3 * Arithmetic for elliptic curves over binary fields
5 * (c) 2004 Straylight/Edgeware
8 /*----- Licensing notice --------------------------------------------------*
10 * This file is part of Catacomb.
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
28 /*----- Header files ------------------------------------------------------*/
35 /*----- Main code ---------------------------------------------------------*/
37 static const ec_ops ec_binops, ec_binprojops;
39 static ec *ecneg(ec_curve *c, ec *d, const ec *p)
43 d->y = F_ADD(c->f, d->y, d->y, d->x);
47 static ec *ecprojneg(ec_curve *c, ec *d, const ec *p)
51 mp *t = F_MUL(c->f, MP_NEW, d->x, d->z);
52 d->y = F_ADD(c->f, d->y, d->y, t);
58 static ec *ecfind(ec_curve *c, ec *d, mp *x)
64 y = F_SQRT(f, MP_NEW, c->b);
66 u = F_SQR(f, MP_NEW, x); /* %$x^2$% */
67 y = F_MUL(f, MP_NEW, u, c->a); /* %$a x^2$% */
68 y = F_ADD(f, y, y, c->b); /* %$a x^2 + b$% */
69 v = F_MUL(f, MP_NEW, u, x); /* %$x^3$% */
70 y = F_ADD(f, y, y, v); /* %$A = x^3 + a x^2 + b$% */
72 u = F_INV(f, u, u); /* %$x^{-2}$% */
73 v = F_MUL(f, v, u, y); /* %$B = A x^{-2} = x + a + b x^{-2}$% */
74 y = F_QUADSOLVE(f, y, v); /* %$z^2 + z = B$% */
75 if (y) y = F_MUL(f, y, y, x); /* %$y = z x$% */
84 d->z = MP_COPY(f->one);
88 static ec *ecdbl(ec_curve *c, ec *d, const ec *a)
90 if (EC_ATINF(a) || F_ZEROP(c->f, a->x))
97 dx = F_INV(f, MP_NEW, a->x); /* %$x^{-1}$% */
98 dy = F_MUL(f, MP_NEW, dx, a->y); /* %$y/x$% */
99 lambda = F_ADD(f, dy, dy, a->x); /* %$\lambda = x + y/x$% */
101 dx = F_SQR(f, dx, lambda); /* %$\lambda^2$% */
102 dx = F_ADD(f, dx, dx, lambda); /* %$\lambda^2 + \lambda$% */
103 dx = F_ADD(f, dx, dx, c->a); /* %$x' = a + \lambda^2 + \lambda$% */
105 dy = F_ADD(f, MP_NEW, a->x, dx); /* %$ x + x' $% */
106 dy = F_MUL(f, dy, dy, lambda); /* %$ (x + x') \lambda$% */
107 dy = F_ADD(f, dy, dy, a->y); /* %$ (x + x') \lambda + y$% */
108 dy = F_ADD(f, dy, dy, dx); /* %$ y' = (x + x') \lambda + y + x'$% */
119 static ec *ecprojdbl(ec_curve *c, ec *d, const ec *a)
121 if (EC_ATINF(a) || F_ZEROP(c->f, a->x))
125 ecctx_bin *cc = (ecctx_bin *)c;
126 mp *dx, *dy, *dz, *u, *v;
128 dy = F_SQR(f, MP_NEW, a->z); /* %$z^2$% */
129 dx = F_MUL(f, MP_NEW, dy, cc->bb); /* %$c z^2$% */
130 dx = F_ADD(f, dx, dx, a->x); /* %$x + c z^2$% */
131 dz = F_SQR(f, MP_NEW, dx); /* %$(x + c z^2)^2$% */
132 dx = F_SQR(f, dx, dz); /* %$x' = (x + c z^2)^4$% */
134 dz = F_MUL(f, dz, dy, a->x); /* %$z' = x z^2$% */
136 dy = F_SQR(f, dy, a->x); /* %$x^2$% */
137 u = F_MUL(f, MP_NEW, a->y, a->z); /* %$y z$% */
138 u = F_ADD(f, u, u, dz); /* %$z' + y z$% */
139 u = F_ADD(f, u, u, dy); /* %$u = z' + x^2 + y z$% */
141 v = F_SQR(f, MP_NEW, dy); /* %$x^4$% */
142 dy = F_MUL(f, dy, v, dz); /* %$x^4 z'$% */
143 v = F_MUL(f, v, u, dx); /* %$u x'$% */
144 dy = F_ADD(f, dy, dy, v); /* %$y' = x^4 z' + u x'$% */
156 static ec *ecadd(ec_curve *c, ec *d, const ec *a, const ec *b)
160 else if (EC_ATINF(a))
162 else if (EC_ATINF(b))
169 if (!MP_EQ(a->x, b->x)) {
170 dx = F_ADD(f, MP_NEW, a->x, b->x); /* %$x_0 + x_1$% */
171 dy = F_INV(f, MP_NEW, dx); /* %$(x_0 + x_1)^{-1}$% */
172 dx = F_ADD(f, dx, a->y, b->y); /* %$y_0 + y_1$% */
173 lambda = F_MUL(f, MP_NEW, dy, dx);
174 /* %$\lambda = (y_0 + y_1)/(x_0 + x_1)$% */
176 dx = F_SQR(f, dx, lambda); /* %$\lambda^2$% */
177 dx = F_ADD(f, dx, dx, lambda); /* %$\lambda^2 + \lambda$% */
178 dx = F_ADD(f, dx, dx, c->a); /* %$a + \lambda^2 + \lambda$% */
179 dx = F_ADD(f, dx, dx, a->x); /* %$a + \lambda^2 + \lambda + x_0$% */
180 dx = F_ADD(f, dx, dx, b->x);
181 /* %$x' = a + \lambda^2 + \lambda + x_0 + x_1$% */
182 } else if (!MP_EQ(a->y, b->y) || F_ZEROP(f, a->x)) {
186 dx = F_INV(f, MP_NEW, a->x); /* %$x^{-1}$% */
187 dy = F_MUL(f, MP_NEW, dx, a->y); /* %$y/x$% */
188 lambda = F_ADD(f, dy, dy, a->x); /* %$\lambda = x + y/x$% */
190 dx = F_SQR(f, dx, lambda); /* %$\lambda^2$% */
191 dx = F_ADD(f, dx, dx, lambda); /* %$\lambda^2 + \lambda$% */
192 dx = F_ADD(f, dx, dx, c->a); /* %$x' = a + \lambda^2 + \lambda$% */
196 dy = F_ADD(f, dy, a->x, dx); /* %$ x + x' $% */
197 dy = F_MUL(f, dy, dy, lambda); /* %$ (x + x') \lambda$% */
198 dy = F_ADD(f, dy, dy, a->y); /* %$ (x + x') \lambda + y$% */
199 dy = F_ADD(f, dy, dy, dx); /* %$ y' = (x + x') \lambda + y + x'$% */
210 static ec *ecprojadd(ec_curve *c, ec *d, const ec *a, const ec *b)
213 c->ops->dbl(c, d, a);
214 else if (EC_ATINF(a))
216 else if (EC_ATINF(b))
220 mp *dx, *dy, *dz, *u, *uu, *v, *t, *s, *ss, *r, *w, *l;
222 dz = F_SQR(f, MP_NEW, b->z); /* %$z_1^2$% */
223 u = F_MUL(f, MP_NEW, dz, a->x); /* %$u_0 = x_0 z_1^2$% */
224 t = F_MUL(f, MP_NEW, dz, b->z); /* %$z_1^3$% */
225 s = F_MUL(f, MP_NEW, t, a->y); /* %$s_0 = y_0 z_1^3$% */
227 dz = F_SQR(f, dz, a->z); /* %$z_0^2$% */
228 uu = F_MUL(f, MP_NEW, dz, b->x); /* %$u_1 = x_1 z_0^2$% */
229 t = F_MUL(f, t, dz, a->z); /* %$z_0^3$% */
230 ss = F_MUL(f, MP_NEW, t, b->y); /* %$s_1 = y_1 z_0^3$% */
232 w = F_ADD(f, u, u, uu); /* %$r = u_0 + u_1$% */
233 r = F_ADD(f, s, s, ss); /* %$w = s_0 + s_1$% */
242 return (c->ops->dbl(c, d, a));
250 l = F_MUL(f, t, a->z, w); /* %$l = z_0 w$% */
252 dz = F_MUL(f, dz, l, b->z); /* %$z' = l z_1$% */
254 ss = F_MUL(f, ss, r, b->x); /* %$r x_1$% */
255 t = F_MUL(f, uu, l, b->y); /* %$l y_1$% */
256 v = F_ADD(f, ss, ss, t); /* %$v = r x_1 + l y_1$% */
258 t = F_ADD(f, t, r, dz); /* %$t = r + z'$% */
260 uu = F_SQR(f, MP_NEW, dz); /* %$z'^2$% */
261 dx = F_MUL(f, MP_NEW, uu, c->a); /* %$a z'^2$% */
262 uu = F_MUL(f, uu, t, r); /* %$t r$% */
263 dx = F_ADD(f, dx, dx, uu); /* %$a z'^2 + t r$% */
264 r = F_SQR(f, r, w); /* %$w^2$% */
265 uu = F_MUL(f, uu, r, w); /* %$w^3$% */
266 dx = F_ADD(f, dx, dx, uu); /* %$x' = a z'^2 + t r + w^3$% */
268 r = F_SQR(f, r, l); /* %$l^2$% */
269 dy = F_MUL(f, uu, v, r); /* %$v l^2$% */
270 l = F_MUL(f, l, t, dx); /* %$t x'$% */
271 dy = F_ADD(f, dy, dy, l); /* %$y' = t x' + v l^2$% */
286 static int eccheck(ec_curve *c, const ec *p)
292 if (EC_ATINF(p)) return (0);
293 v = F_SQR(f, MP_NEW, p->x);
294 u = F_MUL(f, MP_NEW, v, p->x);
295 v = F_MUL(f, v, v, c->a);
296 u = F_ADD(f, u, u, v);
297 u = F_ADD(f, u, u, c->b);
298 v = F_MUL(f, v, p->x, p->y);
299 u = F_ADD(f, u, u, v);
300 v = F_SQR(f, v, p->y);
301 u = F_ADD(f, u, u, v);
302 rc = F_ZEROP(f, u) ? 0 : -1;
308 static int ecprojcheck(ec_curve *c, const ec *p)
313 c->ops->fix(c, &t, p);
319 static void ecdestroy(ec_curve *c)
321 ecctx_bin *cc = (ecctx_bin *)c;
324 if (cc->bb) MP_DROP(cc->bb);
328 /* --- @ec_bin@, @ec_binproj@ --- *
330 * Arguments: @field *f@ = the underlying field for this elliptic curve
331 * @mp *a, *b@ = the coefficients for this curve
333 * Returns: A pointer to the curve, or null.
335 * Use: Creates a curve structure for an elliptic curve defined over
336 * a binary field. The @binproj@ variant uses projective
337 * coordinates, which can be a win.
340 ec_curve *ec_bin(field *f, mp *a, mp *b)
342 ecctx_bin *cc = CREATE(ecctx_bin);
343 cc->c.ops = &ec_binops;
345 cc->c.a = F_IN(f, MP_NEW, a);
346 cc->c.b = F_IN(f, MP_NEW, b);
351 ec_curve *ec_binproj(field *f, mp *a, mp *b)
353 ecctx_bin *cc = CREATE(ecctx_bin);
357 cc->c.ops = &ec_binprojops;
359 cc->c.a = F_IN(f, MP_NEW, a);
360 cc->c.b = F_IN(f, MP_NEW, b);
362 c = MP_COPY(cc->c.b);
363 for (i = 0; i < f->nbits - 2; i++)
365 d = F_SQR(f, MP_NEW, c); d = F_SQR(f, d, d);
366 if (!MP_EQ(d, cc->c.b)) {
379 static const ec_ops ec_binops = {
381 ecdestroy, ec_stdsamep, ec_idin, ec_idout, ec_idfix,
382 ecfind, ecneg, ecadd, ec_stdsub, ecdbl, eccheck
385 static const ec_ops ec_binprojops = {
387 ecdestroy, ec_stdsamep, ec_projin, ec_projout, ec_projfix,
388 ecfind, ecprojneg, ecprojadd, ec_stdsub, ecprojdbl, ecprojcheck
391 /*----- Test rig ----------------------------------------------------------*/
395 #define MP(x) mp_readstring(MP_NEW, #x, 0, 0)
397 int main(int argc, char *argv[])
401 ec g = EC_INIT, d = EC_INIT;
402 mp *p, *a, *b, *r, *beta;
403 int i, n = argc == 1 ? 1 : atoi(argv[1]);
407 a = MP(0x7ffffffffffffffffffffffffffffffffffffffff);
408 b = MP(0x6645f3cacf1638e139c6cd13ef61734fbc9e3d9fb);
409 p = MP(0x800000000000000000000000000000000000000c9);
410 beta = MP(0x715169c109c612e390d347c748342bcd3b02a0bef);
411 r = MP(0x040000000000000000000292fe77e70c12a4234c32);
413 f = field_binnorm(p, beta);
414 c = ec_binproj(f, a, b);
415 g.x = MP(0x0311103c17167564ace77ccb09c681f886ba54ee8);
416 g.y = MP(0x333ac13c6447f2e67613bf7009daf98c87bb50c7f);
418 for (i = 0; i < n; i++) {
419 ec_mul(c, &d, &g, r);
421 fprintf(stderr, "zero too early\n");
424 ec_add(c, &d, &d, &g);
426 fprintf(stderr, "didn't reach zero\n");
427 MP_EPRINTX("d.x", d.x);
428 MP_EPRINTX("d.y", d.y);
437 MP_DROP(p); MP_DROP(a); MP_DROP(b); MP_DROP(r); MP_DROP(beta);
438 assert(!mparena_count(&mparena_global));
445 /*----- That's all, folks -------------------------------------------------*/