3 * Elliptic curves over prime fields
5 * (c) 2001 Straylight/Edgeware
8 /*----- Licensing notice --------------------------------------------------*
10 * This file is part of Catacomb.
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
28 /*----- Header files ------------------------------------------------------*/
34 /*----- Simple prime curves -----------------------------------------------*/
36 static const ec_ops ec_primeops, ec_primeprojops, ec_primeprojxops;
38 static ec *ecneg(ec_curve *c, ec *d, const ec *p)
42 d->y = F_NEG(c->f, d->y, d->y);
46 static ec *ecfind(ec_curve *c, ec *d, mp *x)
51 q = F_SQR(f, MP_NEW, x);
52 p = F_MUL(f, MP_NEW, x, q);
53 q = F_MUL(f, q, x, c->a);
54 p = F_ADD(f, p, p, q);
55 p = F_ADD(f, p, p, c->b);
63 d->z = MP_COPY(f->one);
67 static ec *ecdbl(ec_curve *c, ec *d, const ec *a)
69 if (EC_ATINF(a) || F_ZEROP(c->f, a->y))
76 dx = F_SQR(f, MP_NEW, a->x); /* %$x^2$% */
77 dy = F_DBL(f, MP_NEW, a->y); /* %$2 y$% */
78 dx = F_TPL(f, dx, dx); /* %$3 x^2$% */
79 dx = F_ADD(f, dx, dx, c->a); /* %$3 x^2 + A$% */
80 dy = F_INV(f, dy, dy); /* %$(2 y)^{-1}$% */
81 lambda = F_MUL(f, MP_NEW, dx, dy); /* %$\lambda = (3 x^2 + A)/(2 y)$% */
83 dx = F_SQR(f, dx, lambda); /* %$\lambda^2$% */
84 dy = F_DBL(f, dy, a->x); /* %$2 x$% */
85 dx = F_SUB(f, dx, dx, dy); /* %$x' = \lambda^2 - 2 x */
86 dy = F_SUB(f, dy, a->x, dx); /* %$x - x'$% */
87 dy = F_MUL(f, dy, lambda, dy); /* %$\lambda (x - x')$% */
88 dy = F_SUB(f, dy, dy, a->y); /* %$y' = \lambda (x - x') - y$% */
99 static ec *ecprojdbl(ec_curve *c, ec *d, const ec *a)
101 if (EC_ATINF(a) || F_ZEROP(c->f, a->y))
105 mp *p, *q, *m, *s, *dx, *dy, *dz;
107 p = F_SQR(f, MP_NEW, a->z); /* %$z^2$% */
108 q = F_SQR(f, MP_NEW, p); /* %$z^4$% */
109 p = F_MUL(f, p, q, c->a); /* %$A z^4$% */
110 m = F_SQR(f, MP_NEW, a->x); /* %$x^2$% */
111 m = F_TPL(f, m, m); /* %$3 x^2$% */
112 m = F_ADD(f, m, m, p); /* %$m = 3 x^2 + A z^4$% */
114 q = F_DBL(f, q, a->y); /* %$2 y$% */
115 dz = F_MUL(f, MP_NEW, q, a->z); /* %$z' = 2 y z$% */
117 p = F_SQR(f, p, q); /* %$4 y^2$% */
118 s = F_MUL(f, MP_NEW, p, a->x); /* %$s = 4 x y^2$% */
119 q = F_SQR(f, q, p); /* %$16 y^4$% */
120 q = F_HLV(f, q, q); /* %$t = 8 y^4$% */
122 p = F_DBL(f, p, s); /* %$2 s$% */
123 dx = F_SQR(f, MP_NEW, m); /* %$m^2$% */
124 dx = F_SUB(f, dx, dx, p); /* %$x' = m^2 - 2 s$% */
126 s = F_SUB(f, s, s, dx); /* %$s - x'$% */
127 dy = F_MUL(f, p, m, s); /* %$m (s - x')$% */
128 dy = F_SUB(f, dy, dy, q); /* %$y' = m (s - x') - t$% */
141 static ec *ecprojxdbl(ec_curve *c, ec *d, const ec *a)
143 if (EC_ATINF(a) || F_ZEROP(c->f, a->y))
147 mp *p, *q, *m, *s, *dx, *dy, *dz;
149 m = F_SQR(f, MP_NEW, a->z); /* %$z^2$% */
150 p = F_SUB(f, MP_NEW, a->x, m); /* %$x - z^2$% */
151 q = F_ADD(f, MP_NEW, a->x, m); /* %$x + z^2$% */
152 m = F_MUL(f, m, p, q); /* %$x^2 - z^4$% */
153 m = F_TPL(f, m, m); /* %$m = 3 x^2 - 3 z^4$% */
155 q = F_DBL(f, q, a->y); /* %$2 y$% */
156 dz = F_MUL(f, MP_NEW, q, a->z); /* %$z' = 2 y z$% */
158 p = F_SQR(f, p, q); /* %$4 y^2$% */
159 s = F_MUL(f, MP_NEW, p, a->x); /* %$s = 4 x y^2$% */
160 q = F_SQR(f, q, p); /* %$16 y^4$% */
161 q = F_HLV(f, q, q); /* %$t = 8 y^4$% */
163 p = F_DBL(f, p, s); /* %$2 s$% */
164 dx = F_SQR(f, MP_NEW, m); /* %$m^2$% */
165 dx = F_SUB(f, dx, dx, p); /* %$x' = m^2 - 2 s$% */
167 s = F_SUB(f, s, s, dx); /* %$s - x'$% */
168 dy = F_MUL(f, p, m, s); /* %$m (s - x')$% */
169 dy = F_SUB(f, dy, dy, q); /* %$y' = m (s - x') - t$% */
182 static ec *ecadd(ec_curve *c, ec *d, const ec *a, const ec *b)
186 else if (EC_ATINF(a))
188 else if (EC_ATINF(b))
195 if (!MP_EQ(a->x, b->x)) {
196 dy = F_SUB(f, MP_NEW, a->y, b->y); /* %$y_0 - y_1$% */
197 dx = F_SUB(f, MP_NEW, a->x, b->x); /* %$x_0 - x_1$% */
198 dx = F_INV(f, dx, dx); /* %$(x_0 - x_1)^{-1}$% */
199 lambda = F_MUL(f, MP_NEW, dy, dx);
200 /* %$\lambda = (y_0 - y1)/(x_0 - x_1)$% */
201 } else if (F_ZEROP(c->f, a->y) || !MP_EQ(a->y, b->y)) {
205 dx = F_SQR(f, MP_NEW, a->x); /* %$x_0^2$% */
206 dx = F_TPL(f, dx, dx); /* %$3 x_0^2$% */
207 dx = F_ADD(f, dx, dx, c->a); /* %$3 x_0^2 + A$% */
208 dy = F_DBL(f, MP_NEW, a->y); /* %$2 y_0$% */
209 dy = F_INV(f, dy, dy); /* %$(2 y_0)^{-1}$% */
210 lambda = F_MUL(f, MP_NEW, dx, dy);
211 /* %$\lambda = (3 x_0^2 + A)/(2 y_0)$% */
214 dx = F_SQR(f, dx, lambda); /* %$\lambda^2$% */
215 dx = F_SUB(f, dx, dx, a->x); /* %$\lambda^2 - x_0$% */
216 dx = F_SUB(f, dx, dx, b->x); /* %$x' = \lambda^2 - x_0 - x_1$% */
217 dy = F_SUB(f, dy, b->x, dx); /* %$x_1 - x'$% */
218 dy = F_MUL(f, dy, lambda, dy); /* %$\lambda (x_1 - x')$% */
219 dy = F_SUB(f, dy, dy, b->y); /* %$y' = \lambda (x_1 - x') - y_1$% */
230 static ec *ecprojadd(ec_curve *c, ec *d, const ec *a, const ec *b)
233 c->ops->dbl(c, d, a);
234 else if (EC_ATINF(a))
236 else if (EC_ATINF(b))
240 mp *p, *q, *r, *w, *u, *uu, *s, *ss, *dx, *dy, *dz;
242 q = F_SQR(f, MP_NEW, a->z); /* %$z_0^2$% */
243 u = F_MUL(f, MP_NEW, q, b->x); /* %$u = x_1 z_0^2$% */
244 p = F_MUL(f, MP_NEW, q, b->y); /* %$y_1 z_0^2$% */
245 s = F_MUL(f, q, p, a->z); /* %$s = y_1 z_0^3$% */
247 q = F_SQR(f, MP_NEW, b->z); /* %$z_1^2$% */
248 uu = F_MUL(f, MP_NEW, q, a->x); /* %$uu = x_0 z_1^2$%*/
249 p = F_MUL(f, p, q, a->y); /* %$y_0 z_1^2$% */
250 ss = F_MUL(f, q, p, b->z); /* %$ss = y_0 z_1^3$% */
252 w = F_SUB(f, p, uu, u); /* %$w = uu - u$% */
253 r = F_SUB(f, MP_NEW, ss, s); /* %$r = ss - s$% */
262 return (c->ops->dbl(c, d, a));
269 u = F_ADD(f, u, u, uu); /* %$t = uu + u$% */
270 s = F_ADD(f, s, s, ss); /* %$m = ss + r$% */
272 uu = F_MUL(f, uu, a->z, w); /* %$z_0 w$% */
273 dz = F_MUL(f, ss, uu, b->z); /* %$z' = z_0 z_1 w$% */
275 p = F_SQR(f, uu, w); /* %$w^2$% */
276 q = F_MUL(f, MP_NEW, p, u); /* %$t w^2$% */
277 u = F_MUL(f, u, p, w); /* %$w^3$% */
278 p = F_MUL(f, p, u, s); /* %$m w^3$% */
280 dx = F_SQR(f, u, r); /* %$r^2$% */
281 dx = F_SUB(f, dx, dx, q); /* %$x' = r^2 - t w^2$% */
283 s = F_DBL(f, s, dx); /* %$2 x'$% */
284 q = F_SUB(f, q, q, s); /* %$v = t w^2 - 2 x'$% */
285 dy = F_MUL(f, s, q, r); /* %$v r$% */
286 dy = F_SUB(f, dy, dy, p); /* %$v r - m w^3$% */
287 dy = F_HLV(f, dy, dy); /* %$y' = (v r - m w^3)/2$% */
301 static int eccheck(ec_curve *c, const ec *p)
306 if (EC_ATINF(p)) return (0);
307 l = F_SQR(f, MP_NEW, p->y);
308 x = F_SQR(f, MP_NEW, p->x);
309 r = F_MUL(f, MP_NEW, x, p->x);
310 x = F_MUL(f, x, c->a, p->x);
311 r = F_ADD(f, r, r, x);
312 r = F_ADD(f, r, r, c->b);
313 rc = MP_EQ(l, r) ? 0 : -1;
320 static int ecprojcheck(ec_curve *c, const ec *p)
325 c->ops->fix(c, &t, p);
331 static void ecdestroy(ec_curve *c)
338 /* --- @ec_prime@, @ec_primeproj@ --- *
340 * Arguments: @field *f@ = the underlying field for this elliptic curve
341 * @mp *a, *b@ = the coefficients for this curve
343 * Returns: A pointer to the curve, or null.
345 * Use: Creates a curve structure for an elliptic curve defined over
346 * a prime field. The @primeproj@ variant uses projective
347 * coordinates, which can be a win.
350 extern ec_curve *ec_prime(field *f, mp *a, mp *b)
352 ec_curve *c = CREATE(ec_curve);
353 c->ops = &ec_primeops;
355 c->a = F_IN(f, MP_NEW, a);
356 c->b = F_IN(f, MP_NEW, b);
360 extern ec_curve *ec_primeproj(field *f, mp *a, mp *b)
362 ec_curve *c = CREATE(ec_curve);
365 ax = mp_add(MP_NEW, a, MP_THREE);
366 ax = F_IN(f, ax, ax);
368 c->ops = &ec_primeprojxops;
370 c->ops = &ec_primeprojops;
373 c->a = F_IN(f, MP_NEW, a);
374 c->b = F_IN(f, MP_NEW, b);
378 static const ec_ops ec_primeops = {
380 ecdestroy, ec_stdsamep, ec_idin, ec_idout, ec_idfix,
381 ecfind, ecneg, ecadd, ec_stdsub, ecdbl, eccheck
384 static const ec_ops ec_primeprojops = {
386 ecdestroy, ec_stdsamep, ec_projin, ec_projout, ec_projfix,
387 ecfind, ecneg, ecprojadd, ec_stdsub, ecprojdbl, ecprojcheck
390 static const ec_ops ec_primeprojxops = {
392 ecdestroy, ec_stdsamep, ec_projin, ec_projout, ec_projfix,
393 ecfind, ecneg, ecprojadd, ec_stdsub, ecprojxdbl, ecprojcheck
396 /*----- Test rig ----------------------------------------------------------*/
400 #define MP(x) mp_readstring(MP_NEW, #x, 0, 0)
402 int main(int argc, char *argv[])
406 ec g = EC_INIT, d = EC_INIT;
408 int i, n = argc == 1 ? 1 : atoi(argv[1]);
410 printf("ec-prime: ");
413 b = MP(0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef);
414 p = MP(39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319);
415 r = MP(39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942642);
417 f = field_niceprime(p);
418 c = ec_primeproj(f, a, b);
420 g.x = MP(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7);
421 g.y = MP(0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f);
423 for (i = 0; i < n; i++) {
424 ec_mul(c, &d, &g, r);
426 fprintf(stderr, "zero too early\n");
429 ec_add(c, &d, &d, &g);
431 fprintf(stderr, "didn't reach zero\n");
432 MP_EPRINT("d.x", d.x);
433 MP_EPRINT("d.y", d.y);
441 MP_DROP(p); MP_DROP(a); MP_DROP(b); MP_DROP(r);
442 assert(!mparena_count(&mparena_global));
449 /*----- That's all, folks -------------------------------------------------*/