3 ### Setup for Catacomb/Python bindings
5 ### (c) 2004 Straylight/Edgeware
8 ###----- Licensing notice ---------------------------------------------------
10 ### This file is part of the Python interface to Catacomb.
12 ### Catacomb/Python is free software; you can redistribute it and/or modify
13 ### it under the terms of the GNU General Public License as published by
14 ### the Free Software Foundation; either version 2 of the License, or
15 ### (at your option) any later version.
17 ### Catacomb/Python is distributed in the hope that it will be useful,
18 ### but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ### GNU General Public License for more details.
22 ### You should have received a copy of the GNU General Public License
23 ### along with Catacomb/Python; if not, write to the Free Software Foundation,
24 ### Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 import types as _types
28 from binascii import hexlify as _hexify, unhexlify as _unhexify
29 from sys import argv as _argv
31 ###--------------------------------------------------------------------------
34 ## For the benefit of the default keyreporter, we need the program na,e.
37 ## Initialize the module. Drag in the static methods of the various
38 ## classes; create names for the various known crypto algorithms.
45 for i in ['MP', 'GF', 'Field',
46 'ECPt', 'ECPtCurve', 'ECCurve', 'ECInfo',
47 'DHInfo', 'BinDHInfo', 'RSAPriv', 'BBSPriv',
48 'PrimeFilter', 'RabinMiller',
56 setattr(c, j[plen:], classmethod(b[j]))
57 for i in [gcciphers, gchashes, gcmacs, gcprps]:
58 for c in i.itervalues():
59 d[c.name.replace('-', '_').translate(None, '/')] = c
60 for c in gccrands.itervalues():
61 d[c.name.replace('-', '_').translate(None, '/') + 'rand'] = c
64 ## A handy function for our work: add the methods of a named class to an
65 ## existing class. This is how we write the Python-implemented parts of our
70 if type(a) is _types.MethodType:
72 elif type(a) not in (_types.FunctionType, staticmethod, classmethod):
76 ## Parsing functions tend to return the object parsed and the remainder of
77 ## the input. This checks that the remainder is input and, if so, returns
82 raise SyntaxError, 'junk at end of string'
85 ###--------------------------------------------------------------------------
90 return ByteString(_unhexify(x))
91 fromhex = staticmethod(fromhex)
95 return 'bytes(%r)' % hex(me)
96 _augment(ByteString, _tmp)
97 ByteString.__hash__ = str.__hash__
98 bytes = ByteString.fromhex
100 ###--------------------------------------------------------------------------
106 return ctstreq(h, hh)
107 _augment(GHash, _tmp)
108 _augment(Poly1305Hash, _tmp)
110 ###--------------------------------------------------------------------------
111 ### NaCl `secretbox'.
113 def secret_box(k, n, m):
114 E = xsalsa20(k).setiv(n)
115 r = E.enczero(poly1305.keysz.default)
116 s = E.enczero(poly1305.masksz)
118 t = poly1305(r)(s).hash(y).done()
119 return ByteString(t + y)
121 def secret_unbox(k, n, c):
122 E = xsalsa20(k).setiv(n)
123 r = E.enczero(poly1305.keysz.default)
124 s = E.enczero(poly1305.masksz)
125 y = c[poly1305.tagsz:]
126 if not poly1305(r)(s).hash(y).check(c[0:poly1305.tagsz]):
127 raise ValueError, 'decryption failed'
128 return E.decrypt(c[poly1305.tagsz:])
130 ###--------------------------------------------------------------------------
131 ### Multiprecision integers and binary polynomials.
134 if isinstance(x, BaseRat): return x._n, x._d
136 class BaseRat (object):
137 """Base class implementing fields of fractions over Euclidean domains."""
138 def __new__(cls, a, b):
139 a, b = cls.RING(a), cls.RING(b)
143 me = super(BaseRat, cls).__new__(cls)
148 def numer(me): return me._n
150 def denom(me): return me._d
151 def __str__(me): return '%s/%s' % (me._n, me._d)
152 def __repr__(me): return '%s(%s, %s)' % (type(me).__name__, me._n, me._d)
154 def __add__(me, you):
155 n, d = _split_rat(you)
156 return type(me)(me._n*d + n*me._d, d*me._d)
158 def __sub__(me, you):
159 n, d = _split_rat(you)
160 return type(me)(me._n*d - n*me._d, d*me._d)
161 def __rsub__(me, you):
162 n, d = _split_rat(you)
163 return type(me)(n*me._d - me._n*d, d*me._d)
164 def __mul__(me, you):
165 n, d = _split_rat(you)
166 return type(me)(me._n*n, me._d*d)
167 def __div__(me, you):
168 n, d = _split_rat(you)
169 return type(me)(me._n*d, me._d*n)
170 def __rdiv__(me, you):
171 n, d = _split_rat(you)
172 return type(me)(me._d*n, me._n*d)
173 def __cmp__(me, you):
174 n, d = _split_rat(you)
175 return type(me)(me._n*d, n*me._d)
176 def __rcmp__(me, you):
177 n, d = _split_rat(you)
178 return cmp(n*me._d, me._n*d)
180 class IntRat (BaseRat):
183 class GFRat (BaseRat):
187 def negp(x): return x < 0
188 def posp(x): return x > 0
189 def zerop(x): return x == 0
190 def oddp(x): return x.testbit(0)
191 def evenp(x): return not x.testbit(0)
192 def mont(x): return MPMont(x)
193 def barrett(x): return MPBarrett(x)
194 def reduce(x): return MPReduce(x)
195 def __div__(me, you): return IntRat(me, you)
196 def __rdiv__(me, you): return IntRat(you, me)
200 def zerop(x): return x == 0
201 def reduce(x): return GFReduce(x)
202 def trace(x, y): return x.reduce().trace(y)
203 def halftrace(x, y): return x.reduce().halftrace(y)
204 def modsqrt(x, y): return x.reduce().sqrt(y)
205 def quadsolve(x, y): return x.reduce().quadsolve(y)
206 def __div__(me, you): return GFRat(me, you)
207 def __rdiv__(me, you): return GFRat(you, me)
212 'product(ITERABLE) or product(I, ...) -> PRODUCT'
213 return MPMul(*arg).done()
214 product = staticmethod(product)
215 _augment(MPMul, _tmp)
217 ###--------------------------------------------------------------------------
221 def fromstring(str): return _checkend(Field.parse(str))
222 fromstring = staticmethod(fromstring)
223 _augment(Field, _tmp)
226 def __repr__(me): return '%s(%sL)' % (type(me).__name__, me.p)
227 def __hash__(me): return 0x114401de ^ hash(me.p)
228 def ec(me, a, b): return ECPrimeProjCurve(me, a, b)
229 _augment(PrimeField, _tmp)
232 def __repr__(me): return '%s(%#xL)' % (type(me).__name__, me.p)
233 def ec(me, a, b): return ECBinProjCurve(me, a, b)
234 _augment(BinField, _tmp)
237 def __hash__(me): return 0x23e4701c ^ hash(me.p)
238 _augment(BinPolyField, _tmp)
244 h ^= 2*hash(me.beta) & 0xffffffff
246 _augment(BinNormField, _tmp)
249 def __str__(me): return str(me.value)
250 def __repr__(me): return '%s(%s)' % (repr(me.field), repr(me.value))
253 ###--------------------------------------------------------------------------
258 return '%s(%r, %s, %s)' % (type(me).__name__, me.field, me.a, me.b)
260 return ecpt.frombuf(me, s)
262 return ecpt.fromraw(me, s)
265 _augment(ECCurve, _tmp)
271 h ^= 2*hash(me.a) ^ 0xffffffff
272 h ^= 5*hash(me.b) ^ 0xffffffff
274 _augment(ECPrimeCurve, _tmp)
280 h ^= 2*hash(me.a) ^ 0xffffffff
281 h ^= 5*hash(me.b) ^ 0xffffffff
283 _augment(ECBinCurve, _tmp)
287 if not me: return 'ECPt()'
288 return 'ECPt(%s, %s)' % (me.ix, me.iy)
290 if not me: return 'inf'
291 return '(%s, %s)' % (me.ix, me.iy)
296 return 'ECInfo(curve = %r, G = %r, r = %s, h = %s)' % \
297 (me.curve, me.G, me.r, me.h)
301 h ^= 2*hash(me.G) & 0xffffffff
305 _augment(ECInfo, _tmp)
309 if not me: return '%r()' % (me.curve)
310 return '%r(%s, %s)' % (me.curve, me.x, me.y)
312 if not me: return 'inf'
313 return '(%s, %s)' % (me.x, me.y)
314 _augment(ECPtCurve, _tmp)
316 ###--------------------------------------------------------------------------
320 def __repr__(me): return 'KeySZAny(%d)' % me.default
321 def check(me, sz): return True
322 def best(me, sz): return sz
323 _augment(KeySZAny, _tmp)
327 return 'KeySZRange(%d, %d, %d, %d)' % \
328 (me.default, me.min, me.max, me.mod)
329 def check(me, sz): return me.min <= sz <= me.max and sz % me.mod == 0
331 if sz < me.min: raise ValueError, 'key too small'
332 elif sz > me.max: return me.max
333 else: return sz - (sz % me.mod)
334 _augment(KeySZRange, _tmp)
337 def __repr__(me): return 'KeySZSet(%d, %s)' % (me.default, me.set)
338 def check(me, sz): return sz in me.set
342 if found < i <= sz: found = i
343 if found < 0: raise ValueError, 'key too small'
345 _augment(KeySZSet, _tmp)
347 ###--------------------------------------------------------------------------
352 return '%s(p = %s, r = %s, g = %s)' % \
353 (type(me).__name__, me.p, me.r, me.g)
354 _augment(FGInfo, _tmp)
357 def group(me): return PrimeGroup(me)
358 _augment(DHInfo, _tmp)
361 def group(me): return BinGroup(me)
362 _augment(BinDHInfo, _tmp)
366 return '%s(%r)' % (type(me).__name__, me.info)
367 _augment(Group, _tmp)
374 h ^= 2*hash(info.r) & 0xffffffff
375 h ^= 5*hash(info.g) & 0xffffffff
377 _augment(PrimeGroup, _tmp)
384 h ^= 2*hash(info.r) & 0xffffffff
385 h ^= 5*hash(info.g) & 0xffffffff
387 _augment(BinGroup, _tmp)
390 def __hash__(me): return 0x0ec23dab ^ hash(me.info)
391 _augment(ECGroup, _tmp)
395 return '%r(%r)' % (me.group, str(me))
398 ###--------------------------------------------------------------------------
399 ### RSA encoding techniques.
401 class PKCS1Crypt (object):
402 def __init__(me, ep = '', rng = rand):
405 def encode(me, msg, nbits):
406 return _base._p1crypt_encode(msg, nbits, me.ep, me.rng)
407 def decode(me, ct, nbits):
408 return _base._p1crypt_decode(ct, nbits, me.ep, me.rng)
410 class PKCS1Sig (object):
411 def __init__(me, ep = '', rng = rand):
414 def encode(me, msg, nbits):
415 return _base._p1sig_encode(msg, nbits, me.ep, me.rng)
416 def decode(me, msg, sig, nbits):
417 return _base._p1sig_decode(msg, sig, nbits, me.ep, me.rng)
420 def __init__(me, mgf = sha_mgf, hash = sha, ep = '', rng = rand):
425 def encode(me, msg, nbits):
426 return _base._oaep_encode(msg, nbits, me.mgf, me.hash, me.ep, me.rng)
427 def decode(me, ct, nbits):
428 return _base._oaep_decode(ct, nbits, me.mgf, me.hash, me.ep, me.rng)
431 def __init__(me, mgf = sha_mgf, hash = sha, saltsz = None, rng = rand):
438 def encode(me, msg, nbits):
439 return _base._pss_encode(msg, nbits, me.mgf, me.hash, me.saltsz, me.rng)
440 def decode(me, msg, sig, nbits):
441 return _base._pss_decode(msg, sig, nbits,
442 me.mgf, me.hash, me.saltsz, me.rng)
445 def encrypt(me, msg, enc):
446 return me.pubop(enc.encode(msg, me.n.nbits))
447 def verify(me, msg, sig, enc):
448 if msg is None: return enc.decode(msg, me.pubop(sig), me.n.nbits)
450 x = enc.decode(msg, me.pubop(sig), me.n.nbits)
451 return x is None or x == msg
454 _augment(RSAPub, _tmp)
457 def decrypt(me, ct, enc): return enc.decode(me.privop(ct), me.n.nbits)
458 def sign(me, msg, enc): return me.privop(enc.encode(msg, me.n.nbits))
459 _augment(RSAPriv, _tmp)
461 ###--------------------------------------------------------------------------
462 ### Bernstein's elliptic curve crypto and related schemes.
465 bytes('0900000000000000000000000000000000000000000000000000000000000000')
468 bytes('05000000000000000000000000000000000000000000000000000000'
469 '00000000000000000000000000000000000000000000000000000000')
471 Z128 = bytes('00000000000000000000000000000000')
473 class _BoxyPub (object):
474 def __init__(me, pub, *kw, **kwargs):
475 if len(pub) != me._PUBSZ: raise ValueError, 'bad public key'
476 super(_BoxyPub, me).__init__(*kw, **kwargs)
479 class _BoxyPriv (_BoxyPub):
480 def __init__(me, priv, pub = None, *kw, **kwargs):
481 if len(priv) != me._KEYSZ: raise ValueError, 'bad private key'
482 if pub is None: pub = me._op(priv, me._BASE)
483 super(_BoxyPriv, me).__init__(pub = pub, *kw, **kwargs)
485 def agree(me, you): return me._op(me.priv, you.pub)
486 def boxkey(me, recip):
487 return me._hashkey(me.agree(recip))
488 def box(me, recip, n, m):
489 return secret_box(me.boxkey(recip), n, m)
490 def unbox(me, recip, n, c):
491 return secret_unbox(me.boxkey(recip, n, c))
493 class X25519Pub (_BoxyPub):
494 _PUBSZ = X25519_PUBSZ
497 class X25519Priv (_BoxyPriv, X25519Pub):
498 _KEYSZ = X25519_KEYSZ
499 def _op(me, k, X): return x25519(k, X)
500 def _hashkey(me, z): return hsalsa20_prf(z, Z128)
502 class X448Pub (_BoxyPub):
506 class X448Priv (_BoxyPriv, X448Pub):
508 def _op(me, k, X): return x448(k, X)
509 ##def _hashkey(me, z): return ???
511 class Ed25519Pub (object):
512 def __init__(me, pub):
514 def verify(me, msg, sig):
515 return ed25519_verify(me.pub, msg, sig)
517 class Ed25519Priv (Ed25519Pub):
518 def __init__(me, priv):
520 Ed25519Pub.__init__(me, ed25519_pubkey(priv))
522 return ed25519_sign(me.priv, msg, pub = me.pub)
524 def generate(cls, rng = rand):
525 return cls(rng.block(ED25519_KEYSZ))
527 ###--------------------------------------------------------------------------
528 ### Built-in named curves and prime groups.
530 class _groupmap (object):
531 def __init__(me, map, nth):
534 me._n = max(map.values()) + 1
537 return '{%s}' % ', '.join(['%r: %r' % (k, me[k]) for k in me])
540 def __contains__(me, k):
542 def __getitem__(me, k):
547 def __setitem__(me, k, v):
548 raise TypeError, "immutable object"
560 return [k for k in me]
562 return [me[k] for k in me]
564 return [(k, me[k]) for k in me]
565 eccurves = _groupmap(_base._eccurves, ECInfo._curven)
566 primegroups = _groupmap(_base._pgroups, DHInfo._groupn)
567 bingroups = _groupmap(_base._bingroups, BinDHInfo._groupn)
569 ###--------------------------------------------------------------------------
570 ### Prime number generation.
572 class PrimeGenEventHandler (object):
573 def pg_begin(me, ev):
577 def pg_abort(me, ev):
584 class SophieGermainStepJump (object):
585 def pg_begin(me, ev):
586 me.lf = PrimeFilter(ev.x)
587 me.hf = me.lf.muladd(2, 1)
593 while me.lf.status == PGEN_FAIL or me.hf.status == PGEN_FAIL:
595 if me.lf.status == PGEN_ABORT or me.hf.status == PGEN_ABORT:
598 if me.lf.status == PGEN_DONE and me.hf.status == PGEN_DONE:
605 class SophieGermainStepper (SophieGermainStepJump):
606 def __init__(me, step):
613 class SophieGermainJumper (SophieGermainStepJump):
614 def __init__(me, jump):
615 me.ljump = PrimeFilter(jump);
616 me.hjump = me.ljump.muladd(2, 0)
623 SophieGermainStepJump.pg_done(me, ev)
625 class SophieGermainTester (object):
628 def pg_begin(me, ev):
629 me.lr = RabinMiller(ev.x)
630 me.hr = RabinMiller(2 * ev.x + 1)
632 lst = me.lr.test(ev.rng.range(me.lr.x))
633 if lst != PGEN_PASS and lst != PGEN_DONE:
635 rst = me.hr.test(ev.rng.range(me.hr.x))
636 if rst != PGEN_PASS and rst != PGEN_DONE:
638 if lst == PGEN_DONE and rst == PGEN_DONE:
645 class PrimitiveStepper (PrimeGenEventHandler):
651 def pg_begin(me, ev):
652 me.i = iter(smallprimes)
655 class PrimitiveTester (PrimeGenEventHandler):
656 def __init__(me, mod, hh = [], exp = None):
662 if me.exp is not None:
663 x = me.mod.exp(x, me.exp)
664 if x == 1: return PGEN_FAIL
666 if me.mod.exp(x, h) == 1: return PGEN_FAIL
670 class SimulStepper (PrimeGenEventHandler):
671 def __init__(me, mul = 2, add = 1, step = 2):
675 def _stepfn(me, step):
677 raise ValueError, 'step must be positive'
679 return lambda f: f.step(step)
680 j = PrimeFilter(step)
681 return lambda f: f.jump(j)
682 def pg_begin(me, ev):
684 me.lf = PrimeFilter(x)
685 me.hf = PrimeFilter(x * me.mul + me.add)
686 me.lstep = me._stepfn(me.step)
687 me.hstep = me._stepfn(me.step * me.mul)
688 SimulStepper._cont(me, ev)
696 while me.lf.status == PGEN_FAIL or me.hf.status == PGEN_FAIL:
698 if me.lf.status == PGEN_ABORT or me.hf.status == PGEN_ABORT:
701 if me.lf.status == PGEN_DONE and me.hf.status == PGEN_DONE:
710 class SimulTester (PrimeGenEventHandler):
711 def __init__(me, mul = 2, add = 1):
714 def pg_begin(me, ev):
716 me.lr = RabinMiller(x)
717 me.hr = RabinMiller(x * me.mul + me.add)
719 lst = me.lr.test(ev.rng.range(me.lr.x))
720 if lst != PGEN_PASS and lst != PGEN_DONE:
722 rst = me.hr.test(ev.rng.range(me.hr.x))
723 if rst != PGEN_PASS and rst != PGEN_DONE:
725 if lst == PGEN_DONE and rst == PGEN_DONE:
732 def sgprime(start, step = 2, name = 'p', event = pgen_nullev, nsteps = 0):
734 return pgen(start, name, SimulStepper(step = step), SimulTester(), event,
735 nsteps, RabinMiller.iters(start.nbits))
737 def findprimitive(mod, hh = [], exp = None, name = 'g', event = pgen_nullev):
738 return pgen(0, name, PrimitiveStepper(), PrimitiveTester(mod, hh, exp),
741 def kcdsaprime(pbits, qbits, rng = rand,
742 event = pgen_nullev, name = 'p', nsteps = 0):
743 hbits = pbits - qbits
744 h = pgen(rng.mp(hbits, 1), name + ' [h]',
745 PrimeGenStepper(2), PrimeGenTester(),
746 event, nsteps, RabinMiller.iters(hbits))
747 q = pgen(rng.mp(qbits, 1), name, SimulStepper(2 * h, 1, 2),
748 SimulTester(2 * h, 1), event, nsteps, RabinMiller.iters(qbits))
752 #----- That's all, folks ----------------------------------------------------