3 ### Setup for Catacomb/Python bindings
5 ### (c) 2004 Straylight/Edgeware
8 ###----- Licensing notice ---------------------------------------------------
10 ### This file is part of the Python interface to Catacomb.
12 ### Catacomb/Python is free software; you can redistribute it and/or modify
13 ### it under the terms of the GNU General Public License as published by
14 ### the Free Software Foundation; either version 2 of the License, or
15 ### (at your option) any later version.
17 ### Catacomb/Python is distributed in the hope that it will be useful,
18 ### but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ### GNU General Public License for more details.
22 ### You should have received a copy of the GNU General Public License
23 ### along with Catacomb/Python; if not, write to the Free Software Foundation,
24 ### Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 import types as _types
28 from binascii import hexlify as _hexify, unhexlify as _unhexify
29 from sys import argv as _argv
31 ###--------------------------------------------------------------------------
34 ## For the benefit of the default keyreporter, we need the program na,e.
37 ## Initialize the module. Drag in the static methods of the various
38 ## classes; create names for the various known crypto algorithms.
45 for i in ['MP', 'GF', 'Field',
46 'ECPt', 'ECPtCurve', 'ECCurve', 'ECInfo',
47 'DHInfo', 'BinDHInfo', 'RSAPriv', 'BBSPriv',
48 'PrimeFilter', 'RabinMiller',
56 setattr(c, j[plen:], classmethod(b[j]))
57 for i in [gcciphers, gchashes, gcmacs, gcprps]:
58 for c in i.itervalues():
59 d[c.name.replace('-', '_').translate(None, '/')] = c
60 for c in gccrands.itervalues():
61 d[c.name.replace('-', '_').translate(None, '/') + 'rand'] = c
64 ## A handy function for our work: add the methods of a named class to an
65 ## existing class. This is how we write the Python-implemented parts of our
70 if type(a) is _types.MethodType:
72 elif type(a) not in (_types.FunctionType, staticmethod, classmethod):
76 ## Parsing functions tend to return the object parsed and the remainder of
77 ## the input. This checks that the remainder is input and, if so, returns
82 raise SyntaxError, 'junk at end of string'
85 ## Some pretty-printing utilities.
86 def _pp_str(me, pp, cyclep): pp.text(cyclep and '...' or str(me))
87 def _pp_bgroup(pp, text):
89 pp.begin_group(ind, text)
91 def _pp_bgroup_tyname(pp, obj, open = '('):
92 return _pp_bgroup(pp, type(obj).__name__ + open)
94 ind = _pp_bgroup(pp, k + ' = ')
97 def _pp_commas(pp, printfn, items):
100 if firstp: firstp = False
101 else: pp.text(','); pp.breakable()
103 def _pp_dict(pp, items):
113 _pp_commas(pp, p, items)
115 ###--------------------------------------------------------------------------
120 return ByteString(_unhexify(x))
121 fromhex = staticmethod(fromhex)
125 return 'bytes(%r)' % hex(me)
126 _augment(ByteString, _tmp)
127 ByteString.__hash__ = str.__hash__
128 bytes = ByteString.fromhex
130 ###--------------------------------------------------------------------------
136 return ctstreq(h, hh)
137 _augment(GHash, _tmp)
138 _augment(Poly1305Hash, _tmp)
140 ###--------------------------------------------------------------------------
141 ### NaCl `secretbox'.
143 def secret_box(k, n, m):
144 E = xsalsa20(k).setiv(n)
145 r = E.enczero(poly1305.keysz.default)
146 s = E.enczero(poly1305.masksz)
148 t = poly1305(r)(s).hash(y).done()
149 return ByteString(t + y)
151 def secret_unbox(k, n, c):
152 E = xsalsa20(k).setiv(n)
153 r = E.enczero(poly1305.keysz.default)
154 s = E.enczero(poly1305.masksz)
155 y = c[poly1305.tagsz:]
156 if not poly1305(r)(s).hash(y).check(c[0:poly1305.tagsz]):
157 raise ValueError, 'decryption failed'
158 return E.decrypt(c[poly1305.tagsz:])
160 ###--------------------------------------------------------------------------
161 ### Multiprecision integers and binary polynomials.
164 if isinstance(x, BaseRat): return x._n, x._d
166 class BaseRat (object):
167 """Base class implementing fields of fractions over Euclidean domains."""
168 def __new__(cls, a, b):
169 a, b = cls.RING(a), cls.RING(b)
173 me = super(BaseRat, cls).__new__(cls)
178 def numer(me): return me._n
180 def denom(me): return me._d
181 def __str__(me): return '%s/%s' % (me._n, me._d)
182 def __repr__(me): return '%s(%s, %s)' % (type(me).__name__, me._n, me._d)
183 _repr_pretty_ = _pp_str
185 def __add__(me, you):
186 n, d = _split_rat(you)
187 return type(me)(me._n*d + n*me._d, d*me._d)
189 def __sub__(me, you):
190 n, d = _split_rat(you)
191 return type(me)(me._n*d - n*me._d, d*me._d)
192 def __rsub__(me, you):
193 n, d = _split_rat(you)
194 return type(me)(n*me._d - me._n*d, d*me._d)
195 def __mul__(me, you):
196 n, d = _split_rat(you)
197 return type(me)(me._n*n, me._d*d)
198 def __div__(me, you):
199 n, d = _split_rat(you)
200 return type(me)(me._n*d, me._d*n)
201 def __rdiv__(me, you):
202 n, d = _split_rat(you)
203 return type(me)(me._d*n, me._n*d)
204 def __cmp__(me, you):
205 n, d = _split_rat(you)
206 return type(me)(me._n*d, n*me._d)
207 def __rcmp__(me, you):
208 n, d = _split_rat(you)
209 return cmp(n*me._d, me._n*d)
211 class IntRat (BaseRat):
214 class GFRat (BaseRat):
218 def negp(x): return x < 0
219 def posp(x): return x > 0
220 def zerop(x): return x == 0
221 def oddp(x): return x.testbit(0)
222 def evenp(x): return not x.testbit(0)
223 def mont(x): return MPMont(x)
224 def barrett(x): return MPBarrett(x)
225 def reduce(x): return MPReduce(x)
226 def __div__(me, you): return IntRat(me, you)
227 def __rdiv__(me, you): return IntRat(you, me)
228 _repr_pretty_ = _pp_str
232 def zerop(x): return x == 0
233 def reduce(x): return GFReduce(x)
234 def trace(x, y): return x.reduce().trace(y)
235 def halftrace(x, y): return x.reduce().halftrace(y)
236 def modsqrt(x, y): return x.reduce().sqrt(y)
237 def quadsolve(x, y): return x.reduce().quadsolve(y)
238 def __div__(me, you): return GFRat(me, you)
239 def __rdiv__(me, you): return GFRat(you, me)
240 _repr_pretty_ = _pp_str
245 'product(ITERABLE) or product(I, ...) -> PRODUCT'
246 return MPMul(*arg).done()
247 product = staticmethod(product)
248 _augment(MPMul, _tmp)
250 ###--------------------------------------------------------------------------
254 def fromstring(str): return _checkend(Field.parse(str))
255 fromstring = staticmethod(fromstring)
256 _augment(Field, _tmp)
259 def __repr__(me): return '%s(%sL)' % (type(me).__name__, me.p)
260 def __hash__(me): return 0x114401de ^ hash(me.p)
261 def _repr_pretty_(me, pp, cyclep):
262 ind = _pp_bgroup_tyname(pp, me)
263 if cyclep: pp.text('...')
264 else: pp.pretty(me.p)
265 pp.end_group(ind, ')')
266 def ec(me, a, b): return ECPrimeProjCurve(me, a, b)
267 _augment(PrimeField, _tmp)
270 def __repr__(me): return '%s(%#xL)' % (type(me).__name__, me.p)
271 def ec(me, a, b): return ECBinProjCurve(me, a, b)
272 def _repr_pretty_(me, pp, cyclep):
273 ind = _pp_bgroup_tyname(pp, me)
274 if cyclep: pp.text('...')
275 else: pp.text('%#x' % me.p)
276 pp.end_group(ind, ')')
277 _augment(BinField, _tmp)
280 def __hash__(me): return 0x23e4701c ^ hash(me.p)
281 _augment(BinPolyField, _tmp)
287 h ^= 2*hash(me.beta) & 0xffffffff
289 _augment(BinNormField, _tmp)
292 def __str__(me): return str(me.value)
293 def __repr__(me): return '%s(%s)' % (repr(me.field), repr(me.value))
294 _repr_pretty_ = _pp_str
297 ###--------------------------------------------------------------------------
302 return '%s(%r, %s, %s)' % (type(me).__name__, me.field, me.a, me.b)
303 def _repr_pretty_(me, pp, cyclep):
304 ind = _pp_bgroup_tyname(pp, me)
308 pp.pretty(me.field); pp.text(','); pp.breakable()
309 pp.pretty(me.a); pp.text(','); pp.breakable()
311 pp.end_group(ind, ')')
313 return ecpt.frombuf(me, s)
315 return ecpt.fromraw(me, s)
318 _augment(ECCurve, _tmp)
324 h ^= 2*hash(me.a) ^ 0xffffffff
325 h ^= 5*hash(me.b) ^ 0xffffffff
327 _augment(ECPrimeCurve, _tmp)
333 h ^= 2*hash(me.a) ^ 0xffffffff
334 h ^= 5*hash(me.b) ^ 0xffffffff
336 _augment(ECBinCurve, _tmp)
340 if not me: return 'ECPt()'
341 return 'ECPt(%s, %s)' % (me.ix, me.iy)
343 if not me: return 'inf'
344 return '(%s, %s)' % (me.ix, me.iy)
345 def _repr_pretty_(me, pp, cyclep):
351 ind = _pp_bgroup(pp, '(')
352 pp.pretty(me.ix); pp.text(','); pp.breakable()
354 pp.end_group(ind, ')')
359 return 'ECInfo(curve = %r, G = %r, r = %s, h = %s)' % \
360 (me.curve, me.G, me.r, me.h)
361 def _repr_pretty_(me, pp, cyclep):
362 ind = _pp_bgroup_tyname(pp, me)
366 _pp_kv(pp, 'curve', me.curve); pp.text(','); pp.breakable()
367 _pp_kv(pp, 'G', me.G); pp.text(','); pp.breakable()
368 _pp_kv(pp, 'r', me.r); pp.text(','); pp.breakable()
369 _pp_kv(pp, 'h', me.h)
370 pp.end_group(ind, ')')
374 h ^= 2*hash(me.G) & 0xffffffff
378 _augment(ECInfo, _tmp)
382 if not me: return '%r()' % (me.curve)
383 return '%r(%s, %s)' % (me.curve, me.x, me.y)
385 if not me: return 'inf'
386 return '(%s, %s)' % (me.x, me.y)
387 def _repr_pretty_(me, pp, cyclep):
393 ind = _pp_bgroup(pp, '(')
394 pp.pretty(me.x); pp.text(','); pp.breakable()
396 pp.end_group(ind, ')')
397 _augment(ECPtCurve, _tmp)
399 ###--------------------------------------------------------------------------
403 def __repr__(me): return 'KeySZAny(%d)' % me.default
404 def check(me, sz): return True
405 def best(me, sz): return sz
406 _augment(KeySZAny, _tmp)
410 return 'KeySZRange(%d, %d, %d, %d)' % \
411 (me.default, me.min, me.max, me.mod)
412 def _repr_pretty_(me, pp, cyclep):
413 ind = _pp_bgroup_tyname(pp, me)
417 pp.pretty(me.default); pp.text(','); pp.breakable()
418 pp.pretty(me.min); pp.text(','); pp.breakable()
419 pp.pretty(me.max); pp.text(','); pp.breakable()
421 pp.end_group(ind, ')')
422 def check(me, sz): return me.min <= sz <= me.max and sz % me.mod == 0
424 if sz < me.min: raise ValueError, 'key too small'
425 elif sz > me.max: return me.max
426 else: return sz - (sz % me.mod)
427 _augment(KeySZRange, _tmp)
430 def __repr__(me): return 'KeySZSet(%d, %s)' % (me.default, me.set)
431 def _repr_pretty_(me, pp, cyclep):
432 ind = _pp_bgroup_tyname(pp, me)
436 pp.pretty(me.default); pp.text(','); pp.breakable()
437 ind1 = _pp_bgroup(pp, '{')
438 _pp_commas(pp, pp.pretty, me.set)
439 pp.end_group(ind1, '}')
440 pp.end_group(ind, ')')
441 def check(me, sz): return sz in me.set
445 if found < i <= sz: found = i
446 if found < 0: raise ValueError, 'key too small'
448 _augment(KeySZSet, _tmp)
450 ###--------------------------------------------------------------------------
451 ### Key data objects.
454 def __repr__(me): return 'KeyFile(%r)' % me.name
455 _augment(KeyFile, _tmp)
458 def __repr__(me): return 'Key(%r)' % me.fulltag
463 return 'KeyAttributes({%s})' % \
464 ', '.join(['%r: %r' % kv for kv in me.iteritems()])
465 def _repr_pretty_(me, pp, cyclep):
466 ind = _pp_bgroup_tyname(pp, me)
467 if cyclep: pp.text('...')
468 else: _pp_dict(pp, me.iteritems())
469 pp.end_group(ind, ')')
470 _augment(KeyAttributes, _tmp)
473 def __repr__(me): return 'KeyDataBinary(%r, %r)' % \
474 (me.bin, me.writeflags(me.flags))
475 def _repr_pretty_(me, pp, cyclep):
476 ind = _pp_bgroup_tyname(pp, me)
480 pp.pretty(me.bin); pp.text(','); pp.breakable()
481 pp.pretty(me.writeflags(me.flags))
482 pp.end_group(ind, ')')
483 _augment(KeyDataBinary, _tmp)
486 def __repr__(me): return 'KeyDataEncrypted(%r, %r)' % \
487 (me.ct, me.writeflags(me.flags))
488 def _repr_pretty_(me, pp, cyclep):
489 ind = _pp_bgroup_tyname(pp, me)
493 pp.pretty(me.ct); pp.text(','); pp.breakable()
494 pp.pretty(me.writeflags(me.flags))
495 pp.end_group(ind, ')')
496 _augment(KeyDataEncrypted, _tmp)
499 def __repr__(me): return 'KeyDataMP(%r, %r)' % \
500 (me.mp, me.writeflags(me.flags))
501 def _repr_pretty_(me, pp, cyclep):
502 ind = _pp_bgroup_tyname(pp, me)
506 pp.pretty(me.mp); pp.text(','); pp.breakable()
507 pp.pretty(me.writeflags(me.flags))
508 pp.end_group(ind, ')')
509 _augment(KeyDataMP, _tmp)
512 def __repr__(me): return 'KeyDataString(%r)' % \
513 (me.str, me.writeflags(me.flags))
514 def _repr_pretty_(me, pp, cyclep):
515 ind = _pp_bgroup_tyname(pp, me)
519 pp.pretty(me.str); pp.text(','); pp.breakable()
520 pp.pretty(me.writeflags(me.flags))
521 pp.end_group(ind, ')')
522 _augment(KeyDataString, _tmp)
525 def __repr__(me): return 'KeyDataECPt(%r)' % \
526 (me.ecpt, me.writeflags(me.flags))
527 def _repr_pretty_(me, pp, cyclep):
528 ind = _pp_bgroup_tyname(pp, me)
532 pp.pretty(me.ecpt); pp.text(','); pp.breakable()
533 pp.pretty(me.writeflags(me.flags))
534 pp.end_group(ind, ')')
535 _augment(KeyDataECPt, _tmp)
539 return 'KeyDataStructured({%s})' % \
540 ', '.join(['%r: %r' % kv for kv in me.iteritems()])
541 def _repr_pretty_(me, pp, cyclep):
542 ind = _pp_bgroup_tyname(pp, me, '({ ')
543 if cyclep: pp.text('...')
544 else: _pp_dict(pp, me.iteritems())
545 pp.end_group(ind, ' })')
546 _augment(KeyDataStructured, _tmp)
548 ###--------------------------------------------------------------------------
553 return '%s(p = %s, r = %s, g = %s)' % \
554 (type(me).__name__, me.p, me.r, me.g)
555 def _repr_pretty_(me, pp, cyclep):
556 ind = _pp_bgroup_tyname(pp, me)
560 _pp_kv(pp, 'p', me.p); pp.text(','); pp.breakable()
561 _pp_kv(pp, 'r', me.r); pp.text(','); pp.breakable()
562 _pp_kv(pp, 'g', me.g)
563 pp.end_group(ind, ')')
564 _augment(FGInfo, _tmp)
567 def group(me): return PrimeGroup(me)
568 _augment(DHInfo, _tmp)
571 def group(me): return BinGroup(me)
572 _augment(BinDHInfo, _tmp)
576 return '%s(%r)' % (type(me).__name__, me.info)
577 def _repr_pretty_(me, pp, cyclep):
578 ind = _pp_bgroup_tyname(pp, me)
579 if cyclep: pp.text('...')
580 else: pp.pretty(me.info)
581 pp.end_group(ind, ')')
582 _augment(Group, _tmp)
589 h ^= 2*hash(info.r) & 0xffffffff
590 h ^= 5*hash(info.g) & 0xffffffff
592 def _get_geval(me, x): return MP(x)
593 _augment(PrimeGroup, _tmp)
600 h ^= 2*hash(info.r) & 0xffffffff
601 h ^= 5*hash(info.g) & 0xffffffff
603 def _get_geval(me, x): return GF(x)
604 _augment(BinGroup, _tmp)
607 def __hash__(me): return 0x0ec23dab ^ hash(me.info)
608 def _get_geval(me, x): return x.toec()
609 _augment(ECGroup, _tmp)
613 return '%r(%r)' % (me.group, str(me))
614 def _repr_pretty_(me, pp, cyclep):
615 pp.pretty(type(me)._get_geval(me))
618 ###--------------------------------------------------------------------------
619 ### RSA encoding techniques.
621 class PKCS1Crypt (object):
622 def __init__(me, ep = '', rng = rand):
625 def encode(me, msg, nbits):
626 return _base._p1crypt_encode(msg, nbits, me.ep, me.rng)
627 def decode(me, ct, nbits):
628 return _base._p1crypt_decode(ct, nbits, me.ep, me.rng)
630 class PKCS1Sig (object):
631 def __init__(me, ep = '', rng = rand):
634 def encode(me, msg, nbits):
635 return _base._p1sig_encode(msg, nbits, me.ep, me.rng)
636 def decode(me, msg, sig, nbits):
637 return _base._p1sig_decode(msg, sig, nbits, me.ep, me.rng)
640 def __init__(me, mgf = sha_mgf, hash = sha, ep = '', rng = rand):
645 def encode(me, msg, nbits):
646 return _base._oaep_encode(msg, nbits, me.mgf, me.hash, me.ep, me.rng)
647 def decode(me, ct, nbits):
648 return _base._oaep_decode(ct, nbits, me.mgf, me.hash, me.ep, me.rng)
651 def __init__(me, mgf = sha_mgf, hash = sha, saltsz = None, rng = rand):
658 def encode(me, msg, nbits):
659 return _base._pss_encode(msg, nbits, me.mgf, me.hash, me.saltsz, me.rng)
660 def decode(me, msg, sig, nbits):
661 return _base._pss_decode(msg, sig, nbits,
662 me.mgf, me.hash, me.saltsz, me.rng)
665 def encrypt(me, msg, enc):
666 return me.pubop(enc.encode(msg, me.n.nbits))
667 def verify(me, msg, sig, enc):
668 if msg is None: return enc.decode(msg, me.pubop(sig), me.n.nbits)
670 x = enc.decode(msg, me.pubop(sig), me.n.nbits)
671 return x is None or x == msg
674 _augment(RSAPub, _tmp)
677 def decrypt(me, ct, enc): return enc.decode(me.privop(ct), me.n.nbits)
678 def sign(me, msg, enc): return me.privop(enc.encode(msg, me.n.nbits))
679 _augment(RSAPriv, _tmp)
681 ###--------------------------------------------------------------------------
682 ### Bernstein's elliptic curve crypto and related schemes.
685 bytes('0900000000000000000000000000000000000000000000000000000000000000')
688 bytes('05000000000000000000000000000000000000000000000000000000'
689 '00000000000000000000000000000000000000000000000000000000')
691 Z128 = bytes('00000000000000000000000000000000')
693 class _BoxyPub (object):
694 def __init__(me, pub, *kw, **kwargs):
695 if len(pub) != me._PUBSZ: raise ValueError, 'bad public key'
696 super(_BoxyPub, me).__init__(*kw, **kwargs)
699 class _BoxyPriv (_BoxyPub):
700 def __init__(me, priv, pub = None, *kw, **kwargs):
701 if len(priv) != me._KEYSZ: raise ValueError, 'bad private key'
702 if pub is None: pub = me._op(priv, me._BASE)
703 super(_BoxyPriv, me).__init__(pub = pub, *kw, **kwargs)
705 def agree(me, you): return me._op(me.priv, you.pub)
706 def boxkey(me, recip):
707 return me._hashkey(me.agree(recip))
708 def box(me, recip, n, m):
709 return secret_box(me.boxkey(recip), n, m)
710 def unbox(me, recip, n, c):
711 return secret_unbox(me.boxkey(recip, n, c))
713 class X25519Pub (_BoxyPub):
714 _PUBSZ = X25519_PUBSZ
717 class X25519Priv (_BoxyPriv, X25519Pub):
718 _KEYSZ = X25519_KEYSZ
719 def _op(me, k, X): return x25519(k, X)
720 def _hashkey(me, z): return hsalsa20_prf(z, Z128)
722 class X448Pub (_BoxyPub):
726 class X448Priv (_BoxyPriv, X448Pub):
728 def _op(me, k, X): return x448(k, X)
729 ##def _hashkey(me, z): return ???
731 class Ed25519Pub (object):
732 def __init__(me, pub):
734 def verify(me, msg, sig):
735 return ed25519_verify(me.pub, msg, sig)
737 class Ed25519Priv (Ed25519Pub):
738 def __init__(me, priv):
740 Ed25519Pub.__init__(me, ed25519_pubkey(priv))
742 return ed25519_sign(me.priv, msg, pub = me.pub)
744 def generate(cls, rng = rand):
745 return cls(rng.block(ED25519_KEYSZ))
747 ###--------------------------------------------------------------------------
748 ### Built-in named curves and prime groups.
750 class _groupmap (object):
751 def __init__(me, map, nth):
754 me._n = max(map.values()) + 1
757 return '{%s}' % ', '.join(['%r: %r' % kv for kv in me.iteritems()])
758 def _repr_pretty_(me, pp, cyclep):
759 ind = _pp_bgroup(pp, '{ ')
760 if cyclep: pp.text('...')
761 else: _pp_dict(pp, me.iteritems())
762 pp.end_group(ind, ' }')
765 def __contains__(me, k):
767 def __getitem__(me, k):
772 def __setitem__(me, k, v):
773 raise TypeError, "immutable object"
785 return [k for k in me]
787 return [me[k] for k in me]
789 return [(k, me[k]) for k in me]
790 eccurves = _groupmap(_base._eccurves, ECInfo._curven)
791 primegroups = _groupmap(_base._pgroups, DHInfo._groupn)
792 bingroups = _groupmap(_base._bingroups, BinDHInfo._groupn)
794 ###--------------------------------------------------------------------------
795 ### Prime number generation.
797 class PrimeGenEventHandler (object):
798 def pg_begin(me, ev):
802 def pg_abort(me, ev):
809 class SophieGermainStepJump (object):
810 def pg_begin(me, ev):
811 me.lf = PrimeFilter(ev.x)
812 me.hf = me.lf.muladd(2, 1)
818 while me.lf.status == PGEN_FAIL or me.hf.status == PGEN_FAIL:
820 if me.lf.status == PGEN_ABORT or me.hf.status == PGEN_ABORT:
823 if me.lf.status == PGEN_DONE and me.hf.status == PGEN_DONE:
830 class SophieGermainStepper (SophieGermainStepJump):
831 def __init__(me, step):
838 class SophieGermainJumper (SophieGermainStepJump):
839 def __init__(me, jump):
840 me.ljump = PrimeFilter(jump);
841 me.hjump = me.ljump.muladd(2, 0)
848 SophieGermainStepJump.pg_done(me, ev)
850 class SophieGermainTester (object):
853 def pg_begin(me, ev):
854 me.lr = RabinMiller(ev.x)
855 me.hr = RabinMiller(2 * ev.x + 1)
857 lst = me.lr.test(ev.rng.range(me.lr.x))
858 if lst != PGEN_PASS and lst != PGEN_DONE:
860 rst = me.hr.test(ev.rng.range(me.hr.x))
861 if rst != PGEN_PASS and rst != PGEN_DONE:
863 if lst == PGEN_DONE and rst == PGEN_DONE:
870 class PrimitiveStepper (PrimeGenEventHandler):
876 def pg_begin(me, ev):
877 me.i = iter(smallprimes)
880 class PrimitiveTester (PrimeGenEventHandler):
881 def __init__(me, mod, hh = [], exp = None):
887 if me.exp is not None:
888 x = me.mod.exp(x, me.exp)
889 if x == 1: return PGEN_FAIL
891 if me.mod.exp(x, h) == 1: return PGEN_FAIL
895 class SimulStepper (PrimeGenEventHandler):
896 def __init__(me, mul = 2, add = 1, step = 2):
900 def _stepfn(me, step):
902 raise ValueError, 'step must be positive'
904 return lambda f: f.step(step)
905 j = PrimeFilter(step)
906 return lambda f: f.jump(j)
907 def pg_begin(me, ev):
909 me.lf = PrimeFilter(x)
910 me.hf = PrimeFilter(x * me.mul + me.add)
911 me.lstep = me._stepfn(me.step)
912 me.hstep = me._stepfn(me.step * me.mul)
913 SimulStepper._cont(me, ev)
921 while me.lf.status == PGEN_FAIL or me.hf.status == PGEN_FAIL:
923 if me.lf.status == PGEN_ABORT or me.hf.status == PGEN_ABORT:
926 if me.lf.status == PGEN_DONE and me.hf.status == PGEN_DONE:
935 class SimulTester (PrimeGenEventHandler):
936 def __init__(me, mul = 2, add = 1):
939 def pg_begin(me, ev):
941 me.lr = RabinMiller(x)
942 me.hr = RabinMiller(x * me.mul + me.add)
944 lst = me.lr.test(ev.rng.range(me.lr.x))
945 if lst != PGEN_PASS and lst != PGEN_DONE:
947 rst = me.hr.test(ev.rng.range(me.hr.x))
948 if rst != PGEN_PASS and rst != PGEN_DONE:
950 if lst == PGEN_DONE and rst == PGEN_DONE:
957 def sgprime(start, step = 2, name = 'p', event = pgen_nullev, nsteps = 0):
959 return pgen(start, name, SimulStepper(step = step), SimulTester(), event,
960 nsteps, RabinMiller.iters(start.nbits))
962 def findprimitive(mod, hh = [], exp = None, name = 'g', event = pgen_nullev):
963 return pgen(0, name, PrimitiveStepper(), PrimitiveTester(mod, hh, exp),
966 def kcdsaprime(pbits, qbits, rng = rand,
967 event = pgen_nullev, name = 'p', nsteps = 0):
968 hbits = pbits - qbits
969 h = pgen(rng.mp(hbits, 1), name + ' [h]',
970 PrimeGenStepper(2), PrimeGenTester(),
971 event, nsteps, RabinMiller.iters(hbits))
972 q = pgen(rng.mp(qbits, 1), name, SimulStepper(2 * h, 1, 2),
973 SimulTester(2 * h, 1), event, nsteps, RabinMiller.iters(qbits))
977 #----- That's all, folks ----------------------------------------------------