chiark / gitweb /
Update word break algorithm for Unicode 5.1.0 (based on UAX #29).
[disorder] / lib / unicode.c
CommitLineData
e5a5a138
RK
1/*
2 * This file is part of DisOrder
8e93ddd1 3 * Copyright (C) 2007, 2009 Richard Kettlewell
e5a5a138 4 *
e7eb3a27 5 * This program is free software: you can redistribute it and/or modify
e5a5a138 6 * it under the terms of the GNU General Public License as published by
e7eb3a27 7 * the Free Software Foundation, either version 3 of the License, or
e5a5a138 8 * (at your option) any later version.
e7eb3a27
RK
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
e5a5a138 15 * You should have received a copy of the GNU General Public License
e7eb3a27 16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
e5a5a138
RK
17 */
18/** @file lib/unicode.c
19 * @brief Unicode support functions
20 *
21 * Here by UTF-8 and UTF-8 we mean the encoding forms of those names (not the
35b651f0
RK
22 * encoding schemes). The primary encoding form is UTF-32 but convenience
23 * wrappers using UTF-8 are provided for a number of functions.
e5a5a138
RK
24 *
25 * The idea is that all the strings that hit the database will be in a
26 * particular normalization form, and for the search and tags database
27 * in case-folded form, so they can be naively compared within the
28 * database code.
29 *
30 * As the code stands this guarantee is not well met!
0ae60b83
RK
31 *
32 * Subpages:
33 * - @ref utf32props
34 * - @ref utftransform
35 * - @ref utf32iterator
36 * - @ref utf32
37 * - @ref utf8
e5a5a138
RK
38 */
39
05b75f8d 40#include "common.h"
e5a5a138
RK
41
42#include "mem.h"
43#include "vector.h"
44#include "unicode.h"
45#include "unidata.h"
46
092f426f
RK
47/** @defgroup utf32props Unicode Code Point Properties */
48/*@{*/
49
50static const struct unidata *utf32__unidata_hard(uint32_t c);
51
52/** @brief Find definition of code point @p c
53 * @param c Code point
54 * @return Pointer to @ref unidata structure for @p c
55 *
56 * @p c can be any 32-bit value, a sensible value will be returned regardless.
57 * The returned pointer is NOT guaranteed to be unique to @p c.
58 */
59static inline const struct unidata *utf32__unidata(uint32_t c) {
60 /* The bottom half of the table contains almost everything of interest
61 * and we can just return the right thing straight away */
62 if(c < UNICODE_BREAK_START)
63 return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
64 else
65 return utf32__unidata_hard(c);
66}
67
68/** @brief Find definition of code point @p c
69 * @param c Code point
70 * @return Pointer to @ref unidata structure for @p c
71 *
72 * @p c can be any 32-bit value, a sensible value will be returned regardless.
73 * The returned pointer is NOT guaranteed to be unique to @p c.
74 *
75 * Don't use this function (although it will work fine) - use utf32__unidata()
76 * instead.
77 */
78static const struct unidata *utf32__unidata_hard(uint32_t c) {
79 if(c < UNICODE_BREAK_START)
80 return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
81 /* Within the break everything is unassigned */
82 if(c < UNICODE_BREAK_END)
83 return utf32__unidata(0xFFFF); /* guaranteed to be Cn */
84 /* Planes 15 and 16 are (mostly) private use */
85 if((c >= 0xF0000 && c <= 0xFFFFD)
86 || (c >= 0x100000 && c <= 0x10FFFD))
87 return utf32__unidata(0xE000); /* first Co code point */
88 /* Everything else above the break top is unassigned */
89 if(c >= UNICODE_BREAK_TOP)
90 return utf32__unidata(0xFFFF); /* guaranteed to be Cn */
91 /* Currently the rest is language tags and variation selectors */
92 c -= (UNICODE_BREAK_END - UNICODE_BREAK_START);
93 return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
94}
95
96/** @brief Return the combining class of @p c
97 * @param c Code point
98 * @return Combining class of @p c
99 *
100 * @p c can be any 32-bit value, a sensible value will be returned regardless.
101 */
102static inline int utf32__combining_class(uint32_t c) {
103 return utf32__unidata(c)->ccc;
104}
105
3c82b504
RK
106/** @brief Return the combining class of @p c
107 * @param c Code point
108 * @return Combining class of @p c
109 *
110 * @p c can be any 32-bit value, a sensible value will be returned regardless.
111 */
112int utf32_combining_class(uint32_t c) {
113 return utf32__combining_class(c);
114}
115
092f426f 116/** @brief Return the General_Category value for @p c
0ae60b83 117 * @param c Code point
092f426f
RK
118 * @return General_Category property value
119 *
120 * @p c can be any 32-bit value, a sensible value will be returned regardless.
121 */
122static inline enum unicode_General_Category utf32__general_category(uint32_t c) {
123 return utf32__unidata(c)->general_category;
124}
125
126/** @brief Determine Grapheme_Break property
127 * @param c Code point
128 * @return Grapheme_Break property value of @p c
129 *
130 * @p c can be any 32-bit value, a sensible value will be returned regardless.
131 */
132static inline enum unicode_Grapheme_Break utf32__grapheme_break(uint32_t c) {
133 return utf32__unidata(c)->grapheme_break;
134}
135
136/** @brief Determine Word_Break property
137 * @param c Code point
138 * @return Word_Break property value of @p c
139 *
140 * @p c can be any 32-bit value, a sensible value will be returned regardless.
141 */
142static inline enum unicode_Word_Break utf32__word_break(uint32_t c) {
143 return utf32__unidata(c)->word_break;
144}
145
146/** @brief Determine Sentence_Break property
147 * @param c Code point
148 * @return Word_Break property value of @p c
149 *
150 * @p c can be any 32-bit value, a sensible value will be returned regardless.
151 */
152static inline enum unicode_Sentence_Break utf32__sentence_break(uint32_t c) {
153 return utf32__unidata(c)->sentence_break;
154}
155
156/** @brief Return true if @p c is ignorable for boundary specifications
157 * @param wb Word break property value
158 * @return non-0 if @p wb is unicode_Word_Break_Extend or unicode_Word_Break_Format
159 */
160static inline int utf32__boundary_ignorable(enum unicode_Word_Break wb) {
161 return (wb == unicode_Word_Break_Extend
162 || wb == unicode_Word_Break_Format);
163}
164
f98fcddb
RK
165/** @brief Return the canonical decomposition of @p c
166 * @param c Code point
167 * @return 0-terminated canonical decomposition, or 0
168 */
169static inline const uint32_t *utf32__decomposition_canon(uint32_t c) {
170 const struct unidata *const data = utf32__unidata(c);
171 const uint32_t *const decomp = data->decomp;
172
173 if(decomp && !(data->flags & unicode_compatibility_decomposition))
174 return decomp;
175 else
176 return 0;
177}
178
179/** @brief Return the compatibility decomposition of @p c
180 * @param c Code point
181 * @return 0-terminated decomposition, or 0
182 */
183static inline const uint32_t *utf32__decomposition_compat(uint32_t c) {
184 return utf32__unidata(c)->decomp;
185}
186
092f426f 187/*@}*/
e5a5a138
RK
188/** @defgroup utftransform Functions that transform between different Unicode encoding forms */
189/*@{*/
190
191/** @brief Convert UTF-32 to UTF-8
192 * @param s Source string
193 * @param ns Length of source string in code points
194 * @param ndp Where to store length of destination string (or NULL)
195 * @return Newly allocated destination string or NULL on error
196 *
56fd389c
RK
197 * If the UTF-32 is not valid then NULL is returned. A UTF-32 code point is
198 * invalid if:
e5a5a138
RK
199 * - it codes for a UTF-16 surrogate
200 * - it codes for a value outside the unicode code space
201 *
56fd389c
RK
202 * The return value is always 0-terminated. The value returned via @p *ndp
203 * does not include the terminator.
e5a5a138
RK
204 */
205char *utf32_to_utf8(const uint32_t *s, size_t ns, size_t *ndp) {
206 struct dynstr d;
207 uint32_t c;
208
209 dynstr_init(&d);
210 while(ns > 0) {
211 c = *s++;
212 if(c < 0x80)
213 dynstr_append(&d, c);
214 else if(c < 0x0800) {
215 dynstr_append(&d, 0xC0 | (c >> 6));
216 dynstr_append(&d, 0x80 | (c & 0x3F));
217 } else if(c < 0x10000) {
56fd389c 218 if(c >= 0xD800 && c <= 0xDFFF)
e5a5a138
RK
219 goto error;
220 dynstr_append(&d, 0xE0 | (c >> 12));
221 dynstr_append(&d, 0x80 | ((c >> 6) & 0x3F));
222 dynstr_append(&d, 0x80 | (c & 0x3F));
223 } else if(c < 0x110000) {
224 dynstr_append(&d, 0xF0 | (c >> 18));
225 dynstr_append(&d, 0x80 | ((c >> 12) & 0x3F));
226 dynstr_append(&d, 0x80 | ((c >> 6) & 0x3F));
227 dynstr_append(&d, 0x80 | (c & 0x3F));
228 } else
229 goto error;
230 --ns;
231 }
232 dynstr_terminate(&d);
233 if(ndp)
234 *ndp = d.nvec;
235 return d.vec;
236error:
237 xfree(d.vec);
238 return 0;
239}
240
241/** @brief Convert UTF-8 to UTF-32
242 * @param s Source string
243 * @param ns Length of source string in code points
244 * @param ndp Where to store length of destination string (or NULL)
f98fcddb 245 * @return Newly allocated destination string or NULL on error
e5a5a138 246 *
56fd389c
RK
247 * The return value is always 0-terminated. The value returned via @p *ndp
248 * does not include the terminator.
e5a5a138
RK
249 *
250 * If the UTF-8 is not valid then NULL is returned. A UTF-8 sequence
251 * for a code point is invalid if:
252 * - it is not the shortest possible sequence for the code point
253 * - it codes for a UTF-16 surrogate
254 * - it codes for a value outside the unicode code space
255 */
256uint32_t *utf8_to_utf32(const char *s, size_t ns, size_t *ndp) {
257 struct dynstr_ucs4 d;
32b158f2 258 uint32_t c32;
e5a5a138 259 const uint8_t *ss = (const uint8_t *)s;
32b158f2 260 int n;
e5a5a138
RK
261
262 dynstr_ucs4_init(&d);
263 while(ns > 0) {
32b158f2
RK
264 const struct unicode_utf8_row *const r = &unicode_utf8_valid[*ss];
265 if(r->count <= ns) {
266 switch(r->count) {
267 case 1:
268 c32 = *ss;
269 break;
270 case 2:
271 if(ss[1] < r->min2 || ss[1] > r->max2)
272 goto error;
273 c32 = *ss & 0x1F;
274 break;
275 case 3:
276 if(ss[1] < r->min2 || ss[1] > r->max2)
277 goto error;
278 c32 = *ss & 0x0F;
279 break;
280 case 4:
281 if(ss[1] < r->min2 || ss[1] > r->max2)
282 goto error;
283 c32 = *ss & 0x07;
284 break;
285 default:
286 goto error;
287 }
e5a5a138
RK
288 } else
289 goto error;
32b158f2
RK
290 for(n = 1; n < r->count; ++n) {
291 if(ss[n] < 0x80 || ss[n] > 0xBF)
292 goto error;
293 c32 = (c32 << 6) | (ss[n] & 0x3F);
294 }
e5a5a138 295 dynstr_ucs4_append(&d, c32);
32b158f2
RK
296 ss += r->count;
297 ns -= r->count;
e5a5a138
RK
298 }
299 dynstr_ucs4_terminate(&d);
300 if(ndp)
301 *ndp = d.nvec;
302 return d.vec;
303error:
304 xfree(d.vec);
305 return 0;
306}
307
18cda350
RK
308/** @brief Test whether [s,s+ns) is valid UTF-8
309 * @param s Start of string
310 * @param ns Length of string
311 * @return non-0 if @p s is valid UTF-8, 0 if it is not valid
312 *
313 * This function is intended to be much faster than calling utf8_to_utf32() and
314 * throwing away the result.
315 */
316int utf8_valid(const char *s, size_t ns) {
317 const uint8_t *ss = (const uint8_t *)s;
318 while(ns > 0) {
319 const struct unicode_utf8_row *const r = &unicode_utf8_valid[*ss];
320 if(r->count <= ns) {
321 switch(r->count) {
322 case 1:
323 break;
324 case 2:
325 if(ss[1] < r->min2 || ss[1] > r->max2)
326 return 0;
327 break;
328 case 3:
329 if(ss[1] < r->min2 || ss[1] > r->max2)
330 return 0;
331 if(ss[2] < 0x80 || ss[2] > 0xBF)
332 return 0;
333 break;
334 case 4:
335 if(ss[1] < r->min2 || ss[1] > r->max2)
336 return 0;
337 if(ss[2] < 0x80 || ss[2] > 0xBF)
338 return 0;
339 if(ss[3] < 0x80 || ss[3] > 0xBF)
340 return 0;
341 break;
342 default:
343 return 0;
344 }
345 } else
346 return 0;
347 ss += r->count;
348 ns -= r->count;
349 }
350 return 1;
351}
352
092f426f
RK
353/*@}*/
354/** @defgroup utf32iterator UTF-32 string iterators */
355/*@{*/
356
357struct utf32_iterator_data {
358 /** @brief Start of string */
359 const uint32_t *s;
360
361 /** @brief Length of string */
362 size_t ns;
363
364 /** @brief Current position */
365 size_t n;
366
367 /** @brief Last two non-ignorable characters or (uint32_t)-1
368 *
369 * last[1] is the non-Extend/Format character just before position @p n;
370 * last[0] is the one just before that.
371 *
372 * Exception 1: if there is no such non-Extend/Format character then an
373 * Extend/Format character is accepted instead.
374 *
375 * Exception 2: if there is no such character even taking that into account
376 * the value is (uint32_t)-1.
377 */
378 uint32_t last[2];
092f426f 379
c85b7022
RK
380 /** @brief Tailoring for Word_Break */
381 unicode_property_tailor *word_break;
382};
092f426f
RK
383
384/** @brief Initialize an internal private iterator
385 * @param it Iterator
386 * @param s Start of string
387 * @param ns Length of string
388 * @param n Absolute position
389 */
390static void utf32__iterator_init(utf32_iterator it,
391 const uint32_t *s, size_t ns, size_t n) {
392 it->s = s;
393 it->ns = ns;
394 it->n = 0;
395 it->last[0] = it->last[1] = -1;
c85b7022 396 it->word_break = 0;
b21a155c 397 utf32_iterator_set(it, n);
092f426f
RK
398}
399
c85b7022
RK
400/** @brief Create a new iterator pointing at the start of a string
401 * @param s Start of string
402 * @param ns Length of string
403 * @return New iterator
404 */
405utf32_iterator utf32_iterator_new(const uint32_t *s, size_t ns) {
406 utf32_iterator it = xmalloc(sizeof *it);
407 utf32__iterator_init(it, s, ns, 0);
408 return it;
409}
410
411/** @brief Tailor this iterator's interpretation of the Word_Break property.
412 * @param it Iterator
413 * @param pt Property tailor function or NULL
414 *
415 * After calling this the iterator will call @p pt to determine the Word_Break
416 * property of each code point. If it returns -1 the default value will be
417 * used otherwise the returned value will be used.
418 *
419 * @p pt can be NULL to revert to the default value of the property.
420 *
421 * It is safe to call this function at any time; the iterator's internal state
422 * will be reset to suit the new tailoring.
423 */
424void utf32_iterator_tailor_word_break(utf32_iterator it,
425 unicode_property_tailor *pt) {
426 it->word_break = pt;
427 utf32_iterator_set(it, it->n);
428}
429
430static inline enum unicode_Word_Break utf32__iterator_word_break(utf32_iterator it,
431 uint32_t c) {
432 if(!it->word_break)
433 return utf32__word_break(c);
434 else {
435 const int t = it->word_break(c);
436
437 if(t < 0)
438 return utf32__word_break(c);
439 else
440 return t;
441 }
442}
443
092f426f
RK
444/** @brief Destroy an iterator
445 * @param it Iterator
446 */
447void utf32_iterator_destroy(utf32_iterator it) {
448 xfree(it);
449}
450
451/** @brief Find the current position of an interator
452 * @param it Iterator
453 */
454size_t utf32_iterator_where(utf32_iterator it) {
455 return it->n;
456}
457
458/** @brief Set an iterator's absolute position
459 * @param it Iterator
460 * @param n Absolute position
461 * @return 0 on success, non-0 on error
462 *
463 * It is an error to position the iterator outside the string (but acceptable
464 * to point it at the hypothetical post-final character). If an invalid value
465 * of @p n is specified then the iterator is not changed.
f98fcddb
RK
466 *
467 * This function works by backing up and then advancing to reconstruct the
468 * iterator's internal state for position @p n. The worst case will be O(n)
469 * time complexity (with a worse constant factor that utf32_iterator_advance())
470 * but the typical case is essentially constant-time.
092f426f
RK
471 */
472int utf32_iterator_set(utf32_iterator it, size_t n) {
5617aaff
RK
473 /* We can't just jump to position @p n; the @p last[] values will be wrong.
474 * What we need is to jump a bit behind @p n and then advance forward,
475 * updating @p last[] along the way. How far back? We need to cross two
476 * non-ignorable code points as we advance forwards, so we'd better pass two
477 * such characters on the way back (if such are available).
478 */
b21a155c 479 size_t m;
5617aaff
RK
480
481 if(n > it->ns) /* range check */
092f426f 482 return -1;
b21a155c
RK
483 /* Walk backwards skipping ignorable code points */
484 m = n;
c85b7022
RK
485 while(m > 0
486 && (utf32__boundary_ignorable(utf32__iterator_word_break(it,
487 it->s[m-1]))))
b21a155c
RK
488 --m;
489 /* Either m=0 or s[m-1] is not ignorable */
490 if(m > 0) {
491 --m;
492 /* s[m] is our first non-ignorable code; look for a second in the same
493 way **/
c85b7022
RK
494 while(m > 0
495 && (utf32__boundary_ignorable(utf32__iterator_word_break(it,
496 it->s[m-1]))))
5617aaff 497 --m;
b21a155c
RK
498 /* Either m=0 or s[m-1] is not ignorable */
499 if(m > 0)
500 --m;
501 }
502 it->last[0] = it->last[1] = -1;
5617aaff
RK
503 it->n = m;
504 return utf32_iterator_advance(it, n - m);
092f426f
RK
505}
506
507/** @brief Advance an iterator
508 * @param it Iterator
509 * @param count Number of code points to advance by
510 * @return 0 on success, non-0 on error
511 *
512 * It is an error to advance an iterator beyond the hypothetical post-final
513 * character of the string. If an invalid value of @p n is specified then the
514 * iterator is not changed.
515 *
516 * This function has O(n) time complexity: it works by advancing naively
517 * forwards through the string.
518 */
519int utf32_iterator_advance(utf32_iterator it, size_t count) {
520 if(count <= it->ns - it->n) {
521 while(count > 0) {
522 const uint32_t c = it->s[it->n];
c85b7022 523 const enum unicode_Word_Break wb = utf32__iterator_word_break(it, c);
092f426f
RK
524 if(it->last[1] == (uint32_t)-1
525 || !utf32__boundary_ignorable(wb)) {
526 it->last[0] = it->last[1];
527 it->last[1] = c;
528 }
529 ++it->n;
530 --count;
531 }
532 return 0;
533 } else
534 return -1;
535}
536
537/** @brief Find the current code point
538 * @param it Iterator
539 * @return Current code point or 0
540 *
541 * If the iterator points at the hypothetical post-final character of the
542 * string then 0 is returned. NB that this doesn't mean that there aren't any
543 * 0 code points inside the string!
544 */
545uint32_t utf32_iterator_code(utf32_iterator it) {
546 if(it->n < it->ns)
547 return it->s[it->n];
548 else
549 return 0;
550}
551
552/** @brief Test for a grapheme boundary
553 * @param it Iterator
554 * @return Non-0 if pointing just after a grapheme boundary, otherwise 0
f98fcddb
RK
555 *
556 * This function identifies default grapheme cluster boundaries as described in
557 * UAX #29 s3. It returns non-0 if @p it points at the code point just after a
558 * grapheme cluster boundary (including the hypothetical code point just after
559 * the end of the string).
092f426f
RK
560 */
561int utf32_iterator_grapheme_boundary(utf32_iterator it) {
562 uint32_t before, after;
563 enum unicode_Grapheme_Break gbbefore, gbafter;
564 /* GB1 and GB2 */
565 if(it->n == 0 || it->n == it->ns)
566 return 1;
567 /* Now we know that s[n-1] and s[n] are safe to inspect */
568 /* GB3 */
569 before = it->s[it->n-1];
570 after = it->s[it->n];
571 if(before == 0x000D && after == 0x000A)
572 return 0;
573 gbbefore = utf32__grapheme_break(before);
574 gbafter = utf32__grapheme_break(after);
575 /* GB4 */
576 if(gbbefore == unicode_Grapheme_Break_Control
577 || before == 0x000D
578 || before == 0x000A)
579 return 1;
580 /* GB5 */
581 if(gbafter == unicode_Grapheme_Break_Control
582 || after == 0x000D
583 || after == 0x000A)
584 return 1;
585 /* GB6 */
586 if(gbbefore == unicode_Grapheme_Break_L
587 && (gbafter == unicode_Grapheme_Break_L
588 || gbafter == unicode_Grapheme_Break_V
589 || gbafter == unicode_Grapheme_Break_LV
590 || gbafter == unicode_Grapheme_Break_LVT))
591 return 0;
592 /* GB7 */
593 if((gbbefore == unicode_Grapheme_Break_LV
594 || gbbefore == unicode_Grapheme_Break_V)
595 && (gbafter == unicode_Grapheme_Break_V
596 || gbafter == unicode_Grapheme_Break_T))
597 return 0;
598 /* GB8 */
599 if((gbbefore == unicode_Grapheme_Break_LVT
600 || gbbefore == unicode_Grapheme_Break_T)
601 && gbafter == unicode_Grapheme_Break_T)
602 return 0;
603 /* GB9 */
604 if(gbafter == unicode_Grapheme_Break_Extend)
605 return 0;
e2e88ad8
RK
606 /* GB9a */
607 if(gbafter == unicode_Grapheme_Break_SpacingMark)
608 return 0;
609 /* GB9b */
610 if(gbbefore == unicode_Grapheme_Break_Prepend)
611 return 0;
092f426f
RK
612 /* GB10 */
613 return 1;
614
615}
616
617/** @brief Test for a word boundary
618 * @param it Iterator
619 * @return Non-0 if pointing just after a word boundary, otherwise 0
f98fcddb
RK
620 *
621 * This function identifies default word boundaries as described in UAX #29 s4.
622 * It returns non-0 if @p it points at the code point just after a word
623 * boundary (including the hypothetical code point just after the end of the
624 * string) and 0 otherwise.
092f426f
RK
625 */
626int utf32_iterator_word_boundary(utf32_iterator it) {
627 enum unicode_Word_Break twobefore, before, after, twoafter;
628 size_t nn;
629
630 /* WB1 and WB2 */
631 if(it->n == 0 || it->n == it->ns)
632 return 1;
633 /* WB3 */
634 if(it->s[it->n-1] == 0x000D && it->s[it->n] == 0x000A)
635 return 0;
fb4c61da
RK
636 /* WB3a */
637 if(utf32__iterator_word_break(it, it->s[it->n-1]) == unicode_Word_Break_Newline
638 || it->s[it->n-1] == 0x000D
639 || it->s[it->n-1] == 0x000A)
640 return 1;
641 /* WB3b */
642 if(utf32__iterator_word_break(it, it->s[it->n]) == unicode_Word_Break_Newline
643 || it->s[it->n] == 0x000D
644 || it->s[it->n] == 0x000A)
645 return 1;
092f426f
RK
646 /* WB4 */
647 /* (!Sep) x (Extend|Format) as in UAX #29 s6.2 */
648 if(utf32__sentence_break(it->s[it->n-1]) != unicode_Sentence_Break_Sep
c85b7022 649 && utf32__boundary_ignorable(utf32__iterator_word_break(it, it->s[it->n])))
092f426f
RK
650 return 0;
651 /* Gather the property values we'll need for the rest of the test taking the
652 * s6.2 changes into account */
653 /* First we look at the code points after the proposed boundary */
654 nn = it->n; /* <it->ns */
c85b7022 655 after = utf32__iterator_word_break(it, it->s[nn++]);
092f426f
RK
656 if(!utf32__boundary_ignorable(after)) {
657 /* X (Extend|Format)* -> X */
658 while(nn < it->ns
c85b7022
RK
659 && utf32__boundary_ignorable(utf32__iterator_word_break(it,
660 it->s[nn])))
092f426f
RK
661 ++nn;
662 }
663 /* It's possible now that nn=ns */
664 if(nn < it->ns)
c85b7022 665 twoafter = utf32__iterator_word_break(it, it->s[nn]);
092f426f
RK
666 else
667 twoafter = unicode_Word_Break_Other;
668
669 /* We've already recorded the non-ignorable code points before the proposed
670 * boundary */
c85b7022
RK
671 before = utf32__iterator_word_break(it, it->last[1]);
672 twobefore = utf32__iterator_word_break(it, it->last[0]);
092f426f
RK
673
674 /* WB5 */
675 if(before == unicode_Word_Break_ALetter
676 && after == unicode_Word_Break_ALetter)
677 return 0;
678 /* WB6 */
679 if(before == unicode_Word_Break_ALetter
fb4c61da
RK
680 && (after == unicode_Word_Break_MidLetter
681 || after == unicode_Word_Break_MidNumLet)
092f426f
RK
682 && twoafter == unicode_Word_Break_ALetter)
683 return 0;
684 /* WB7 */
685 if(twobefore == unicode_Word_Break_ALetter
fb4c61da
RK
686 && (before == unicode_Word_Break_MidLetter
687 || before == unicode_Word_Break_MidNumLet)
092f426f
RK
688 && after == unicode_Word_Break_ALetter)
689 return 0;
c85b7022 690 /* WB8 */
092f426f
RK
691 if(before == unicode_Word_Break_Numeric
692 && after == unicode_Word_Break_Numeric)
693 return 0;
694 /* WB9 */
695 if(before == unicode_Word_Break_ALetter
696 && after == unicode_Word_Break_Numeric)
697 return 0;
698 /* WB10 */
699 if(before == unicode_Word_Break_Numeric
700 && after == unicode_Word_Break_ALetter)
701 return 0;
702 /* WB11 */
703 if(twobefore == unicode_Word_Break_Numeric
fb4c61da
RK
704 && (before == unicode_Word_Break_MidNum
705 || before == unicode_Word_Break_MidNumLet)
092f426f
RK
706 && after == unicode_Word_Break_Numeric)
707 return 0;
708 /* WB12 */
709 if(before == unicode_Word_Break_Numeric
fb4c61da
RK
710 && (after == unicode_Word_Break_MidNum
711 || after == unicode_Word_Break_MidNumLet)
092f426f
RK
712 && twoafter == unicode_Word_Break_Numeric)
713 return 0;
714 /* WB13 */
715 if(before == unicode_Word_Break_Katakana
716 && after == unicode_Word_Break_Katakana)
717 return 0;
718 /* WB13a */
719 if((before == unicode_Word_Break_ALetter
720 || before == unicode_Word_Break_Numeric
721 || before == unicode_Word_Break_Katakana
722 || before == unicode_Word_Break_ExtendNumLet)
723 && after == unicode_Word_Break_ExtendNumLet)
724 return 0;
725 /* WB13b */
726 if(before == unicode_Word_Break_ExtendNumLet
727 && (after == unicode_Word_Break_ALetter
728 || after == unicode_Word_Break_Numeric
729 || after == unicode_Word_Break_Katakana))
730 return 0;
731 /* WB14 */
732 return 1;
733}
734
e5a5a138
RK
735/*@}*/
736/** @defgroup utf32 Functions that operate on UTF-32 strings */
737/*@{*/
738
739/** @brief Return the length of a 0-terminated UTF-32 string
740 * @param s Pointer to 0-terminated string
741 * @return Length of string in code points (excluding terminator)
742 *
56fd389c 743 * Unlike the conversion functions no validity checking is done on the string.
e5a5a138
RK
744 */
745size_t utf32_len(const uint32_t *s) {
746 const uint32_t *t = s;
747
748 while(*t)
749 ++t;
750 return (size_t)(t - s);
751}
752
e5a5a138
RK
753/** @brief Stably sort [s,s+ns) into descending order of combining class
754 * @param s Start of array
755 * @param ns Number of elements, must be at least 1
756 * @param buffer Buffer of at least @p ns elements
757 */
758static void utf32__sort_ccc(uint32_t *s, size_t ns, uint32_t *buffer) {
759 uint32_t *a, *b, *bp;
760 size_t na, nb;
761
762 switch(ns) {
763 case 1: /* 1-element array is always sorted */
764 return;
765 case 2: /* 2-element arrays are trivial to sort */
766 if(utf32__combining_class(s[0]) > utf32__combining_class(s[1])) {
767 uint32_t tmp = s[0];
768 s[0] = s[1];
769 s[1] = tmp;
770 }
771 return;
772 default:
773 /* Partition the array */
774 na = ns / 2;
775 nb = ns - na;
776 a = s;
777 b = s + na;
778 /* Sort the two halves of the array */
779 utf32__sort_ccc(a, na, buffer);
780 utf32__sort_ccc(b, nb, buffer);
781 /* Merge them back into one, via the buffer */
782 bp = buffer;
783 while(na > 0 && nb > 0) {
16506c9d 784 /* We want ascending order of combining class (hence <)
e5a5a138
RK
785 * and we want stability within combining classes (hence <=)
786 */
787 if(utf32__combining_class(*a) <= utf32__combining_class(*b)) {
788 *bp++ = *a++;
789 --na;
790 } else {
791 *bp++ = *b++;
792 --nb;
793 }
794 }
795 while(na > 0) {
796 *bp++ = *a++;
797 --na;
798 }
799 while(nb > 0) {
800 *bp++ = *b++;
801 --nb;
802 }
803 memcpy(s, buffer, ns * sizeof(uint32_t));
804 return;
805 }
806}
807
808/** @brief Put combining characters into canonical order
809 * @param s Pointer to UTF-32 string
810 * @param ns Length of @p s
f98fcddb 811 * @return 0 on success, non-0 on error
e5a5a138 812 *
56fd389c
RK
813 * @p s is modified in-place. See Unicode 5.0 s3.11 for details of the
814 * ordering.
e5a5a138 815 *
56fd389c 816 * Currently we only support a maximum of 1024 combining characters after each
f98fcddb 817 * base character. If this limit is exceeded then a non-0 value is returned.
e5a5a138
RK
818 */
819static int utf32__canonical_ordering(uint32_t *s, size_t ns) {
820 size_t nc;
821 uint32_t buffer[1024];
822
823 /* The ordering amounts to a stable sort of each contiguous group of
824 * characters with non-0 combining class. */
825 while(ns > 0) {
826 /* Skip non-combining characters */
827 if(utf32__combining_class(*s) == 0) {
828 ++s;
829 --ns;
830 continue;
831 }
832 /* We must now have at least one combining character; see how many
833 * there are */
834 for(nc = 1; nc < ns && utf32__combining_class(s[nc]) != 0; ++nc)
835 ;
836 if(nc > 1024)
837 return -1;
838 /* Sort the array */
839 utf32__sort_ccc(s, nc, buffer);
840 s += nc;
841 ns -= nc;
842 }
843 return 0;
844}
845
846/* Magic numbers from UAX #15 s16 */
847#define SBase 0xAC00
848#define LBase 0x1100
849#define VBase 0x1161
850#define TBase 0x11A7
851#define LCount 19
852#define VCount 21
853#define TCount 28
854#define NCount (VCount * TCount)
855#define SCount (LCount * NCount)
856
857/** @brief Guts of the decomposition lookup functions */
858#define utf32__decompose_one_generic(WHICH) do { \
f98fcddb 859 const uint32_t *dc = utf32__decomposition_##WHICH(c); \
e5a5a138
RK
860 if(dc) { \
861 /* Found a canonical decomposition in the table */ \
862 while(*dc) \
863 utf32__decompose_one_##WHICH(d, *dc++); \
864 } else if(c >= SBase && c < SBase + SCount) { \
865 /* Mechanically decomposable Hangul syllable (UAX #15 s16) */ \
866 const uint32_t SIndex = c - SBase; \
867 const uint32_t L = LBase + SIndex / NCount; \
868 const uint32_t V = VBase + (SIndex % NCount) / TCount; \
869 const uint32_t T = TBase + SIndex % TCount; \
870 dynstr_ucs4_append(d, L); \
871 dynstr_ucs4_append(d, V); \
872 if(T != TBase) \
873 dynstr_ucs4_append(d, T); \
874 } else \
875 /* Equal to own canonical decomposition */ \
876 dynstr_ucs4_append(d, c); \
877} while(0)
878
879/** @brief Recursively compute the canonical decomposition of @p c
880 * @param d Dynamic string to store decomposition in
881 * @param c Code point to decompose (must be a valid!)
f98fcddb 882 * @return 0 on success, non-0 on error
e5a5a138
RK
883 */
884static void utf32__decompose_one_canon(struct dynstr_ucs4 *d, uint32_t c) {
885 utf32__decompose_one_generic(canon);
886}
887
888/** @brief Recursively compute the compatibility decomposition of @p c
889 * @param d Dynamic string to store decomposition in
890 * @param c Code point to decompose (must be a valid!)
f98fcddb 891 * @return 0 on success, non-0 on error
e5a5a138
RK
892 */
893static void utf32__decompose_one_compat(struct dynstr_ucs4 *d, uint32_t c) {
894 utf32__decompose_one_generic(compat);
895}
896
16506c9d
RK
897/** @brief Magic utf32__compositions() return value for Hangul Choseong */
898static const uint32_t utf32__hangul_L[1];
899
900/** @brief Return the list of compositions that @p c starts
901 * @param c Starter code point
902 * @return Composition list or NULL
903 *
904 * For Hangul leading (Choseong) jamo we return the special value
905 * utf32__hangul_L. These code points are not listed as the targets of
906 * canonical decompositions (make-unidata checks) so there is no confusion with
907 * real decompositions here.
908 */
909static const uint32_t *utf32__compositions(uint32_t c) {
910 const uint32_t *compositions = utf32__unidata(c)->composed;
911
912 if(compositions)
913 return compositions;
914 /* Special-casing for Hangul */
915 switch(utf32__grapheme_break(c)) {
916 default:
917 return 0;
918 case unicode_Grapheme_Break_L:
919 return utf32__hangul_L;
920 }
921}
922
923/** @brief Composition step
924 * @param s Start of string
925 * @param ns Length of string
926 * @return New length of string
927 *
928 * This is called from utf32__decompose_generic() to compose the result string
929 * in place.
930 */
931static size_t utf32__compose(uint32_t *s, size_t ns) {
932 const uint32_t *compositions;
933 uint32_t *start = s, *t = s, *tt, cc;
934
935 while(ns > 0) {
936 uint32_t starter = *s++;
937 int block_starters = 0;
938 --ns;
939 /* We don't attempt to compose the following things:
940 * - final characters whatever kind they are
941 * - non-starter characters
942 * - starters that don't take part in a canonical decomposition mapping
943 */
944 if(ns == 0
945 || utf32__combining_class(starter)
946 || !(compositions = utf32__compositions(starter))) {
947 *t++ = starter;
948 continue;
949 }
950 if(compositions != utf32__hangul_L) {
951 /* Where we'll put the eventual starter */
952 tt = t++;
953 do {
954 /* See if we can find composition of starter+*s */
955 const uint32_t cchar = *s, *cp = compositions;
956 while((cc = *cp++)) {
957 const uint32_t *decomp = utf32__decomposition_canon(cc);
958 /* We know decomp[0] == starter */
959 if(decomp[1] == cchar)
960 break;
961 }
962 if(cc) {
963 /* Found a composition: cc decomposes to starter,*s */
964 starter = cc;
965 compositions = utf32__compositions(starter);
966 ++s;
967 --ns;
968 } else {
969 /* No composition found. */
970 const int class = utf32__combining_class(*s);
971 if(class) {
972 /* Transfer the uncomposable combining character to the output */
973 *t++ = *s++;
974 --ns;
975 /* All the combining characters of the same class of the
976 * uncomposable character are blocked by it, but there may be
977 * others of higher class later. We eat the uncomposable and
978 * blocked characters and go back round the loop for that higher
979 * class. */
980 while(ns > 0 && utf32__combining_class(*s) == class) {
981 *t++ = *s++;
982 --ns;
983 }
984 /* Block any subsequent starters */
985 block_starters = 1;
986 } else {
987 /* The uncombinable character is itself a starter, so we don't
988 * transfer it to the output but instead go back round the main
989 * loop. */
990 break;
991 }
992 }
993 /* Keep going while there are still characters and the starter takes
994 * part in some composition */
995 } while(ns > 0 && compositions
996 && (!block_starters || utf32__combining_class(*s)));
997 /* Store any remaining combining characters */
998 while(ns > 0 && utf32__combining_class(*s)) {
999 *t++ = *s++;
1000 --ns;
1001 }
1002 /* Store the resulting starter */
1003 *tt = starter;
1004 } else {
1005 /* Special-casing for Hangul
1006 *
1007 * If there are combining characters between the L and the V then they
1008 * will block the V and so no composition happens. Similarly combining
1009 * characters between V and T will block the T and so we only get as far
1010 * as LV.
1011 */
1012 if(utf32__grapheme_break(*s) == unicode_Grapheme_Break_V) {
1013 const uint32_t V = *s++;
1014 const uint32_t LIndex = starter - LBase;
1015 const uint32_t VIndex = V - VBase;
1016 uint32_t TIndex;
1017 --ns;
1018 if(ns > 0
1019 && utf32__grapheme_break(*s) == unicode_Grapheme_Break_T) {
1020 /* We have an L V T sequence */
1021 const uint32_t T = *s++;
1022 TIndex = T - TBase;
1023 --ns;
1024 } else
1025 /* It's just L V */
1026 TIndex = 0;
1027 /* Compose to LVT or LV as appropriate */
1028 starter = (LIndex * VCount + VIndex) * TCount + TIndex + SBase;
1029 } /* else we only have L or LV and no V or T */
1030 *t++ = starter;
1031 /* There could be some combining characters that belong to the V or T.
1032 * These will be treated as non-starter characters at the top of the loop
1033 * and thuss transferred to the output. */
1034 }
1035 }
1036 return t - start;
1037}
1038
1039/** @brief Guts of the composition and decomposition functions
1040 * @param WHICH @c canon or @c compat to choose decomposition
1041 * @param COMPOSE @c 0 or @c 1 to compose
1042 */
1043#define utf32__decompose_generic(WHICH, COMPOSE) do { \
e5a5a138
RK
1044 struct dynstr_ucs4 d; \
1045 uint32_t c; \
1046 \
1047 dynstr_ucs4_init(&d); \
1048 while(ns) { \
1049 c = *s++; \
56fd389c 1050 if((c >= 0xD800 && c <= 0xDFFF) || c > 0x10FFFF) \
e5a5a138
RK
1051 goto error; \
1052 utf32__decompose_one_##WHICH(&d, c); \
1053 --ns; \
1054 } \
1055 if(utf32__canonical_ordering(d.vec, d.nvec)) \
1056 goto error; \
16506c9d
RK
1057 if(COMPOSE) \
1058 d.nvec = utf32__compose(d.vec, d.nvec); \
e5a5a138
RK
1059 dynstr_ucs4_terminate(&d); \
1060 if(ndp) \
1061 *ndp = d.nvec; \
1062 return d.vec; \
1063error: \
1064 xfree(d.vec); \
1065 return 0; \
1066} while(0)
1067
1068/** @brief Canonically decompose @p [s,s+ns)
1069 * @param s Pointer to string
1070 * @param ns Length of string
1071 * @param ndp Where to store length of result
f98fcddb 1072 * @return Pointer to result string, or NULL on error
e5a5a138 1073 *
16506c9d
RK
1074 * Computes NFD (Normalization Form D) of the string at @p s. This implies
1075 * performing all canonical decompositions and then normalizing the order of
1076 * combining characters.
e5a5a138 1077 *
56fd389c 1078 * Returns NULL if the string is not valid for either of the following reasons:
e5a5a138
RK
1079 * - it codes for a UTF-16 surrogate
1080 * - it codes for a value outside the unicode code space
16506c9d
RK
1081 *
1082 * See also:
1083 * - utf32_decompose_compat()
1084 * - utf32_compose_canon()
e5a5a138
RK
1085 */
1086uint32_t *utf32_decompose_canon(const uint32_t *s, size_t ns, size_t *ndp) {
16506c9d 1087 utf32__decompose_generic(canon, 0);
e5a5a138
RK
1088}
1089
1090/** @brief Compatibility decompose @p [s,s+ns)
1091 * @param s Pointer to string
1092 * @param ns Length of string
1093 * @param ndp Where to store length of result
f98fcddb 1094 * @return Pointer to result string, or NULL on error
e5a5a138 1095 *
16506c9d
RK
1096 * Computes NFKD (Normalization Form KD) of the string at @p s. This implies
1097 * performing all canonical and compatibility decompositions and then
1098 * normalizing the order of combining characters.
e5a5a138 1099 *
56fd389c 1100 * Returns NULL if the string is not valid for either of the following reasons:
e5a5a138
RK
1101 * - it codes for a UTF-16 surrogate
1102 * - it codes for a value outside the unicode code space
16506c9d
RK
1103 *
1104 * See also:
1105 * - utf32_decompose_canon()
1106 * - utf32_compose_compat()
e5a5a138
RK
1107 */
1108uint32_t *utf32_decompose_compat(const uint32_t *s, size_t ns, size_t *ndp) {
16506c9d
RK
1109 utf32__decompose_generic(compat, 0);
1110}
1111
1112/** @brief Canonically compose @p [s,s+ns)
1113 * @param s Pointer to string
1114 * @param ns Length of string
1115 * @param ndp Where to store length of result
1116 * @return Pointer to result string, or NULL on error
1117 *
1118 * Computes NFC (Normalization Form C) of the string at @p s. This implies
1119 * performing all canonical decompositions, normalizing the order of combining
1120 * characters and then composing all unblocked primary compositables.
1121 *
1122 * Returns NULL if the string is not valid for either of the following reasons:
1123 * - it codes for a UTF-16 surrogate
1124 * - it codes for a value outside the unicode code space
1125 *
1126 * See also:
1127 * - utf32_compose_compat()
1128 * - utf32_decompose_canon()
1129 */
1130uint32_t *utf32_compose_canon(const uint32_t *s, size_t ns, size_t *ndp) {
1131 utf32__decompose_generic(canon, 1);
1132}
1133
1134/** @brief Compatibility compose @p [s,s+ns)
1135 * @param s Pointer to string
1136 * @param ns Length of string
1137 * @param ndp Where to store length of result
1138 * @return Pointer to result string, or NULL on error
1139 *
1140 * Computes NFKC (Normalization Form KC) of the string at @p s. This implies
1141 * performing all canonical and compatibility decompositions, normalizing the
1142 * order of combining characters and then composing all unblocked primary
1143 * compositables.
1144 *
1145 * Returns NULL if the string is not valid for either of the following reasons:
1146 * - it codes for a UTF-16 surrogate
1147 * - it codes for a value outside the unicode code space
1148 *
1149 * See also:
1150 * - utf32_compose_canon()
1151 * - utf32_decompose_compat()
1152 */
1153uint32_t *utf32_compose_compat(const uint32_t *s, size_t ns, size_t *ndp) {
1154 utf32__decompose_generic(compat, 1);
e5a5a138
RK
1155}
1156
56fd389c
RK
1157/** @brief Single-character case-fold and decompose operation */
1158#define utf32__casefold_one(WHICH) do { \
bcf9ed7f 1159 const uint32_t *cf = utf32__unidata(c)->casefold; \
56fd389c
RK
1160 if(cf) { \
1161 /* Found a case-fold mapping in the table */ \
1162 while(*cf) \
1163 utf32__decompose_one_##WHICH(&d, *cf++); \
1164 } else \
1165 utf32__decompose_one_##WHICH(&d, c); \
1166} while(0)
e5a5a138
RK
1167
1168/** @brief Case-fold @p [s,s+ns)
1169 * @param s Pointer to string
1170 * @param ns Length of string
1171 * @param ndp Where to store length of result
f98fcddb 1172 * @return Pointer to result string, or NULL on error
e5a5a138
RK
1173 *
1174 * Case-fold the string at @p s according to full default case-folding rules
56fd389c 1175 * (s3.13) for caseless matching. The result will be in NFD.
e5a5a138 1176 *
56fd389c 1177 * Returns NULL if the string is not valid for either of the following reasons:
e5a5a138
RK
1178 * - it codes for a UTF-16 surrogate
1179 * - it codes for a value outside the unicode code space
1180 */
1181uint32_t *utf32_casefold_canon(const uint32_t *s, size_t ns, size_t *ndp) {
1182 struct dynstr_ucs4 d;
1183 uint32_t c;
1184 size_t n;
1185 uint32_t *ss = 0;
1186
1187 /* If the canonical decomposition of the string includes any combining
1188 * character that case-folds to a non-combining character then we must
1189 * normalize before we fold. In Unicode 5.0.0 this means 0345 COMBINING
1190 * GREEK YPOGEGRAMMENI in its decomposition and the various characters that
1191 * canonically decompose to it. */
bcf9ed7f
RK
1192 for(n = 0; n < ns; ++n)
1193 if(utf32__unidata(s[n])->flags & unicode_normalize_before_casefold)
e5a5a138 1194 break;
e5a5a138
RK
1195 if(n < ns) {
1196 /* We need a preliminary decomposition */
1197 if(!(ss = utf32_decompose_canon(s, ns, &ns)))
1198 return 0;
1199 s = ss;
1200 }
1201 dynstr_ucs4_init(&d);
1202 while(ns) {
1203 c = *s++;
56fd389c 1204 if((c >= 0xD800 && c <= 0xDFFF) || c > 0x10FFFF)
e5a5a138 1205 goto error;
56fd389c 1206 utf32__casefold_one(canon);
e5a5a138
RK
1207 --ns;
1208 }
1209 if(utf32__canonical_ordering(d.vec, d.nvec))
1210 goto error;
1211 dynstr_ucs4_terminate(&d);
1212 if(ndp)
1213 *ndp = d.nvec;
1214 return d.vec;
1215error:
1216 xfree(d.vec);
1217 xfree(ss);
1218 return 0;
1219}
1220
f98fcddb 1221/** @brief Compatibility case-fold @p [s,s+ns)
56fd389c
RK
1222 * @param s Pointer to string
1223 * @param ns Length of string
1224 * @param ndp Where to store length of result
f98fcddb 1225 * @return Pointer to result string, or NULL on error
56fd389c
RK
1226 *
1227 * Case-fold the string at @p s according to full default case-folding rules
1228 * (s3.13) for compatibility caseless matching. The result will be in NFKD.
1229 *
1230 * Returns NULL if the string is not valid for either of the following reasons:
1231 * - it codes for a UTF-16 surrogate
1232 * - it codes for a value outside the unicode code space
1233 */
1234uint32_t *utf32_casefold_compat(const uint32_t *s, size_t ns, size_t *ndp) {
1235 struct dynstr_ucs4 d;
1236 uint32_t c;
1237 size_t n;
1238 uint32_t *ss = 0;
1239
bcf9ed7f
RK
1240 for(n = 0; n < ns; ++n)
1241 if(utf32__unidata(s[n])->flags & unicode_normalize_before_casefold)
56fd389c 1242 break;
56fd389c
RK
1243 if(n < ns) {
1244 /* We need a preliminary _canonical_ decomposition */
1245 if(!(ss = utf32_decompose_canon(s, ns, &ns)))
1246 return 0;
1247 s = ss;
1248 }
1249 /* This computes NFKD(toCaseFold(s)) */
1250#define compat_casefold_middle() do { \
1251 dynstr_ucs4_init(&d); \
1252 while(ns) { \
1253 c = *s++; \
1254 if((c >= 0xD800 && c <= 0xDFFF) || c > 0x10FFFF) \
1255 goto error; \
1256 utf32__casefold_one(compat); \
1257 --ns; \
1258 } \
1259 if(utf32__canonical_ordering(d.vec, d.nvec)) \
1260 goto error; \
1261} while(0)
1262 /* Do the inner (NFKD o toCaseFold) */
1263 compat_casefold_middle();
1264 /* We can do away with the NFD'd copy of the input now */
1265 xfree(ss);
1266 s = ss = d.vec;
1267 ns = d.nvec;
1268 /* Do the outer (NFKD o toCaseFold) */
1269 compat_casefold_middle();
1270 /* That's all */
1271 dynstr_ucs4_terminate(&d);
1272 if(ndp)
1273 *ndp = d.nvec;
1274 return d.vec;
1275error:
1276 xfree(d.vec);
1277 xfree(ss);
1278 return 0;
1279}
1280
e5a5a138
RK
1281/** @brief Order a pair of UTF-32 strings
1282 * @param a First 0-terminated string
1283 * @param b Second 0-terminated string
1284 * @return -1, 0 or 1 for a less than, equal to or greater than b
1285 *
1286 * "Comparable to strcmp() at its best."
1287 */
1288int utf32_cmp(const uint32_t *a, const uint32_t *b) {
1289 while(*a && *b && *a == *b) {
1290 ++a;
1291 ++b;
1292 }
1293 return *a < *b ? -1 : (*a > *b ? 1 : 0);
1294}
1295
35b651f0
RK
1296/** @brief Identify a grapheme cluster boundary
1297 * @param s Start of string (must be NFD)
1298 * @param ns Length of string
1299 * @param n Index within string (in [0,ns].)
1300 * @return 1 at a grapheme cluster boundary, 0 otherwise
1301 *
1302 * This function identifies default grapheme cluster boundaries as described in
f98fcddb 1303 * UAX #29 s3. It returns non-0 if @p n points at the code point just after a
35b651f0
RK
1304 * grapheme cluster boundary (including the hypothetical code point just after
1305 * the end of the string).
f98fcddb
RK
1306 *
1307 * This function uses utf32_iterator_set() internally; see that function for
1308 * remarks on performance.
35b651f0 1309 */
1625e11a 1310int utf32_is_grapheme_boundary(const uint32_t *s, size_t ns, size_t n) {
092f426f 1311 struct utf32_iterator_data it[1];
35b651f0 1312
092f426f
RK
1313 utf32__iterator_init(it, s, ns, n);
1314 return utf32_iterator_grapheme_boundary(it);
0b7052da
RK
1315}
1316
1317/** @brief Identify a word boundary
1318 * @param s Start of string (must be NFD)
1319 * @param ns Length of string
1320 * @param n Index within string (in [0,ns].)
1321 * @return 1 at a word boundary, 0 otherwise
1322 *
1323 * This function identifies default word boundaries as described in UAX #29 s4.
f98fcddb 1324 * It returns non-0 if @p n points at the code point just after a word boundary
0b7052da 1325 * (including the hypothetical code point just after the end of the string).
f98fcddb
RK
1326 *
1327 * This function uses utf32_iterator_set() internally; see that function for
1328 * remarks on performance.
0b7052da
RK
1329 */
1330int utf32_is_word_boundary(const uint32_t *s, size_t ns, size_t n) {
092f426f 1331 struct utf32_iterator_data it[1];
0b7052da 1332
092f426f
RK
1333 utf32__iterator_init(it, s, ns, n);
1334 return utf32_iterator_word_boundary(it);
0b7052da
RK
1335}
1336
8818b7fc
RK
1337/** @brief Split [s,ns) into multiple words
1338 * @param s Pointer to start of string
1339 * @param ns Length of string
1340 * @param nwp Where to store word count, or NULL
c85b7022 1341 * @param wbreak Word_Break property tailor, or NULL
8818b7fc
RK
1342 * @return Pointer to array of pointers to words
1343 *
1344 * The returned array is terminated by a NULL pointer and individual
1345 * strings are 0-terminated.
1346 */
c85b7022
RK
1347uint32_t **utf32_word_split(const uint32_t *s, size_t ns, size_t *nwp,
1348 unicode_property_tailor *wbreak) {
8818b7fc
RK
1349 struct utf32_iterator_data it[1];
1350 size_t b1 = 0, b2 = 0 ,i;
1351 int isword;
1352 struct vector32 v32[1];
1353 uint32_t *w;
1354
1355 vector32_init(v32);
1356 utf32__iterator_init(it, s, ns, 0);
c85b7022 1357 it->word_break = wbreak;
8818b7fc
RK
1358 /* Work our way through the string stopping at each word break. */
1359 do {
1360 if(utf32_iterator_word_boundary(it)) {
1361 /* We've found a new boundary */
1362 b1 = b2;
1363 b2 = it->n;
1364 /*fprintf(stderr, "[%zu, %zu) is a candidate word\n", b1, b2);*/
1365 /* Inspect the characters between the boundary and form an opinion as to
1366 * whether they are a word or not */
1367 isword = 0;
1368 for(i = b1; i < b2; ++i) {
c85b7022 1369 switch(utf32__iterator_word_break(it, it->s[i])) {
8818b7fc
RK
1370 case unicode_Word_Break_ALetter:
1371 case unicode_Word_Break_Numeric:
1372 case unicode_Word_Break_Katakana:
1373 isword = 1;
1374 break;
1375 default:
1376 break;
1377 }
1378 }
1379 /* If it's a word add it to the list of results */
1380 if(isword) {
8e93ddd1
RK
1381 const size_t len = b2 - b1;
1382 w = xcalloc_noptr(len + 1, sizeof(uint32_t));
1383 memcpy(w, it->s + b1, len * sizeof (uint32_t));
1384 w[len] = 0;
8818b7fc
RK
1385 vector32_append(v32, w);
1386 }
1387 }
1388 } while(!utf32_iterator_advance(it, 1));
1389 vector32_terminate(v32);
1390 if(nwp)
1391 *nwp = v32->nvec;
1392 return v32->vec;
1393}
1394
e5a5a138 1395/*@}*/
349b7b74 1396/** @defgroup utf8 Functions that operate on UTF-8 strings */
e5a5a138
RK
1397/*@{*/
1398
1399/** @brief Wrapper to transform a UTF-8 string using the UTF-32 function */
1400#define utf8__transform(FN) do { \
1401 uint32_t *to32 = 0, *decomp32 = 0; \
1402 size_t nto32, ndecomp32; \
1403 char *decomp8 = 0; \
1404 \
1405 if(!(to32 = utf8_to_utf32(s, ns, &nto32))) goto error; \
1406 if(!(decomp32 = FN(to32, nto32, &ndecomp32))) goto error; \
1407 decomp8 = utf32_to_utf8(decomp32, ndecomp32, ndp); \
1408error: \
1409 xfree(to32); \
1410 xfree(decomp32); \
1411 return decomp8; \
1412} while(0)
1413
1414/** @brief Canonically decompose @p [s,s+ns)
1415 * @param s Pointer to string
1416 * @param ns Length of string
1417 * @param ndp Where to store length of result
f98fcddb 1418 * @return Pointer to result string, or NULL on error
e5a5a138 1419 *
0ae60b83
RK
1420 * Computes NFD (Normalization Form D) of the string at @p s. This implies
1421 * performing all canonical decompositions and then normalizing the order of
1422 * combining characters.
e5a5a138
RK
1423 *
1424 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1425 * this might be.
1426 *
0ae60b83
RK
1427 * See also:
1428 * - utf32_decompose_canon().
1429 * - utf8_decompose_compat()
1430 * - utf8_compose_canon()
e5a5a138
RK
1431 */
1432char *utf8_decompose_canon(const char *s, size_t ns, size_t *ndp) {
1433 utf8__transform(utf32_decompose_canon);
1434}
1435
1436/** @brief Compatibility decompose @p [s,s+ns)
1437 * @param s Pointer to string
1438 * @param ns Length of string
1439 * @param ndp Where to store length of result
f98fcddb 1440 * @return Pointer to result string, or NULL on error
e5a5a138 1441 *
0ae60b83
RK
1442 * Computes NFKD (Normalization Form KD) of the string at @p s. This implies
1443 * performing all canonical and compatibility decompositions and then
1444 * normalizing the order of combining characters.
e5a5a138
RK
1445 *
1446 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1447 * this might be.
1448 *
0ae60b83
RK
1449 * See also:
1450 * - utf32_decompose_compat().
1451 * - utf8_decompose_canon()
1452 * - utf8_compose_compat()
e5a5a138
RK
1453 */
1454char *utf8_decompose_compat(const char *s, size_t ns, size_t *ndp) {
1455 utf8__transform(utf32_decompose_compat);
1456}
1457
0ae60b83
RK
1458/** @brief Canonically compose @p [s,s+ns)
1459 * @param s Pointer to string
1460 * @param ns Length of string
1461 * @param ndp Where to store length of result
1462 * @return Pointer to result string, or NULL on error
1463 *
1464 * Computes NFC (Normalization Form C) of the string at @p s. This implies
1465 * performing all canonical decompositions, normalizing the order of combining
1466 * characters and then composing all unblocked primary compositables.
1467 *
1468 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1469 * this might be.
1470 *
1471 * See also:
1472 * - utf32_compose_canon()
1473 * - utf8_compose_compat()
1474 * - utf8_decompose_canon()
1475 */
1476char *utf8_compose_canon(const char *s, size_t ns, size_t *ndp) {
1477 utf8__transform(utf32_compose_canon);
1478}
1479
1480/** @brief Compatibility compose @p [s,s+ns)
1481 * @param s Pointer to string
1482 * @param ns Length of string
1483 * @param ndp Where to store length of result
1484 * @return Pointer to result string, or NULL on error
1485 *
1486 * Computes NFKC (Normalization Form KC) of the string at @p s. This implies
1487 * performing all canonical and compatibility decompositions, normalizing the
1488 * order of combining characters and then composing all unblocked primary
1489 * compositables.
1490 *
1491 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1492 * this might be.
1493 *
1494 * See also:
1495 * - utf32_compose_compat()
1496 * - utf8_compose_canon()
1497 * - utf8_decompose_compat()
1498 */
1499char *utf8_compose_compat(const char *s, size_t ns, size_t *ndp) {
1500 utf8__transform(utf32_compose_compat);
1501}
1502
e5a5a138
RK
1503/** @brief Case-fold @p [s,s+ns)
1504 * @param s Pointer to string
1505 * @param ns Length of string
1506 * @param ndp Where to store length of result
f98fcddb 1507 * @return Pointer to result string, or NULL on error
e5a5a138
RK
1508 *
1509 * Case-fold the string at @p s according to full default case-folding rules
1510 * (s3.13). The result will be in NFD.
1511 *
1512 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1513 * this might be.
1514 */
1515char *utf8_casefold_canon(const char *s, size_t ns, size_t *ndp) {
1516 utf8__transform(utf32_casefold_canon);
1517}
1518
1519/** @brief Compatibility case-fold @p [s,s+ns)
1520 * @param s Pointer to string
1521 * @param ns Length of string
1522 * @param ndp Where to store length of result
f98fcddb 1523 * @return Pointer to result string, or NULL on error
e5a5a138
RK
1524 *
1525 * Case-fold the string at @p s according to full default case-folding rules
1526 * (s3.13). The result will be in NFKD.
1527 *
1528 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1529 * this might be.
1530 */
e5a5a138
RK
1531char *utf8_casefold_compat(const char *s, size_t ns, size_t *ndp) {
1532 utf8__transform(utf32_casefold_compat);
1533}
e5a5a138 1534
8818b7fc
RK
1535/** @brief Split [s,ns) into multiple words
1536 * @param s Pointer to start of string
1537 * @param ns Length of string
1538 * @param nwp Where to store word count, or NULL
c85b7022 1539 * @param wbreak Word_Break property tailor, or NULL
8818b7fc
RK
1540 * @return Pointer to array of pointers to words
1541 *
1542 * The returned array is terminated by a NULL pointer and individual
1543 * strings are 0-terminated.
1544 */
c85b7022
RK
1545char **utf8_word_split(const char *s, size_t ns, size_t *nwp,
1546 unicode_property_tailor *wbreak) {
8818b7fc
RK
1547 uint32_t *to32 = 0, **v32 = 0;
1548 size_t nto32, nv, n;
1549 char **v8 = 0, **ret = 0;
c85b7022 1550
8818b7fc 1551 if(!(to32 = utf8_to_utf32(s, ns, &nto32))) goto error;
c85b7022 1552 if(!(v32 = utf32_word_split(to32, nto32, &nv, wbreak))) goto error;
8818b7fc
RK
1553 v8 = xcalloc(sizeof (char *), nv + 1);
1554 for(n = 0; n < nv; ++n)
1555 if(!(v8[n] = utf32_to_utf8(v32[n], utf32_len(v32[n]), 0)))
1556 goto error;
1557 ret = v8;
1558 *nwp = nv;
1559 v8 = 0; /* don't free */
c85b7022 1560error:
8818b7fc
RK
1561 if(v8) {
1562 for(n = 0; n < nv; ++n)
1563 xfree(v8[n]);
1564 xfree(v8);
1565 }
1566 if(v32) {
1567 for(n = 0; n < nv; ++n)
1568 xfree(v32[n]);
1569 xfree(v32);
1570 }
1571 xfree(to32);
1572 return ret;
1573}
1574
1575
e5a5a138
RK
1576/*@}*/
1577
1578/*
1579Local Variables:
1580c-basic-offset:2
1581comment-column:40
1582fill-column:79
1583indent-tabs-mode:nil
1584End:
1585*/