chiark / gitweb /
don't be fooled by First/Last entries in UnicodeData.txt
[disorder] / lib / unicode.c
CommitLineData
e5a5a138
RK
1/*
2 * This file is part of DisOrder
3 * Copyright (C) 2007 Richard Kettlewell
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
18 * USA
19 */
20/** @file lib/unicode.c
21 * @brief Unicode support functions
22 *
23 * Here by UTF-8 and UTF-8 we mean the encoding forms of those names (not the
35b651f0
RK
24 * encoding schemes). The primary encoding form is UTF-32 but convenience
25 * wrappers using UTF-8 are provided for a number of functions.
e5a5a138
RK
26 *
27 * The idea is that all the strings that hit the database will be in a
28 * particular normalization form, and for the search and tags database
29 * in case-folded form, so they can be naively compared within the
30 * database code.
31 *
32 * As the code stands this guarantee is not well met!
33 */
34
35#include <config.h>
36#include "types.h"
37
38#include <string.h>
39#include <stdio.h> /* TODO */
40
41#include "mem.h"
42#include "vector.h"
43#include "unicode.h"
44#include "unidata.h"
45
46/** @defgroup utftransform Functions that transform between different Unicode encoding forms */
47/*@{*/
48
49/** @brief Convert UTF-32 to UTF-8
50 * @param s Source string
51 * @param ns Length of source string in code points
52 * @param ndp Where to store length of destination string (or NULL)
53 * @return Newly allocated destination string or NULL on error
54 *
56fd389c
RK
55 * If the UTF-32 is not valid then NULL is returned. A UTF-32 code point is
56 * invalid if:
e5a5a138
RK
57 * - it codes for a UTF-16 surrogate
58 * - it codes for a value outside the unicode code space
59 *
56fd389c
RK
60 * The return value is always 0-terminated. The value returned via @p *ndp
61 * does not include the terminator.
e5a5a138
RK
62 */
63char *utf32_to_utf8(const uint32_t *s, size_t ns, size_t *ndp) {
64 struct dynstr d;
65 uint32_t c;
66
67 dynstr_init(&d);
68 while(ns > 0) {
69 c = *s++;
70 if(c < 0x80)
71 dynstr_append(&d, c);
72 else if(c < 0x0800) {
73 dynstr_append(&d, 0xC0 | (c >> 6));
74 dynstr_append(&d, 0x80 | (c & 0x3F));
75 } else if(c < 0x10000) {
56fd389c 76 if(c >= 0xD800 && c <= 0xDFFF)
e5a5a138
RK
77 goto error;
78 dynstr_append(&d, 0xE0 | (c >> 12));
79 dynstr_append(&d, 0x80 | ((c >> 6) & 0x3F));
80 dynstr_append(&d, 0x80 | (c & 0x3F));
81 } else if(c < 0x110000) {
82 dynstr_append(&d, 0xF0 | (c >> 18));
83 dynstr_append(&d, 0x80 | ((c >> 12) & 0x3F));
84 dynstr_append(&d, 0x80 | ((c >> 6) & 0x3F));
85 dynstr_append(&d, 0x80 | (c & 0x3F));
86 } else
87 goto error;
88 --ns;
89 }
90 dynstr_terminate(&d);
91 if(ndp)
92 *ndp = d.nvec;
93 return d.vec;
94error:
95 xfree(d.vec);
96 return 0;
97}
98
99/** @brief Convert UTF-8 to UTF-32
100 * @param s Source string
101 * @param ns Length of source string in code points
102 * @param ndp Where to store length of destination string (or NULL)
103 * @return Newly allocated destination string or NULL
104 *
56fd389c
RK
105 * The return value is always 0-terminated. The value returned via @p *ndp
106 * does not include the terminator.
e5a5a138
RK
107 *
108 * If the UTF-8 is not valid then NULL is returned. A UTF-8 sequence
109 * for a code point is invalid if:
110 * - it is not the shortest possible sequence for the code point
111 * - it codes for a UTF-16 surrogate
112 * - it codes for a value outside the unicode code space
113 */
114uint32_t *utf8_to_utf32(const char *s, size_t ns, size_t *ndp) {
115 struct dynstr_ucs4 d;
116 uint32_t c32, c;
117 const uint8_t *ss = (const uint8_t *)s;
118
119 dynstr_ucs4_init(&d);
120 while(ns > 0) {
121 c = *ss++;
122 --ns;
56fd389c
RK
123 /* Acceptable UTF-8 is that which codes for Unicode Scalar Values
124 * (Unicode 5.0.0 s3.9 D76)
e5a5a138
RK
125 *
126 * 0xxxxxxx
127 * 7 data bits gives 0x00 - 0x7F and all are acceptable
128 *
129 * 110xxxxx 10xxxxxx
130 * 11 data bits gives 0x0000 - 0x07FF but only 0x0080 - 0x07FF acceptable
131 *
132 * 1110xxxx 10xxxxxx 10xxxxxx
133 * 16 data bits gives 0x0000 - 0xFFFF but only 0x0800 - 0xFFFF acceptable
134 * (and UTF-16 surrogates are not acceptable)
135 *
136 * 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
137 * 21 data bits gives 0x00000000 - 0x001FFFFF
138 * but only 0x00010000 - 0x0010FFFF are acceptable
139 *
56fd389c
RK
140 * It is NOT always the case that the data bits in the first byte are
141 * always non-0 for the acceptable values, so we do a separate check after
142 * decoding.
e5a5a138
RK
143 */
144 if(c < 0x80)
145 c32 = c;
146 else if(c <= 0xDF) {
147 if(ns < 1) goto error;
148 c32 = c & 0x1F;
149 c = *ss++;
150 if((c & 0xC0) != 0x80) goto error;
151 c32 = (c32 << 6) | (c & 0x3F);
152 if(c32 < 0x80) goto error;
153 } else if(c <= 0xEF) {
154 if(ns < 2) goto error;
155 c32 = c & 0x0F;
156 c = *ss++;
157 if((c & 0xC0) != 0x80) goto error;
158 c32 = (c32 << 6) | (c & 0x3F);
159 c = *ss++;
160 if((c & 0xC0) != 0x80) goto error;
161 c32 = (c32 << 6) | (c & 0x3F);
162 if(c32 < 0x0800 || (c32 >= 0xD800 && c32 <= 0xDFFF)) goto error;
163 } else if(c <= 0xF7) {
164 if(ns < 3) goto error;
165 c32 = c & 0x07;
166 c = *ss++;
167 if((c & 0xC0) != 0x80) goto error;
168 c32 = (c32 << 6) | (c & 0x3F);
169 c = *ss++;
170 if((c & 0xC0) != 0x80) goto error;
171 c32 = (c32 << 6) | (c & 0x3F);
172 c = *ss++;
173 if((c & 0xC0) != 0x80) goto error;
174 c32 = (c32 << 6) | (c & 0x3F);
175 if(c32 < 0x00010000 || c32 > 0x0010FFFF) goto error;
176 } else
177 goto error;
178 dynstr_ucs4_append(&d, c32);
179 }
180 dynstr_ucs4_terminate(&d);
181 if(ndp)
182 *ndp = d.nvec;
183 return d.vec;
184error:
185 xfree(d.vec);
186 return 0;
187}
188
189/*@}*/
190/** @defgroup utf32 Functions that operate on UTF-32 strings */
191/*@{*/
192
193/** @brief Return the length of a 0-terminated UTF-32 string
194 * @param s Pointer to 0-terminated string
195 * @return Length of string in code points (excluding terminator)
196 *
56fd389c 197 * Unlike the conversion functions no validity checking is done on the string.
e5a5a138
RK
198 */
199size_t utf32_len(const uint32_t *s) {
200 const uint32_t *t = s;
201
202 while(*t)
203 ++t;
204 return (size_t)(t - s);
205}
206
207/** @brief Return the combining class of @p c
208 * @param c Code point
209 * @return Combining class of @p c
210 */
211static inline int utf32__combining_class(uint32_t c) {
212 if(c < UNICODE_NCHARS)
213 return unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].ccc;
214 return 0;
215}
216
217/** @brief Stably sort [s,s+ns) into descending order of combining class
218 * @param s Start of array
219 * @param ns Number of elements, must be at least 1
220 * @param buffer Buffer of at least @p ns elements
221 */
222static void utf32__sort_ccc(uint32_t *s, size_t ns, uint32_t *buffer) {
223 uint32_t *a, *b, *bp;
224 size_t na, nb;
225
226 switch(ns) {
227 case 1: /* 1-element array is always sorted */
228 return;
229 case 2: /* 2-element arrays are trivial to sort */
230 if(utf32__combining_class(s[0]) > utf32__combining_class(s[1])) {
231 uint32_t tmp = s[0];
232 s[0] = s[1];
233 s[1] = tmp;
234 }
235 return;
236 default:
237 /* Partition the array */
238 na = ns / 2;
239 nb = ns - na;
240 a = s;
241 b = s + na;
242 /* Sort the two halves of the array */
243 utf32__sort_ccc(a, na, buffer);
244 utf32__sort_ccc(b, nb, buffer);
245 /* Merge them back into one, via the buffer */
246 bp = buffer;
247 while(na > 0 && nb > 0) {
248 /* We want descending order of combining class (hence <)
249 * and we want stability within combining classes (hence <=)
250 */
251 if(utf32__combining_class(*a) <= utf32__combining_class(*b)) {
252 *bp++ = *a++;
253 --na;
254 } else {
255 *bp++ = *b++;
256 --nb;
257 }
258 }
259 while(na > 0) {
260 *bp++ = *a++;
261 --na;
262 }
263 while(nb > 0) {
264 *bp++ = *b++;
265 --nb;
266 }
267 memcpy(s, buffer, ns * sizeof(uint32_t));
268 return;
269 }
270}
271
272/** @brief Put combining characters into canonical order
273 * @param s Pointer to UTF-32 string
274 * @param ns Length of @p s
275 * @return 0 on success, -1 on error
276 *
56fd389c
RK
277 * @p s is modified in-place. See Unicode 5.0 s3.11 for details of the
278 * ordering.
e5a5a138 279 *
56fd389c
RK
280 * Currently we only support a maximum of 1024 combining characters after each
281 * base character. If this limit is exceeded then -1 is returned.
e5a5a138
RK
282 */
283static int utf32__canonical_ordering(uint32_t *s, size_t ns) {
284 size_t nc;
285 uint32_t buffer[1024];
286
287 /* The ordering amounts to a stable sort of each contiguous group of
288 * characters with non-0 combining class. */
289 while(ns > 0) {
290 /* Skip non-combining characters */
291 if(utf32__combining_class(*s) == 0) {
292 ++s;
293 --ns;
294 continue;
295 }
296 /* We must now have at least one combining character; see how many
297 * there are */
298 for(nc = 1; nc < ns && utf32__combining_class(s[nc]) != 0; ++nc)
299 ;
300 if(nc > 1024)
301 return -1;
302 /* Sort the array */
303 utf32__sort_ccc(s, nc, buffer);
304 s += nc;
305 ns -= nc;
306 }
307 return 0;
308}
309
310/* Magic numbers from UAX #15 s16 */
311#define SBase 0xAC00
312#define LBase 0x1100
313#define VBase 0x1161
314#define TBase 0x11A7
315#define LCount 19
316#define VCount 21
317#define TCount 28
318#define NCount (VCount * TCount)
319#define SCount (LCount * NCount)
320
321/** @brief Guts of the decomposition lookup functions */
322#define utf32__decompose_one_generic(WHICH) do { \
323 const uint32_t *dc = \
324 (c < UNICODE_NCHARS \
325 ? unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].WHICH \
326 : 0); \
327 if(dc) { \
328 /* Found a canonical decomposition in the table */ \
329 while(*dc) \
330 utf32__decompose_one_##WHICH(d, *dc++); \
331 } else if(c >= SBase && c < SBase + SCount) { \
332 /* Mechanically decomposable Hangul syllable (UAX #15 s16) */ \
333 const uint32_t SIndex = c - SBase; \
334 const uint32_t L = LBase + SIndex / NCount; \
335 const uint32_t V = VBase + (SIndex % NCount) / TCount; \
336 const uint32_t T = TBase + SIndex % TCount; \
337 dynstr_ucs4_append(d, L); \
338 dynstr_ucs4_append(d, V); \
339 if(T != TBase) \
340 dynstr_ucs4_append(d, T); \
341 } else \
342 /* Equal to own canonical decomposition */ \
343 dynstr_ucs4_append(d, c); \
344} while(0)
345
346/** @brief Recursively compute the canonical decomposition of @p c
347 * @param d Dynamic string to store decomposition in
348 * @param c Code point to decompose (must be a valid!)
349 * @return 0 on success, -1 on error
350 */
351static void utf32__decompose_one_canon(struct dynstr_ucs4 *d, uint32_t c) {
352 utf32__decompose_one_generic(canon);
353}
354
355/** @brief Recursively compute the compatibility decomposition of @p c
356 * @param d Dynamic string to store decomposition in
357 * @param c Code point to decompose (must be a valid!)
358 * @return 0 on success, -1 on error
359 */
360static void utf32__decompose_one_compat(struct dynstr_ucs4 *d, uint32_t c) {
361 utf32__decompose_one_generic(compat);
362}
363
364/** @brief Guts of the decomposition functions */
365#define utf32__decompose_generic(WHICH) do { \
366 struct dynstr_ucs4 d; \
367 uint32_t c; \
368 \
369 dynstr_ucs4_init(&d); \
370 while(ns) { \
371 c = *s++; \
56fd389c 372 if((c >= 0xD800 && c <= 0xDFFF) || c > 0x10FFFF) \
e5a5a138
RK
373 goto error; \
374 utf32__decompose_one_##WHICH(&d, c); \
375 --ns; \
376 } \
377 if(utf32__canonical_ordering(d.vec, d.nvec)) \
378 goto error; \
379 dynstr_ucs4_terminate(&d); \
380 if(ndp) \
381 *ndp = d.nvec; \
382 return d.vec; \
383error: \
384 xfree(d.vec); \
385 return 0; \
386} while(0)
387
388/** @brief Canonically decompose @p [s,s+ns)
389 * @param s Pointer to string
390 * @param ns Length of string
391 * @param ndp Where to store length of result
392 * @return Pointer to result string, or NULL
393 *
394 * Computes the canonical decomposition of a string and stably sorts combining
395 * characters into canonical order. The result is in Normalization Form D and
396 * (at the time of writing!) passes the NFD tests defined in Unicode 5.0's
397 * NormalizationTest.txt.
398 *
56fd389c 399 * Returns NULL if the string is not valid for either of the following reasons:
e5a5a138
RK
400 * - it codes for a UTF-16 surrogate
401 * - it codes for a value outside the unicode code space
402 */
403uint32_t *utf32_decompose_canon(const uint32_t *s, size_t ns, size_t *ndp) {
404 utf32__decompose_generic(canon);
405}
406
407/** @brief Compatibility decompose @p [s,s+ns)
408 * @param s Pointer to string
409 * @param ns Length of string
410 * @param ndp Where to store length of result
411 * @return Pointer to result string, or NULL
412 *
413 * Computes the compatibility decomposition of a string and stably sorts
414 * combining characters into canonical order. The result is in Normalization
415 * Form KD and (at the time of writing!) passes the NFKD tests defined in
416 * Unicode 5.0's NormalizationTest.txt.
417 *
56fd389c 418 * Returns NULL if the string is not valid for either of the following reasons:
e5a5a138
RK
419 * - it codes for a UTF-16 surrogate
420 * - it codes for a value outside the unicode code space
421 */
422uint32_t *utf32_decompose_compat(const uint32_t *s, size_t ns, size_t *ndp) {
423 utf32__decompose_generic(compat);
424}
425
56fd389c
RK
426/** @brief Single-character case-fold and decompose operation */
427#define utf32__casefold_one(WHICH) do { \
428 const uint32_t *cf = \
429 (c < UNICODE_NCHARS \
430 ? unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].casefold \
431 : 0); \
432 if(cf) { \
433 /* Found a case-fold mapping in the table */ \
434 while(*cf) \
435 utf32__decompose_one_##WHICH(&d, *cf++); \
436 } else \
437 utf32__decompose_one_##WHICH(&d, c); \
438} while(0)
e5a5a138
RK
439
440/** @brief Case-fold @p [s,s+ns)
441 * @param s Pointer to string
442 * @param ns Length of string
443 * @param ndp Where to store length of result
444 * @return Pointer to result string, or NULL
445 *
446 * Case-fold the string at @p s according to full default case-folding rules
56fd389c 447 * (s3.13) for caseless matching. The result will be in NFD.
e5a5a138 448 *
56fd389c 449 * Returns NULL if the string is not valid for either of the following reasons:
e5a5a138
RK
450 * - it codes for a UTF-16 surrogate
451 * - it codes for a value outside the unicode code space
452 */
453uint32_t *utf32_casefold_canon(const uint32_t *s, size_t ns, size_t *ndp) {
454 struct dynstr_ucs4 d;
455 uint32_t c;
456 size_t n;
457 uint32_t *ss = 0;
458
459 /* If the canonical decomposition of the string includes any combining
460 * character that case-folds to a non-combining character then we must
461 * normalize before we fold. In Unicode 5.0.0 this means 0345 COMBINING
462 * GREEK YPOGEGRAMMENI in its decomposition and the various characters that
463 * canonically decompose to it. */
464 for(n = 0; n < ns; ++n) {
465 c = s[n];
466 if(c < UNICODE_NCHARS
467 && (unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].flags
468 & unicode_normalize_before_casefold))
469 break;
470 }
471 if(n < ns) {
472 /* We need a preliminary decomposition */
473 if(!(ss = utf32_decompose_canon(s, ns, &ns)))
474 return 0;
475 s = ss;
476 }
477 dynstr_ucs4_init(&d);
478 while(ns) {
479 c = *s++;
56fd389c 480 if((c >= 0xD800 && c <= 0xDFFF) || c > 0x10FFFF)
e5a5a138 481 goto error;
56fd389c 482 utf32__casefold_one(canon);
e5a5a138
RK
483 --ns;
484 }
485 if(utf32__canonical_ordering(d.vec, d.nvec))
486 goto error;
487 dynstr_ucs4_terminate(&d);
488 if(ndp)
489 *ndp = d.nvec;
490 return d.vec;
491error:
492 xfree(d.vec);
493 xfree(ss);
494 return 0;
495}
496
56fd389c
RK
497/** @brief Compatibilit case-fold @p [s,s+ns)
498 * @param s Pointer to string
499 * @param ns Length of string
500 * @param ndp Where to store length of result
501 * @return Pointer to result string, or NULL
502 *
503 * Case-fold the string at @p s according to full default case-folding rules
504 * (s3.13) for compatibility caseless matching. The result will be in NFKD.
505 *
506 * Returns NULL if the string is not valid for either of the following reasons:
507 * - it codes for a UTF-16 surrogate
508 * - it codes for a value outside the unicode code space
509 */
510uint32_t *utf32_casefold_compat(const uint32_t *s, size_t ns, size_t *ndp) {
511 struct dynstr_ucs4 d;
512 uint32_t c;
513 size_t n;
514 uint32_t *ss = 0;
515
516 for(n = 0; n < ns; ++n) {
517 c = s[n];
518 if(c < UNICODE_NCHARS
519 && (unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].flags
520 & unicode_normalize_before_casefold))
521 break;
522 }
523 if(n < ns) {
524 /* We need a preliminary _canonical_ decomposition */
525 if(!(ss = utf32_decompose_canon(s, ns, &ns)))
526 return 0;
527 s = ss;
528 }
529 /* This computes NFKD(toCaseFold(s)) */
530#define compat_casefold_middle() do { \
531 dynstr_ucs4_init(&d); \
532 while(ns) { \
533 c = *s++; \
534 if((c >= 0xD800 && c <= 0xDFFF) || c > 0x10FFFF) \
535 goto error; \
536 utf32__casefold_one(compat); \
537 --ns; \
538 } \
539 if(utf32__canonical_ordering(d.vec, d.nvec)) \
540 goto error; \
541} while(0)
542 /* Do the inner (NFKD o toCaseFold) */
543 compat_casefold_middle();
544 /* We can do away with the NFD'd copy of the input now */
545 xfree(ss);
546 s = ss = d.vec;
547 ns = d.nvec;
548 /* Do the outer (NFKD o toCaseFold) */
549 compat_casefold_middle();
550 /* That's all */
551 dynstr_ucs4_terminate(&d);
552 if(ndp)
553 *ndp = d.nvec;
554 return d.vec;
555error:
556 xfree(d.vec);
557 xfree(ss);
558 return 0;
559}
560
e5a5a138
RK
561/** @brief Order a pair of UTF-32 strings
562 * @param a First 0-terminated string
563 * @param b Second 0-terminated string
564 * @return -1, 0 or 1 for a less than, equal to or greater than b
565 *
566 * "Comparable to strcmp() at its best."
567 */
568int utf32_cmp(const uint32_t *a, const uint32_t *b) {
569 while(*a && *b && *a == *b) {
570 ++a;
571 ++b;
572 }
573 return *a < *b ? -1 : (*a > *b ? 1 : 0);
574}
575
35b651f0
RK
576/** @brief Return the General_Category value for @p c
577 * @param Code point
578 * @return General_Category property value
579 */
14523635 580static inline enum unicode_General_Category utf32__general_category(uint32_t c) {
35b651f0
RK
581 if(c < UNICODE_NCHARS) {
582 const struct unidata *const ud = &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
14523635 583 return ud->general_category;
35b651f0 584 } else
14523635 585 return unicode_General_Category_Cn;
35b651f0
RK
586}
587
588/** @brief Check Grapheme_Cluster_Break property
589 * @param c Code point
590 * @return 0 if it is as described, 1 otherwise
591 */
592static int utf32__is_control_or_cr_or_lf(uint32_t c) {
593 switch(utf32__general_category(c)) {
594 default:
595 return 0;
14523635
RK
596 case unicode_General_Category_Zl:
597 case unicode_General_Category_Zp:
598 case unicode_General_Category_Cc:
35b651f0 599 return 1;
14523635 600 case unicode_General_Category_Cf:
35b651f0
RK
601 if(c == 0x200C || c == 0x200D)
602 return 0;
603 return 1;
604 }
605}
606
607#define Hangul_Syllable_Type_NA 0
608#define Hangul_Syllable_Type_L 0x1100
609#define Hangul_Syllable_Type_V 0x1160
610#define Hangul_Syllable_Type_T 0x11A8
611#define Hangul_Syllable_Type_LV 0xAC00
612#define Hangul_Syllable_Type_LVT 0xAC01
613
614/** @brief Determine Hangul_Syllable_Type of @p c
615 * @param c Code point
616 * @return Equivalance class of @p c, or Hangul_Syllable_Type_NA
617 *
618 * If this is a Hangul character then a representative member of its
619 * equivalence class is returned. Otherwise Hangul_Syllable_Type_NA is
620 * returned.
621 */
622static uint32_t utf32__hangul_syllable_type(uint32_t c) {
623 /* Dispose of the bulk of the non-Hangul code points first */
624 if(c < 0x1100) return Hangul_Syllable_Type_NA;
625 if(c > 0x1200 && c < 0xAC00) return Hangul_Syllable_Type_NA;
626 if(c >= 0xD800) return Hangul_Syllable_Type_NA;
627 /* Now we pick out the assigned Hangul code points */
628 if((c >= 0x1100 && c <= 0x1159) || c == 0x115F) return Hangul_Syllable_Type_L;
629 if(c >= 0x1160 && c <= 0x11A2) return Hangul_Syllable_Type_V;
630 if(c >= 0x11A8 && c <= 0x11F9) return Hangul_Syllable_Type_T;
631 if(c >= 0xAC00 && c <= 0xD7A3) {
632 if(c % 28 == 16)
633 return Hangul_Syllable_Type_LV;
634 else
635 return Hangul_Syllable_Type_LVT;
636 }
637 return Hangul_Syllable_Type_NA;
638}
639
0b7052da
RK
640/** @brief Determine Word_Break property
641 * @param c Code point
642 * @return Word_Break property value of @p c
643 */
644static enum unicode_Word_Break utf32__word_break(uint32_t c) {
645 if(c < 0xAC00 || c > 0xD7A3) {
646 if(c < UNICODE_NCHARS)
647 return unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].word_break;
648 else
649 return unicode_Word_Break_Other;
650 } else
651 return unicode_Word_Break_ALetter;
652}
653
35b651f0
RK
654/** @brief Identify a grapheme cluster boundary
655 * @param s Start of string (must be NFD)
656 * @param ns Length of string
657 * @param n Index within string (in [0,ns].)
658 * @return 1 at a grapheme cluster boundary, 0 otherwise
659 *
660 * This function identifies default grapheme cluster boundaries as described in
661 * UAX #29 s3. It returns 1 if @p n points at the code point just after a
662 * grapheme cluster boundary (including the hypothetical code point just after
663 * the end of the string).
35b651f0
RK
664 */
665int utf32_is_gcb(const uint32_t *s, size_t ns, size_t n) {
666 uint32_t before, after;
667 uint32_t hbefore, hafter;
668 /* GB1 and GB2 */
669 if(n == 0 || n == ns)
670 return 1;
671 /* Now we know that s[n-1] and s[n] are safe to inspect */
672 /* GB3 */
673 before = s[n-1];
674 after = s[n];
675 if(before == 0x000D && after == 0x000A)
676 return 0;
677 /* GB4 and GB5 */
678 if(utf32__is_control_or_cr_or_lf(before)
679 || utf32__is_control_or_cr_or_lf(after))
680 return 1;
681 hbefore = utf32__hangul_syllable_type(before);
682 hafter = utf32__hangul_syllable_type(after);
683 /* GB6 */
684 if(hbefore == Hangul_Syllable_Type_L
e2452add
RK
685 && (hafter == Hangul_Syllable_Type_L
686 || hafter == Hangul_Syllable_Type_V
687 || hafter == Hangul_Syllable_Type_LV
688 || hafter == Hangul_Syllable_Type_LVT))
35b651f0
RK
689 return 0;
690 /* GB7 */
691 if((hbefore == Hangul_Syllable_Type_LV
692 || hbefore == Hangul_Syllable_Type_V)
693 && (hafter == Hangul_Syllable_Type_V
694 || hafter == Hangul_Syllable_Type_T))
695 return 0;
696 /* GB8 */
697 if((hbefore == Hangul_Syllable_Type_LVT
698 || hbefore == Hangul_Syllable_Type_T)
699 && hafter == Hangul_Syllable_Type_T)
700 return 0;
701 /* GB9 */
0b7052da 702 if(utf32__word_break(after) == unicode_Word_Break_Extend)
35b651f0
RK
703 return 0;
704 /* GB10 */
705 return 1;
706}
707
bb48024f
RK
708/** @brief Return true if @p c is ignorable for boundary specifications */
709static inline int utf32__boundary_ignorable(enum unicode_Word_Break wb) {
710 return (wb == unicode_Word_Break_Extend
711 || wb == unicode_Word_Break_Format);
0b7052da
RK
712}
713
714/** @brief Identify a word boundary
715 * @param s Start of string (must be NFD)
716 * @param ns Length of string
717 * @param n Index within string (in [0,ns].)
718 * @return 1 at a word boundary, 0 otherwise
719 *
720 * This function identifies default word boundaries as described in UAX #29 s4.
721 * It returns 1 if @p n points at the code point just after a word boundary
722 * (including the hypothetical code point just after the end of the string).
723 */
724int utf32_is_word_boundary(const uint32_t *s, size_t ns, size_t n) {
725 enum unicode_Word_Break twobefore, before, after, twoafter;
726 size_t nn;
727
728 /* WB1 and WB2 */
729 if(n == 0 || n == ns)
730 return 1;
731 /* WB3 */
732 if(s[n-1] == 0x000D && s[n] == 0x000A)
733 return 0;
734 /* WB4 */
bb48024f
RK
735 /* (!Sep) x (Extend|Format) as in UAX #29 s6.2 */
736 switch(s[n-1]) { /* bit of a bodge */
737 case 0x000A:
738 case 0x000D:
739 case 0x0085:
740 case 0x2028:
741 case 0x2029:
742 break;
743 default:
744 if(utf32__boundary_ignorable(utf32__word_break(s[n])))
745 return 0;
746 break;
0b7052da 747 }
bb48024f
RK
748 /* Gather the property values we'll need for the rest of the test taking the
749 * s6.2 changes into account */
750 /* First we look at the code points after the proposed boundary */
751 nn = n; /* <ns */
752 after = utf32__word_break(s[nn++]);
753 if(!utf32__boundary_ignorable(after)) {
754 /* X (Extend|Format)* -> X */
755 while(nn < ns && utf32__boundary_ignorable(utf32__word_break(s[nn])))
756 ++nn;
757 }
758 /* It's possible now that nn=ns */
759 if(nn < ns)
760 twoafter = utf32__word_break(s[nn]);
761 else
762 twoafter = unicode_Word_Break_Other;
763
764 /* Next we look at the code points before the proposed boundary. This is a
765 * bit fiddlier. */
766 nn = n;
767 while(nn > 0 && utf32__boundary_ignorable(utf32__word_break(s[nn - 1])))
768 --nn;
769 if(nn == 0) {
770 /* s[nn] must be ignorable */
771 before = utf32__word_break(s[nn]);
772 twobefore = unicode_Word_Break_Other;
773 } else {
774 /* s[nn] is ignorable or after the proposed boundary; but s[nn-1] is not
775 * ignorable. */
776 before = utf32__word_break(s[nn - 1]);
777 --nn;
778 /* Repeat the exercise */
779 while(nn > 0 && utf32__boundary_ignorable(utf32__word_break(s[nn - 1])))
780 --nn;
781 if(nn == 0)
782 twobefore = utf32__word_break(s[nn]);
783 else
784 twobefore = utf32__word_break(s[nn - 1]);
0b7052da 785 }
bb48024f 786
0b7052da
RK
787 /* WB5 */
788 if(before == unicode_Word_Break_ALetter
789 && after == unicode_Word_Break_ALetter)
790 return 0;
791 /* WB6 */
792 if(before == unicode_Word_Break_ALetter
793 && after == unicode_Word_Break_MidLetter
794 && twoafter == unicode_Word_Break_ALetter)
795 return 0;
796 /* WB7 */
797 if(twobefore == unicode_Word_Break_ALetter
798 && before == unicode_Word_Break_MidLetter
799 && after == unicode_Word_Break_ALetter)
800 return 0;
801 /* WB8 */
802 if(before == unicode_Word_Break_Numeric
803 && after == unicode_Word_Break_Numeric)
804 return 0;
805 /* WB9 */
806 if(before == unicode_Word_Break_ALetter
807 && after == unicode_Word_Break_Numeric)
808 return 0;
809 /* WB10 */
810 if(before == unicode_Word_Break_Numeric
811 && after == unicode_Word_Break_ALetter)
812 return 0;
813 /* WB11 */
814 if(twobefore == unicode_Word_Break_Numeric
815 && before == unicode_Word_Break_MidNum
816 && after == unicode_Word_Break_Numeric)
817 return 0;
818 /* WB12 */
819 if(before == unicode_Word_Break_Numeric
820 && after == unicode_Word_Break_MidNum
821 && twoafter == unicode_Word_Break_Numeric)
822 return 0;
823 /* WB13 */
824 if(before == unicode_Word_Break_Katakana
825 && after == unicode_Word_Break_Katakana)
826 return 0;
827 /* WB13a */
828 if((before == unicode_Word_Break_ALetter
829 || before == unicode_Word_Break_Numeric
830 || before == unicode_Word_Break_Katakana
831 || before == unicode_Word_Break_ExtendNumLet)
832 && after == unicode_Word_Break_ExtendNumLet)
833 return 0;
834 /* WB13b */
835 if(before == unicode_Word_Break_ExtendNumLet
836 && (after == unicode_Word_Break_ALetter
837 || after == unicode_Word_Break_Numeric
838 || after == unicode_Word_Break_Katakana))
839 return 0;
840 /* WB14 */
841 return 1;
842}
843
e5a5a138 844/*@}*/
349b7b74 845/** @defgroup utf8 Functions that operate on UTF-8 strings */
e5a5a138
RK
846/*@{*/
847
848/** @brief Wrapper to transform a UTF-8 string using the UTF-32 function */
849#define utf8__transform(FN) do { \
850 uint32_t *to32 = 0, *decomp32 = 0; \
851 size_t nto32, ndecomp32; \
852 char *decomp8 = 0; \
853 \
854 if(!(to32 = utf8_to_utf32(s, ns, &nto32))) goto error; \
855 if(!(decomp32 = FN(to32, nto32, &ndecomp32))) goto error; \
856 decomp8 = utf32_to_utf8(decomp32, ndecomp32, ndp); \
857error: \
858 xfree(to32); \
859 xfree(decomp32); \
860 return decomp8; \
861} while(0)
862
863/** @brief Canonically decompose @p [s,s+ns)
864 * @param s Pointer to string
865 * @param ns Length of string
866 * @param ndp Where to store length of result
867 * @return Pointer to result string, or NULL
868 *
869 * Computes the canonical decomposition of a string and stably sorts combining
870 * characters into canonical order. The result is in Normalization Form D and
871 * (at the time of writing!) passes the NFD tests defined in Unicode 5.0's
872 * NormalizationTest.txt.
873 *
874 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
875 * this might be.
876 *
877 * See also utf32_decompose_canon().
878 */
879char *utf8_decompose_canon(const char *s, size_t ns, size_t *ndp) {
880 utf8__transform(utf32_decompose_canon);
881}
882
883/** @brief Compatibility decompose @p [s,s+ns)
884 * @param s Pointer to string
885 * @param ns Length of string
886 * @param ndp Where to store length of result
887 * @return Pointer to result string, or NULL
888 *
889 * Computes the compatibility decomposition of a string and stably sorts
890 * combining characters into canonical order. The result is in Normalization
891 * Form KD and (at the time of writing!) passes the NFKD tests defined in
892 * Unicode 5.0's NormalizationTest.txt.
893 *
894 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
895 * this might be.
896 *
897 * See also utf32_decompose_compat().
898 */
899char *utf8_decompose_compat(const char *s, size_t ns, size_t *ndp) {
900 utf8__transform(utf32_decompose_compat);
901}
902
903/** @brief Case-fold @p [s,s+ns)
904 * @param s Pointer to string
905 * @param ns Length of string
906 * @param ndp Where to store length of result
907 * @return Pointer to result string, or NULL
908 *
909 * Case-fold the string at @p s according to full default case-folding rules
910 * (s3.13). The result will be in NFD.
911 *
912 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
913 * this might be.
914 */
915char *utf8_casefold_canon(const char *s, size_t ns, size_t *ndp) {
916 utf8__transform(utf32_casefold_canon);
917}
918
919/** @brief Compatibility case-fold @p [s,s+ns)
920 * @param s Pointer to string
921 * @param ns Length of string
922 * @param ndp Where to store length of result
923 * @return Pointer to result string, or NULL
924 *
925 * Case-fold the string at @p s according to full default case-folding rules
926 * (s3.13). The result will be in NFKD.
927 *
928 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
929 * this might be.
930 */
e5a5a138
RK
931char *utf8_casefold_compat(const char *s, size_t ns, size_t *ndp) {
932 utf8__transform(utf32_casefold_compat);
933}
e5a5a138
RK
934
935/*@}*/
936
937/*
938Local Variables:
939c-basic-offset:2
940comment-column:40
941fill-column:79
942indent-tabs-mode:nil
943End:
944*/