v)
242 long x = *(long *)v[0].buf;
243 mp *fx = *(mp **)v[1].buf;
244 mp *y = mp_fibonacci(x);
247 fprintf(stderr, "fibonacci failed\n");
248 MP_FPRINTF(stderr, (stderr, "fib(%ld) = ", x), fx);
249 MP_EPRINT("result", y);
254 assert(mparena_count(MPARENA_GLOBAL) == 0);
258 static test_chunk tests[] = {
259 { "fibonacci", vfib, { &type_long, &type_mp, 0 } },
263 int main(int argc, char *argv[])
265 test_run(argc, argv, tests, SRCDIR "/t/mp");
271 /*----- That's all, folks -------------------------------------------------*/