chiark / gitweb /
Restart with different structure and rather more formal objectives.
authormdw <mdw>
Fri, 22 Jun 2001 19:41:31 +0000 (19:41 +0000)
committermdw <mdw>
Fri, 22 Jun 2001 19:41:31 +0000 (19:41 +0000)
doc/wrestlers.tex

index 600b2fda3be4c2f365d6f830912dccac04a5a2f0..033f9feacc26a903ffb9c908b1f3041e4c84fba3 100644 (file)
@@ -1,6 +1,6 @@
 %%% -*-latex-*-
 %%%
-%%% $Id: wrestlers.tex,v 1.2 2001/02/22 09:09:05 mdw Exp $
+%%% $Id: wrestlers.tex,v 1.3 2001/06/22 19:41:31 mdw Exp $
 %%%
 %%% Description of the Wrestlers Protocol
 %%%
@@ -10,6 +10,9 @@
 %%%----- Revision history ---------------------------------------------------
 %%%
 %%% $Log: wrestlers.tex,v $
+%%% Revision 1.3  2001/06/22 19:41:31  mdw
+%%% Restart with different structure and rather more formal objectives.
+%%%
 %%% Revision 1.2  2001/02/22 09:09:05  mdw
 %%% Partially through reworking.
 %%%
 
 \documentclass{article}
 \usepackage{amssymb}
-\title{The Wrestlers Protocol}
-\author{Mark Wooding \\ Clive Jones}
-\def\from{\leftarrow}
+\usepackage{amstext}
 
-\begin{document}
+\errorcontextlines=999
+\makeatletter
 
-\maketitle
+\title{The Wrestlers Protocol: proof-of-receipt and secure key exchange}
+\author{Mark Wooding \and Clive Jones}
 
-\begin{abstract}
-  We present a simple key-exchange protocol with of mutual authentication and
-  perfect forward-secrecy, which doesn't leave any long-lasting evidence of
-  participation in the exchange.  The protocol's security depends on the
-  intractability of the Diffie-Hellman problem (in some cyclic group), and on
-  the strength of a hash function.
-\end{abstract}
+\bibliographystyle{alpha}
 
-\section{Introduction}
-
-Current key-agreement protocols are all very well for securing generally
-`honest' traffic (e.g., transmission of credit-card details to a merchant),
-but they're less satisfactory if you actually have something to hide.
+\newtheorem{theorem}{Theorem}
+\newenvironment{proof}[1][Proof]{%
+  \par\noindent\textbf{#1.} %
+}{%
+  \penalty\@M\hfill\vadjust{}%
+  \penalty\z@\relax\vadjust{}%
+  \penalty\@M\hfill$\square$%
+  \par%
+}
 
-In the UK, new key exchange protocols have been particularly motivated by the
-new Regulation of Investigatory Powers Act, which allows `authorized persons'
-to intercept communications and demand long-term encryption keys.
-
-Let's suppose that Alice and Bob are shady characters, and that their
-communications are of great interest to the draconian r\'egime in which they
-live.  (They might be international arms smugglers, for example, because they
-export cryptographic toolkits.)
+\begin{document}
 
-Alice could just invent a session key and transmit it to Bob, encrypted under
-his public key, each time she wanted to talk to him.  However, once the
-secret police turn up at Bob's house and demand his private key, the game is
-over and all of the communications can be recovered.
+\maketitle
+\begin{abstract}
+  Fill this in later.
+\end{abstract}
+\tableofcontents
+\newpage
 
-Alice and Bob would clearly be better off using a system which offers forward
-secrecy, for example, Diffie-Hellman.  However, in order to prevent active
-attacks, the messages in the Diffie-Hellman exchange must be authenticated.
-The way this usually works is that Alice and Bob pick a group $G$ of order
-$q$ generated by $g$.  When Alice and Bob want to communicate, they choose
-exponents $\alpha$ and $\beta$ respectively ($1 < \alpha, \beta < q$), Alice
-sends $S_A(g^\alpha)$ to Bob, Bob sends $S_B(g^\beta)$ to Alice, and, after
-verifying each other's signatures, they each compute a shared key $K =
-g^{\alpha \beta}$.  They dispose of their secrets $\alpha$ and $\beta$
-forthwith, and destroy $K$ when the conversation finishes.  Now the secret
-police can demand all they like: they still can't decrypt old sessions, and
-Alice and Bob, however badly tortured, can't help them.  The secret police
-might not even be all owed to demand their long-term signing keys: for
-example, the RIPA grants special protection to authentication-only keys.
+%%%--------------------------------------------------------------------------
 
-This is fine, except that sending $S_A(g^\alpha)$ is a wonderful way of
-shouting `Alice was here' to all of the spooks tapping Bob's network
-connection.  The Wrestlers Protocol\footnote{%
-  Named after the excellent pub in Cambridge where most of the design was
-  done.}
-fixes these problems.  It provides perfect forward secrecy, just like
-Diffie-Hellman, without leaving signatures around for the spooks.
+\section{Introduction}
+% Some waffle here about the desirability of a key-exchange protocol that
+% doesn't leave signatures lying around, followed by an extended report of
+% the various results.
 
+%%%--------------------------------------------------------------------------
 
 \section{A simple authentication protocol}
+% Present the basic Diffie-Hellman-based authenticator, and prove that an
+% authentication oracle is useless if the hash function has appropriate
+% properties.
 
-As a building-block, we construct a simple authentication protocol based on
-Diffie-Hellman key exchange.  As before, let's use a group $G$ of order $q$
-(for some prime $q$), generated by a group element $g$.
-
-A Diffie-Hellman key exchange allows two parties to compute the same value,
-with different knowledge.  We'll use this to make an authentication protocol.
-
-Alice chooses a private key $1 < a < q$.  Her public key is $A = g^a$.  She
-can prove her knowledge of $a$ to Bob like this:
-\begin{enumerate}
-\item Bob makes up a random $1 < \beta < q$.  He sends a challenge $C =
-  g^\beta$ to Alice.
-\item Alice computes the response $R = C^a = g^{a \beta}$.  This would
-  be the shared key if we were doing proper Diffie-Hellman, but we aren't.
-  Instead, she just sends $R$ back to Bob.
-\item Bob checks that $R = A^\beta$.  If it is, he accepts that the person
-  he's talking to has Alice's private key, and hence is presumably Alice.
-\end{enumerate}
-
-This protocol has nice properties.  It's not terribly difficult to implement,
-given the usual tools like modular exponentiation or elliptic curve
-point-addition.
-
-An eavesdropper -- let's call her Eve, for tradition's sake -- doesn't learn
-anything terribly interesting from watching the exchange.  She sees $C$ going
-one way and then $C^a$ coming back.  If she finds this illuminating, she can
-program her computer to generate random numbers $\gamma$ and show her pairs
-$C = g^\gamma$ and $R = A^\gamma = C^a$.  So Eve learns nothing useful she
-couldn't have worked out for herself.  In fact, she doesn't even learn that
-Alice is involved in the conversation!  Bob can fake up an authentication
-with Alice by secretly agreeing which value of $\beta$ he's going to use with
-an accomplice.
-
-Bob's in a better position than Eve.  If he computes his challenges honestly
-then he doesn't learn much except that he's talking to Alice, because as
-we've seen, she only tells him $R$, which he knew already.  However, if Bob
-carefully chooses a challenge $C$ without knowing its discrete log $\beta$,
-then Alice's response might tell him useful information about her private
-key that he couldn't have worked out just by sitting at home computing
-discrete logs.
-
-We can fix this little problem easily enough if we make Bob transmit a hash
-of his expected answer.  Let $H \colon \mathbb{Z} \to \{\,0, 1\,\}^n$ be a
-hash function.  The property we require from $H$ is that Bob can't compute
-$H(g^{a \beta})$ given only $C = g^\beta$ and $A = g^a$ with more than
-negligible probability; a random function would fit the bill fine.  This
-does, of course, also assume that the Diffie-Hellman problem is difficult.
-The new protocol looks very much like the old one:
-\begin{enumerate}
-\item Bob chooses a random $1 < \beta < q$.  He computes $C = g^\beta$ and $R
-  = A^\beta$, and sends $C, H(R)$ to Alice.
-\item Alice computes $R' = C^a$ and checks that it matches the hash which Bob
-  sent.  If it doesn't, he's trying to cheat, and she should refuse to
-  answer.  Otherwise, she sends her response $R'$ back to Bob.
-\item Bob checks that Alice's reply matches the one he computed back in step
-  1.  If it does, he knows that he's talking to Alice.
-\end{enumerate}
-
-
-\section{A key exchange protocol}
-
-We observe a useful side-effect of the authentication protocol just
-described: Bob should be convinved that Alice received his challenge $C$
-correctly.  The idea of the Wrestlers Protocol is to use this to construct a
-full Diffie-Hellman key exchange with mutual authentication.  We maintain the
-useful properties of the previous protocol.
-
-Before they can use the protocol, Alice and Bob must agree on a group $G$ as
-before.  Alice chooses a private key $1 < a < q$, and publishes her public
-key $A = g^a$; Bob similarly chooses a private key $1 < b < q$ and publishes
-his public key $B = g^b$.
-
-Here's the actual protocol in summary:
-\begin{enumerate}
-\item $A \to   B$:\quad $g^\alpha$
-\item $A \from B$:\quad $g^\beta$, $H(g^\alpha, g^\beta, g^{a \beta})$
-\item $A \to   B$:\quad $g^{a \beta}$, $H(g^\beta, g^\alpha, g^{\alpha b})$
-\item $A \from B$:\quad $g^{\alpha b}$
-\end{enumerate}
-
-And now in detail:
-\begin{enumerate}
-
-\item Alice invents a temporary secret $1 < \alpha < q$.  She computes her
-  challenge $C_A = g^\alpha$, and sends it to Bob.
-  
-\item Bob receives the $C_A$, and stores it away.  He invents a temporary
-  secret $1 < \beta < q$ of his own, and computes both his challenge $C_B =
-  g^\beta$ and the expected response $R_B = A^\beta = g^{a \beta}$.  He
-  hashes both challenges (hers first) and the expected response $R_B$, and
-  sends his challenge and the hash back to Alice.
-  
-\item Alice reads Bob's challenge.  She computes her response $R_B' = C_B^a =
-  g^{a \beta}$ and ensures that the Bob's hash is correct.  If it isn't, she
-  stops talking to Bob.  If the hash matches, she sends back her response,
-  together with a hash of Bob's challenge, her original challenge from step
-  1, and her expected response $R_A = B^\alpha = g^{\alpha b}$.
-
-\item Bob reads Alice's response.  If it's wrong then he stops talking.
-  Otherwise he computes his response to Alice's challenge $R_A' = C_A^b =
-  g^{\alpha b}$ and checks Alice's hash.  If the hash is wrong, he also stops
-  talking.  Otherwise he sends the response back to Alice.
-
-\end{enumerate}
-Finally, Alice checks Bob's response, stopping the conversation if it's
-wrong.  Then both sides compute their shared key $K = C_A^\beta = C_B^\alpha
-= g^{\alpha \beta}$, and discard their temporary secrets.
-
-The protocol is essentially symmetrical: each side sends and receives both a
-challenge and hash pair, and a response, but it doesn't look that simple
-because the hashes include both sides' challenges.  Looking at it from one
-side at a time will make things clearer, so let's just take Alice's point of
-view.
-
-Alice constructs her challenge in step 1, and sends it off.  She receives a
-challenge and hash in step 2.  When she computes the response to the
-challenge, she verifies the hash she received.  If it matches, she knows that
-\begin{itemize}
-\item whoever she's talking to hasn't attempted to cheat her by sending a
-  challenge for which he doesn't know the answer; and
-\item he has successfully received her challenge.
-\end{itemize}
-Because she's now received a challenge, she can work out her hash.  She sends
-off her response to the challenge, together with the hash, and awaits the
-response.
-
-In step 4, the response arrives.  If it's correct, she knows that it's from
-Bob, and that he (Bob) received her challenge OK.  Tying everything else
-together is the tricky bit.
-
-If we assume that Bob is playing by the rules, the fact that he's sent his
-response means that he verified it against Alice's hash and decided that
-\begin{itemize}
-\item Alice wasn't trying to cheat him and find out about his private key;
-  and 
-\item Alice correctly received his challenge.
-\end{itemize}
-Because Bob wouldn't have replied if these weren't true, Alice can therefore
-believe that she has received Bob's challenge correctly.
-
-To summarize: Alice has managed to get a challenge to Bob, and he responded;
-Alice has also received Bob's challenge correctly.
-
-What if Bob isn't honest?  The only hole in the protocol which can be
-exploited by Bob is that he can send a response \emph{even though} it doesn't
-match Alice's hash.  This means that the protocol will continue even if Alice
-is attempting to cheat Bob and find information about his private key: this
-is a penalty Bob has to pay for not following the rules.  The protocol still
-aborts if an adversary interferes with the challenges: if Alice isn't given
-Bob's challenge accurately, her response will be wrong, and Bob can abort the
-exchange; similarly, if Bob isn't given Alice's challenge, she will detect
-this and abort the exchange.
-
-
-\section{Practical considerations}
+Suppose that $G$ is some cyclic group of order $q$, generated by an element
+$g$, in which the decision Diffie-Hellman problem \cite{Boneh:1998:DDP} is
+hard.  Alice can choose a private key $1 < \alpha < q$ and publish her
+corresponding public key $A = g^\alpha$.  Later, Bob can verify that he's
+talking to Alice by choosing a random $1 < \beta < q$ and sending Alice a
+\emph{challenge} $B = g^\beta$.  If she replies with $B^\alpha$, Bob accepts
+that he's talking to Alice, otherwise he doesn't.
 
+%%%--------------------------------------------------------------------------
 
-\section{Conclusions and further work}
+\section{An MT-authenticator}
+% Use the protocol of the previous section as an MT-authenticator, within the
+% meaning of [Canetti:2001:AKE].
 
-We have presented a new key exchange protocol based upon a novel use of
-Diffie-Hellman key exchange as a means of authentication.
+%%%--------------------------------------------------------------------------
 
-The arguments given in the previous section sound fairly convincing, but they
-don't provide a formal proof of the security of the Wrestlers Protocol.  The
-authors are unaware of a logic system for verifying protocols which correctly
-capture the properties of hash functions.
+\section{A key-exchange protocol}
+% Present the Wrestlers protocol in all its glory.  Show, by means of the
+% previous proofs, that the Wrestlers protocol is simulatable in the
+% authenticated model using a much simpler protocol.  Show that the simpler
+% protocol is SK-secure.
 
 %%%----- That's all, folks --------------------------------------------------
 
+\bibliography{cryptography,mdw-crypto}
 \end{document}
 
 %%% Local Variables: