5 # Setup for Catacomb/Python bindings
7 # (c) 2004 Straylight/Edgeware
10 #----- Licensing notice -----------------------------------------------------
12 # This file is part of the Python interface to Catacomb.
14 # Catacomb/Python is free software; you can redistribute it and/or modify
15 # it under the terms of the GNU General Public License as published by
16 # the Free Software Foundation; either version 2 of the License, or
17 # (at your option) any later version.
19 # Catacomb/Python is distributed in the hope that it will be useful,
20 # but WITHOUT ANY WARRANTY; without even the implied warranty of
21 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 # GNU General Public License for more details.
24 # You should have received a copy of the GNU General Public License
25 # along with Catacomb/Python; if not, write to the Free Software Foundation,
26 # Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
28 #----- Imports --------------------------------------------------------------
31 import types as _types
32 from binascii import hexlify as _hexify, unhexlify as _unhexify
33 from sys import argv as _argv
35 #----- Basic stuff ----------------------------------------------------------
37 ## For the benefit of the default keyreporter, we need the program na,e.
40 ## Initialize the module. Drag in the static methods of the various
41 ## classes; create names for the various known crypto algorithms.
48 for i in ['MP', 'GF', 'Field',
49 'ECPt', 'ECPtCurve', 'ECCurve', 'ECInfo',
50 'DHInfo', 'BinDHInfo', 'RSAPriv', 'BBSPriv',
51 'PrimeFilter', 'RabinMiller',
59 setattr(c, j[plen:], classmethod(b[j]))
60 for i in [gcciphers, gchashes, gcmacs, gcprps]:
61 for c in i.itervalues():
62 d[c.name.replace('-', '_')] = c
63 for c in gccrands.itervalues():
64 d[c.name.replace('-', '_') + 'rand'] = c
67 ## A handy function for our work: add the methods of a named class to an
68 ## existing class. This is how we write the Python-implemented parts of our
73 if type(a) is _types.MethodType:
75 elif type(a) not in (_types.FunctionType, staticmethod, classmethod):
79 ## Parsing functions tend to return the object parsed and the remainder of
80 ## the input. This checks that the remainder is input and, if so, returns
85 raise SyntaxError, 'junk at end of string'
88 #----- Bytestrings ----------------------------------------------------------
92 return ByteString(_unhexify(x))
93 fromhex = staticmethod(fromhex)
97 return 'bytes(%r)' % hex(me)
98 _augment(ByteString, _tmp)
99 bytes = ByteString.fromhex
101 #----- Multiprecision integers and binary polynomials -----------------------
104 def negp(x): return x < 0
105 def posp(x): return x > 0
106 def zerop(x): return x == 0
107 def oddp(x): return x.testbit(0)
108 def evenp(x): return not x.testbit(0)
109 def mont(x): return MPMont(x)
110 def barrett(x): return MPBarrett(x)
111 def reduce(x): return MPReduce(x)
114 if x < 0: raise ValueError, 'factorial argument must be > 0'
115 return MPMul.product(xrange(1, x + 1))
116 factorial = staticmethod(factorial)
120 def zerop(x): return x == 0
121 def reduce(x): return GFReduce(x)
122 def trace(x, y): return x.reduce().trace(y)
123 def halftrace(x, y): return x.reduce().halftrace(y)
124 def modsqrt(x, y): return x.reduce().sqrt(y)
125 def quadsolve(x, y): return x.reduce().quadsolve(y)
130 'product(ITERABLE) or product(I, ...) -> PRODUCT'
131 return MPMul(*arg).done()
132 product = staticmethod(product)
133 _augment(MPMul, _tmp)
135 #----- Abstract fields ------------------------------------------------------
138 def fromstring(str): return _checkend(Field.parse(str))
139 fromstring = staticmethod(fromstring)
140 _augment(Field, _tmp)
143 def __repr__(me): return '%s(%sL)' % (type(me).__name__, me.p)
144 def ec(me, a, b): return ECPrimeProjCurve(me, a, b)
145 _augment(PrimeField, _tmp)
148 def __repr__(me): return '%s(%sL)' % (type(me).__name__, hex(me.p))
149 def ec(me, a, b): return ECBinProjCurve(me, a, b)
150 _augment(BinField, _tmp)
153 def __str__(me): return str(me.value)
154 def __repr__(me): return '%s(%s)' % (repr(me.field), repr(me.value))
157 #----- Elliptic curves ------------------------------------------------------
161 return '%s(%r, %s, %s)' % (type(me).__name__, me.field, me.a, me.b)
163 return ecpt.frombuf(me, s)
165 return ecpt.fromraw(me, s)
168 _augment(ECCurve, _tmp)
172 if not me: return 'ECPt()'
173 return 'ECPt(%s, %s)' % (me.ix, me.iy)
175 if not me: return 'inf'
176 return '(%s, %s)' % (me.ix, me.iy)
181 return 'ECInfo(curve = %r, G = %r, r = %s, h = %s)' % \
182 (me.curve, me.G, me.r, me.h)
185 _augment(ECInfo, _tmp)
189 if not me: return '%r()' % (me.curve)
190 return '%r(%s, %s)' % (me.curve, me.x, me.y)
192 if not me: return 'inf'
193 return '(%s, %s)' % (me.x, me.y)
194 _augment(ECPtCurve, _tmp)
196 #----- Key sizes ------------------------------------------------------------
199 def __repr__(me): return 'KeySZAny(%d)' % me.default
200 def check(me, sz): return True
201 def best(me, sz): return sz
202 _augment(KeySZAny, _tmp)
206 return 'KeySZRange(%d, %d, %d, %d)' % \
207 (me.default, me.min, me.max, me.mod)
208 def check(me, sz): return me.min <= sz <= me.max and sz % me.mod == 0
210 if sz < me.min: raise ValueError, 'key too small'
211 elif sz > me.max: return me.max
212 else: return sz - (sz % me.mod)
213 _augment(KeySZRange, _tmp)
216 def __repr__(me): return 'KeySZSet(%d, %s)' % (me.default, me.set)
217 def check(me, sz): return sz in me.set
221 if found < i <= sz: found = i
222 if found < 0: raise ValueError, 'key too small'
224 _augment(KeySZSet, _tmp)
226 #----- Abstract groups ------------------------------------------------------
230 return '%s(p = %s, r = %s, g = %s)' % \
231 (type(me).__name__, me.p, me.r, me.g)
232 _augment(FGInfo, _tmp)
235 def group(me): return PrimeGroup(me)
236 _augment(DHInfo, _tmp)
239 def group(me): return BinGroup(me)
240 _augment(BinDHInfo, _tmp)
244 return '%s(%r)' % (type(me).__name__, me.info)
245 _augment(Group, _tmp)
249 return '%r(%r)' % (me.group, str(me))
252 #----- RSA encoding techniques ----------------------------------------------
254 class PKCS1Crypt (object):
255 def __init__(me, ep = '', rng = rand):
258 def encode(me, msg, nbits):
259 return _base._p1crypt_encode(msg, nbits, me.ep, me.rng)
260 def decode(me, ct, nbits):
261 return _base._p1crypt_decode(ct, nbits, me.ep, me.rng)
263 class PKCS1Sig (object):
264 def __init__(me, ep = '', rng = rand):
267 def encode(me, msg, nbits):
268 return _base._p1sig_encode(msg, nbits, me.ep, me.rng)
269 def decode(me, msg, sig, nbits):
270 return _base._p1sig_decode(msg, sig, nbits, me.ep, me.rng)
273 def __init__(me, mgf = sha_mgf, hash = sha, ep = '', rng = rand):
278 def encode(me, msg, nbits):
279 return _base._oaep_encode(msg, nbits, me.mgf, me.hash, me.ep, me.rng)
280 def decode(me, ct, nbits):
281 return _base._oaep_decode(ct, nbits, me.mgf, me.hash, me.ep, me.rng)
284 def __init__(me, mgf = sha_mgf, hash = sha, saltsz = None, rng = rand):
291 def encode(me, msg, nbits):
292 return _base._pss_encode(msg, nbits, me.mgf, me.hash, me.saltsz, me.rng)
293 def decode(me, msg, sig, nbits):
294 return _base._pss_decode(msg, sig, nbits,
295 me.mgf, me.hash, me.saltsz, me.rng)
298 def encrypt(me, msg, enc):
299 return me.pubop(enc.encode(msg, me.n.nbits))
300 def verify(me, msg, sig, enc):
301 if msg is None: return enc.decode(msg, me.pubop(sig), me.n.nbits)
303 x = enc.decode(msg, me.pubop(sig), me.n.nbits)
304 return x is None or x == msg
307 _augment(RSAPub, _tmp)
310 def decrypt(me, ct, enc): return enc.decode(me.privop(ct), me.n.nbits)
311 def sign(me, msg, enc): return me.privop(enc.encode(msg, me.n.nbits))
312 _augment(RSAPriv, _tmp)
314 #----- Built-in named curves and prime groups -------------------------------
316 class _groupmap (object):
317 def __init__(me, map, nth):
320 me.i = [None] * (max(map.values()) + 1)
322 return '{%s}' % ', '.join(['%r: %r' % (k, me[k]) for k in me])
323 def __contains__(me, k):
325 def __getitem__(me, k):
330 def __setitem__(me, k, v):
331 raise TypeError, "immutable object"
343 return [k for k in me]
345 return [me[k] for k in me]
347 return [(k, me[k]) for k in me]
348 eccurves = _groupmap(_base._eccurves, ECInfo._curven)
349 primegroups = _groupmap(_base._pgroups, DHInfo._groupn)
350 bingroups = _groupmap(_base._bingroups, BinDHInfo._groupn)
352 #----- Prime number generation ----------------------------------------------
354 class PrimeGenEventHandler (object):
355 def pg_begin(me, ev):
359 def pg_abort(me, ev):
366 class SophieGermainStepJump (object):
367 def pg_begin(me, ev):
368 me.lf = PrimeFilter(ev.x)
369 me.hf = me.lf.muladd(2, 1)
375 while me.lf.status == PGEN_FAIL or me.hf.status == PGEN_FAIL:
377 if me.lf.status == PGEN_ABORT or me.hf.status == PGEN_ABORT:
380 if me.lf.status == PGEN_DONE and me.hf.status == PGEN_DONE:
387 class SophieGermainStepper (SophieGermainStepJump):
388 def __init__(me, step):
395 class SophieGermainJumper (SophieGermainStepJump):
396 def __init__(me, jump):
397 me.ljump = PrimeFilter(jump);
398 me.hjump = me.ljump.muladd(2, 0)
405 SophieGermainStepJump.pg_done(me, ev)
407 class SophieGermainTester (object):
410 def pg_begin(me, ev):
411 me.lr = RabinMiller(ev.x)
412 me.hr = RabinMiller(2 * ev.x + 1)
414 lst = me.lr.test(ev.rng.range(me.lr.x))
415 if lst != PGEN_PASS and lst != PGEN_DONE:
417 rst = me.hr.test(ev.rng.range(me.hr.x))
418 if rst != PGEN_PASS and rst != PGEN_DONE:
420 if lst == PGEN_DONE and rst == PGEN_DONE:
427 class PrimitiveStepper (PrimeGenEventHandler):
433 def pg_begin(me, ev):
434 me.i = iter(smallprimes)
437 class PrimitiveTester (PrimeGenEventHandler):
438 def __init__(me, mod, hh = [], exp = None):
444 if me.exp is not None:
445 x = me.mod.exp(x, me.exp)
446 if x == 1: return PGEN_FAIL
448 if me.mod.exp(x, h) == 1: return PGEN_FAIL
452 class SimulStepper (PrimeGenEventHandler):
453 def __init__(me, mul = 2, add = 1, step = 2):
457 def _stepfn(me, step):
459 raise ValueError, 'step must be positive'
461 return lambda f: f.step(step)
462 j = PrimeFilter(step)
463 return lambda f: f.jump(j)
464 def pg_begin(me, ev):
466 me.lf = PrimeFilter(x)
467 me.hf = PrimeFilter(x * me.mul + me.add)
468 me.lstep = me._stepfn(me.step)
469 me.hstep = me._stepfn(me.step * me.mul)
470 SimulStepper._cont(me, ev)
478 while me.lf.status == PGEN_FAIL or me.hf.status == PGEN_FAIL:
480 if me.lf.status == PGEN_ABORT or me.hf.status == PGEN_ABORT:
483 if me.lf.status == PGEN_DONE and me.hf.status == PGEN_DONE:
492 class SimulTester (PrimeGenEventHandler):
493 def __init__(me, mul = 2, add = 1):
496 def pg_begin(me, ev):
498 me.lr = RabinMiller(x)
499 me.hr = RabinMiller(x * me.mul + me.add)
501 lst = me.lr.test(ev.rng.range(me.lr.x))
502 if lst != PGEN_PASS and lst != PGEN_DONE:
504 rst = me.hr.test(ev.rng.range(me.hr.x))
505 if rst != PGEN_PASS and rst != PGEN_DONE:
507 if lst == PGEN_DONE and rst == PGEN_DONE:
514 def sgprime(start, step = 2, name = 'p', event = pgen_nullev, nsteps = 0):
516 return pgen(start, name, SimulStepper(step = step), SimulTester(), event,
517 nsteps, RabinMiller.iters(start.nbits))
519 def findprimitive(mod, hh = [], exp = None, name = 'g', event = pgen_nullev):
520 return pgen(0, name, PrimitiveStepper(), PrimitiveTester(mod, hh, exp),
523 def kcdsaprime(pbits, qbits, rng = rand,
524 event = pgen_nullev, name = 'p', nsteps = 0):
525 hbits = pbits - qbits
526 h = pgen(rng.mp(hbits, 1), name + ' [h]',
527 PrimeGenStepper(2), PrimeGenTester(),
528 event, nsteps, RabinMiller.iters(hbits))
529 q = pgen(rng.mp(qbits, 1), name, SimulStepper(2 * h, 1, 2),
530 SimulTester(2 * h, 1), event, nsteps, RabinMiller.iters(qbits))
534 #----- That's all, folks ----------------------------------------------------