3 ### Setup for Catacomb/Python bindings
5 ### (c) 2004 Straylight/Edgeware
8 ###----- Licensing notice ---------------------------------------------------
10 ### This file is part of the Python interface to Catacomb.
12 ### Catacomb/Python is free software; you can redistribute it and/or modify
13 ### it under the terms of the GNU General Public License as published by
14 ### the Free Software Foundation; either version 2 of the License, or
15 ### (at your option) any later version.
17 ### Catacomb/Python is distributed in the hope that it will be useful,
18 ### but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ### GNU General Public License for more details.
22 ### You should have received a copy of the GNU General Public License
23 ### along with Catacomb/Python; if not, write to the Free Software Foundation,
24 ### Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 import types as _types
28 from binascii import hexlify as _hexify, unhexlify as _unhexify
29 from sys import argv as _argv
31 ###--------------------------------------------------------------------------
34 ## For the benefit of the default keyreporter, we need the program na,e.
37 ## Initialize the module. Drag in the static methods of the various
38 ## classes; create names for the various known crypto algorithms.
45 for i in ['MP', 'GF', 'Field',
46 'ECPt', 'ECPtCurve', 'ECCurve', 'ECInfo',
47 'DHInfo', 'BinDHInfo', 'RSAPriv', 'BBSPriv',
48 'PrimeFilter', 'RabinMiller',
56 setattr(c, j[plen:], classmethod(b[j]))
57 for i in [gcciphers, gchashes, gcmacs, gcprps]:
58 for c in i.itervalues():
59 d[c.name.replace('-', '_')] = c
60 for c in gccrands.itervalues():
61 d[c.name.replace('-', '_') + 'rand'] = c
64 ## A handy function for our work: add the methods of a named class to an
65 ## existing class. This is how we write the Python-implemented parts of our
70 if type(a) is _types.MethodType:
72 elif type(a) not in (_types.FunctionType, staticmethod, classmethod):
76 ## Parsing functions tend to return the object parsed and the remainder of
77 ## the input. This checks that the remainder is input and, if so, returns
82 raise SyntaxError, 'junk at end of string'
85 ###--------------------------------------------------------------------------
90 return ByteString(_unhexify(x))
91 fromhex = staticmethod(fromhex)
95 return 'bytes(%r)' % hex(me)
96 _augment(ByteString, _tmp)
97 bytes = ByteString.fromhex
99 ###--------------------------------------------------------------------------
100 ### Multiprecision integers and binary polynomials.
103 if isinstance(x, Rat): return x._n, x._d
106 def __new__(cls, a, b):
111 me = super(Rat, cls).__new__(cls)
116 def numer(me): return me._n
118 def denom(me): return me._d
119 def __str__(me): return '%s/%s' % (me._n, me._d)
120 def __repr__(me): return 'Rat(%s, %s)' % (me._n, me._d)
122 def __add__(me, you):
123 n, d = _split_rat(you)
124 return Rat(me._n*d + n*me._d, d*me._d)
126 def __sub__(me, you):
127 n, d = _split_rat(you)
128 return Rat(me._n*d - n*me._d, d*me._d)
129 def __rsub__(me, you):
130 n, d = _split_rat(you)
131 return Rat(n*me._d - me._n*d, d*me._d)
132 def __mul__(me, you):
133 n, d = _split_rat(you)
134 return Rat(me._n*n, me._d*d)
135 def __div__(me, you):
136 n, d = _split_rat(you)
137 return Rat(me._n*d, me._d*n)
138 def __rdiv__(me, you):
139 n, d = _split_rat(you)
140 return Rat(me._d*n, me._n*d)
141 def __cmp__(me, you):
142 n, d = _split_rat(you)
143 return cmp(me._n*d, n*me._d)
144 def __rcmp__(me, you):
145 n, d = _split_rat(you)
146 return cmp(n*me._d, me._n*d)
149 def negp(x): return x < 0
150 def posp(x): return x > 0
151 def zerop(x): return x == 0
152 def oddp(x): return x.testbit(0)
153 def evenp(x): return not x.testbit(0)
154 def mont(x): return MPMont(x)
155 def barrett(x): return MPBarrett(x)
156 def reduce(x): return MPReduce(x)
157 def __div__(me, you): return Rat(me, you)
158 def __rdiv__(me, you): return Rat(you, me)
162 def zerop(x): return x == 0
163 def reduce(x): return GFReduce(x)
164 def trace(x, y): return x.reduce().trace(y)
165 def halftrace(x, y): return x.reduce().halftrace(y)
166 def modsqrt(x, y): return x.reduce().sqrt(y)
167 def quadsolve(x, y): return x.reduce().quadsolve(y)
172 'product(ITERABLE) or product(I, ...) -> PRODUCT'
173 return MPMul(*arg).done()
174 product = staticmethod(product)
175 _augment(MPMul, _tmp)
177 ###--------------------------------------------------------------------------
181 def fromstring(str): return _checkend(Field.parse(str))
182 fromstring = staticmethod(fromstring)
183 _augment(Field, _tmp)
186 def __repr__(me): return '%s(%sL)' % (type(me).__name__, me.p)
187 def __hash__(me): return 0x114401de ^ hash(me.p)
188 def ec(me, a, b): return ECPrimeProjCurve(me, a, b)
189 _augment(PrimeField, _tmp)
192 def __repr__(me): return '%s(%sL)' % (type(me).__name__, hex(me.p))
193 def ec(me, a, b): return ECBinProjCurve(me, a, b)
194 _augment(BinField, _tmp)
197 def __hash__(me): return 0x23e4701c ^ hash(me.p)
198 _augment(BinPolyField, _tmp)
204 h ^= 2*hash(me.beta) & 0xffffffff
206 _augment(BinNormField, _tmp)
209 def __str__(me): return str(me.value)
210 def __repr__(me): return '%s(%s)' % (repr(me.field), repr(me.value))
213 ###--------------------------------------------------------------------------
218 return '%s(%r, %s, %s)' % (type(me).__name__, me.field, me.a, me.b)
220 return ecpt.frombuf(me, s)
222 return ecpt.fromraw(me, s)
225 _augment(ECCurve, _tmp)
231 h ^= 2*hash(me.a) ^ 0xffffffff
232 h ^= 5*hash(me.b) ^ 0xffffffff
234 _augment(ECPrimeCurve, _tmp)
240 h ^= 2*hash(me.a) ^ 0xffffffff
241 h ^= 5*hash(me.b) ^ 0xffffffff
243 _augment(ECBinCurve, _tmp)
247 if not me: return 'ECPt()'
248 return 'ECPt(%s, %s)' % (me.ix, me.iy)
250 if not me: return 'inf'
251 return '(%s, %s)' % (me.ix, me.iy)
256 return 'ECInfo(curve = %r, G = %r, r = %s, h = %s)' % \
257 (me.curve, me.G, me.r, me.h)
261 h ^= 2*hash(me.G) & 0xffffffff
265 _augment(ECInfo, _tmp)
269 if not me: return '%r()' % (me.curve)
270 return '%r(%s, %s)' % (me.curve, me.x, me.y)
272 if not me: return 'inf'
273 return '(%s, %s)' % (me.x, me.y)
274 _augment(ECPtCurve, _tmp)
276 ###--------------------------------------------------------------------------
280 def __repr__(me): return 'KeySZAny(%d)' % me.default
281 def check(me, sz): return True
282 def best(me, sz): return sz
283 _augment(KeySZAny, _tmp)
287 return 'KeySZRange(%d, %d, %d, %d)' % \
288 (me.default, me.min, me.max, me.mod)
289 def check(me, sz): return me.min <= sz <= me.max and sz % me.mod == 0
291 if sz < me.min: raise ValueError, 'key too small'
292 elif sz > me.max: return me.max
293 else: return sz - (sz % me.mod)
294 _augment(KeySZRange, _tmp)
297 def __repr__(me): return 'KeySZSet(%d, %s)' % (me.default, me.set)
298 def check(me, sz): return sz in me.set
302 if found < i <= sz: found = i
303 if found < 0: raise ValueError, 'key too small'
305 _augment(KeySZSet, _tmp)
307 ###--------------------------------------------------------------------------
312 return '%s(p = %s, r = %s, g = %s)' % \
313 (type(me).__name__, me.p, me.r, me.g)
314 _augment(FGInfo, _tmp)
317 def group(me): return PrimeGroup(me)
318 _augment(DHInfo, _tmp)
321 def group(me): return BinGroup(me)
322 _augment(BinDHInfo, _tmp)
326 return '%s(%r)' % (type(me).__name__, me.info)
327 _augment(Group, _tmp)
334 h ^= 2*hash(info.r) & 0xffffffff
335 h ^= 5*hash(info.g) & 0xffffffff
337 _augment(PrimeGroup, _tmp)
344 h ^= 2*hash(info.r) & 0xffffffff
345 h ^= 5*hash(info.g) & 0xffffffff
347 _augment(BinGroup, _tmp)
350 def __hash__(me): return 0x0ec23dab ^ hash(me.info)
351 _augment(ECGroup, _tmp)
355 return '%r(%r)' % (me.group, str(me))
358 ###--------------------------------------------------------------------------
359 ### RSA encoding techniques.
361 class PKCS1Crypt (object):
362 def __init__(me, ep = '', rng = rand):
365 def encode(me, msg, nbits):
366 return _base._p1crypt_encode(msg, nbits, me.ep, me.rng)
367 def decode(me, ct, nbits):
368 return _base._p1crypt_decode(ct, nbits, me.ep, me.rng)
370 class PKCS1Sig (object):
371 def __init__(me, ep = '', rng = rand):
374 def encode(me, msg, nbits):
375 return _base._p1sig_encode(msg, nbits, me.ep, me.rng)
376 def decode(me, msg, sig, nbits):
377 return _base._p1sig_decode(msg, sig, nbits, me.ep, me.rng)
380 def __init__(me, mgf = sha_mgf, hash = sha, ep = '', rng = rand):
385 def encode(me, msg, nbits):
386 return _base._oaep_encode(msg, nbits, me.mgf, me.hash, me.ep, me.rng)
387 def decode(me, ct, nbits):
388 return _base._oaep_decode(ct, nbits, me.mgf, me.hash, me.ep, me.rng)
391 def __init__(me, mgf = sha_mgf, hash = sha, saltsz = None, rng = rand):
398 def encode(me, msg, nbits):
399 return _base._pss_encode(msg, nbits, me.mgf, me.hash, me.saltsz, me.rng)
400 def decode(me, msg, sig, nbits):
401 return _base._pss_decode(msg, sig, nbits,
402 me.mgf, me.hash, me.saltsz, me.rng)
405 def encrypt(me, msg, enc):
406 return me.pubop(enc.encode(msg, me.n.nbits))
407 def verify(me, msg, sig, enc):
408 if msg is None: return enc.decode(msg, me.pubop(sig), me.n.nbits)
410 x = enc.decode(msg, me.pubop(sig), me.n.nbits)
411 return x is None or x == msg
414 _augment(RSAPub, _tmp)
417 def decrypt(me, ct, enc): return enc.decode(me.privop(ct), me.n.nbits)
418 def sign(me, msg, enc): return me.privop(enc.encode(msg, me.n.nbits))
419 _augment(RSAPriv, _tmp)
421 ###--------------------------------------------------------------------------
422 ### Built-in named curves and prime groups.
424 class _groupmap (object):
425 def __init__(me, map, nth):
428 me.i = [None] * (max(map.values()) + 1)
430 return '{%s}' % ', '.join(['%r: %r' % (k, me[k]) for k in me])
431 def __contains__(me, k):
433 def __getitem__(me, k):
438 def __setitem__(me, k, v):
439 raise TypeError, "immutable object"
451 return [k for k in me]
453 return [me[k] for k in me]
455 return [(k, me[k]) for k in me]
456 eccurves = _groupmap(_base._eccurves, ECInfo._curven)
457 primegroups = _groupmap(_base._pgroups, DHInfo._groupn)
458 bingroups = _groupmap(_base._bingroups, BinDHInfo._groupn)
460 ###--------------------------------------------------------------------------
461 ### Prime number generation.
463 class PrimeGenEventHandler (object):
464 def pg_begin(me, ev):
468 def pg_abort(me, ev):
475 class SophieGermainStepJump (object):
476 def pg_begin(me, ev):
477 me.lf = PrimeFilter(ev.x)
478 me.hf = me.lf.muladd(2, 1)
484 while me.lf.status == PGEN_FAIL or me.hf.status == PGEN_FAIL:
486 if me.lf.status == PGEN_ABORT or me.hf.status == PGEN_ABORT:
489 if me.lf.status == PGEN_DONE and me.hf.status == PGEN_DONE:
496 class SophieGermainStepper (SophieGermainStepJump):
497 def __init__(me, step):
504 class SophieGermainJumper (SophieGermainStepJump):
505 def __init__(me, jump):
506 me.ljump = PrimeFilter(jump);
507 me.hjump = me.ljump.muladd(2, 0)
514 SophieGermainStepJump.pg_done(me, ev)
516 class SophieGermainTester (object):
519 def pg_begin(me, ev):
520 me.lr = RabinMiller(ev.x)
521 me.hr = RabinMiller(2 * ev.x + 1)
523 lst = me.lr.test(ev.rng.range(me.lr.x))
524 if lst != PGEN_PASS and lst != PGEN_DONE:
526 rst = me.hr.test(ev.rng.range(me.hr.x))
527 if rst != PGEN_PASS and rst != PGEN_DONE:
529 if lst == PGEN_DONE and rst == PGEN_DONE:
536 class PrimitiveStepper (PrimeGenEventHandler):
542 def pg_begin(me, ev):
543 me.i = iter(smallprimes)
546 class PrimitiveTester (PrimeGenEventHandler):
547 def __init__(me, mod, hh = [], exp = None):
553 if me.exp is not None:
554 x = me.mod.exp(x, me.exp)
555 if x == 1: return PGEN_FAIL
557 if me.mod.exp(x, h) == 1: return PGEN_FAIL
561 class SimulStepper (PrimeGenEventHandler):
562 def __init__(me, mul = 2, add = 1, step = 2):
566 def _stepfn(me, step):
568 raise ValueError, 'step must be positive'
570 return lambda f: f.step(step)
571 j = PrimeFilter(step)
572 return lambda f: f.jump(j)
573 def pg_begin(me, ev):
575 me.lf = PrimeFilter(x)
576 me.hf = PrimeFilter(x * me.mul + me.add)
577 me.lstep = me._stepfn(me.step)
578 me.hstep = me._stepfn(me.step * me.mul)
579 SimulStepper._cont(me, ev)
587 while me.lf.status == PGEN_FAIL or me.hf.status == PGEN_FAIL:
589 if me.lf.status == PGEN_ABORT or me.hf.status == PGEN_ABORT:
592 if me.lf.status == PGEN_DONE and me.hf.status == PGEN_DONE:
601 class SimulTester (PrimeGenEventHandler):
602 def __init__(me, mul = 2, add = 1):
605 def pg_begin(me, ev):
607 me.lr = RabinMiller(x)
608 me.hr = RabinMiller(x * me.mul + me.add)
610 lst = me.lr.test(ev.rng.range(me.lr.x))
611 if lst != PGEN_PASS and lst != PGEN_DONE:
613 rst = me.hr.test(ev.rng.range(me.hr.x))
614 if rst != PGEN_PASS and rst != PGEN_DONE:
616 if lst == PGEN_DONE and rst == PGEN_DONE:
623 def sgprime(start, step = 2, name = 'p', event = pgen_nullev, nsteps = 0):
625 return pgen(start, name, SimulStepper(step = step), SimulTester(), event,
626 nsteps, RabinMiller.iters(start.nbits))
628 def findprimitive(mod, hh = [], exp = None, name = 'g', event = pgen_nullev):
629 return pgen(0, name, PrimitiveStepper(), PrimitiveTester(mod, hh, exp),
632 def kcdsaprime(pbits, qbits, rng = rand,
633 event = pgen_nullev, name = 'p', nsteps = 0):
634 hbits = pbits - qbits
635 h = pgen(rng.mp(hbits, 1), name + ' [h]',
636 PrimeGenStepper(2), PrimeGenTester(),
637 event, nsteps, RabinMiller.iters(hbits))
638 q = pgen(rng.mp(qbits, 1), name, SimulStepper(2 * h, 1, 2),
639 SimulTester(2 * h, 1), event, nsteps, RabinMiller.iters(qbits))
643 #----- That's all, folks ----------------------------------------------------