chiark / gitweb /
automatically upgrade on startup if necessary
[disorder] / lib / unicode.c
CommitLineData
e5a5a138
RK
1/*
2 * This file is part of DisOrder
3 * Copyright (C) 2007 Richard Kettlewell
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
18 * USA
19 */
20/** @file lib/unicode.c
21 * @brief Unicode support functions
22 *
23 * Here by UTF-8 and UTF-8 we mean the encoding forms of those names (not the
35b651f0
RK
24 * encoding schemes). The primary encoding form is UTF-32 but convenience
25 * wrappers using UTF-8 are provided for a number of functions.
e5a5a138
RK
26 *
27 * The idea is that all the strings that hit the database will be in a
28 * particular normalization form, and for the search and tags database
29 * in case-folded form, so they can be naively compared within the
30 * database code.
31 *
32 * As the code stands this guarantee is not well met!
0ae60b83
RK
33 *
34 * Subpages:
35 * - @ref utf32props
36 * - @ref utftransform
37 * - @ref utf32iterator
38 * - @ref utf32
39 * - @ref utf8
e5a5a138
RK
40 */
41
42#include <config.h>
43#include "types.h"
44
45#include <string.h>
46#include <stdio.h> /* TODO */
47
48#include "mem.h"
49#include "vector.h"
50#include "unicode.h"
51#include "unidata.h"
52
092f426f
RK
53/** @defgroup utf32props Unicode Code Point Properties */
54/*@{*/
55
56static const struct unidata *utf32__unidata_hard(uint32_t c);
57
58/** @brief Find definition of code point @p c
59 * @param c Code point
60 * @return Pointer to @ref unidata structure for @p c
61 *
62 * @p c can be any 32-bit value, a sensible value will be returned regardless.
63 * The returned pointer is NOT guaranteed to be unique to @p c.
64 */
65static inline const struct unidata *utf32__unidata(uint32_t c) {
66 /* The bottom half of the table contains almost everything of interest
67 * and we can just return the right thing straight away */
68 if(c < UNICODE_BREAK_START)
69 return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
70 else
71 return utf32__unidata_hard(c);
72}
73
74/** @brief Find definition of code point @p c
75 * @param c Code point
76 * @return Pointer to @ref unidata structure for @p c
77 *
78 * @p c can be any 32-bit value, a sensible value will be returned regardless.
79 * The returned pointer is NOT guaranteed to be unique to @p c.
80 *
81 * Don't use this function (although it will work fine) - use utf32__unidata()
82 * instead.
83 */
84static const struct unidata *utf32__unidata_hard(uint32_t c) {
85 if(c < UNICODE_BREAK_START)
86 return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
87 /* Within the break everything is unassigned */
88 if(c < UNICODE_BREAK_END)
89 return utf32__unidata(0xFFFF); /* guaranteed to be Cn */
90 /* Planes 15 and 16 are (mostly) private use */
91 if((c >= 0xF0000 && c <= 0xFFFFD)
92 || (c >= 0x100000 && c <= 0x10FFFD))
93 return utf32__unidata(0xE000); /* first Co code point */
94 /* Everything else above the break top is unassigned */
95 if(c >= UNICODE_BREAK_TOP)
96 return utf32__unidata(0xFFFF); /* guaranteed to be Cn */
97 /* Currently the rest is language tags and variation selectors */
98 c -= (UNICODE_BREAK_END - UNICODE_BREAK_START);
99 return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
100}
101
102/** @brief Return the combining class of @p c
103 * @param c Code point
104 * @return Combining class of @p c
105 *
106 * @p c can be any 32-bit value, a sensible value will be returned regardless.
107 */
108static inline int utf32__combining_class(uint32_t c) {
109 return utf32__unidata(c)->ccc;
110}
111
112/** @brief Return the General_Category value for @p c
0ae60b83 113 * @param c Code point
092f426f
RK
114 * @return General_Category property value
115 *
116 * @p c can be any 32-bit value, a sensible value will be returned regardless.
117 */
118static inline enum unicode_General_Category utf32__general_category(uint32_t c) {
119 return utf32__unidata(c)->general_category;
120}
121
122/** @brief Determine Grapheme_Break property
123 * @param c Code point
124 * @return Grapheme_Break property value of @p c
125 *
126 * @p c can be any 32-bit value, a sensible value will be returned regardless.
127 */
128static inline enum unicode_Grapheme_Break utf32__grapheme_break(uint32_t c) {
129 return utf32__unidata(c)->grapheme_break;
130}
131
132/** @brief Determine Word_Break property
133 * @param c Code point
134 * @return Word_Break property value of @p c
135 *
136 * @p c can be any 32-bit value, a sensible value will be returned regardless.
137 */
138static inline enum unicode_Word_Break utf32__word_break(uint32_t c) {
139 return utf32__unidata(c)->word_break;
140}
141
142/** @brief Determine Sentence_Break property
143 * @param c Code point
144 * @return Word_Break property value of @p c
145 *
146 * @p c can be any 32-bit value, a sensible value will be returned regardless.
147 */
148static inline enum unicode_Sentence_Break utf32__sentence_break(uint32_t c) {
149 return utf32__unidata(c)->sentence_break;
150}
151
152/** @brief Return true if @p c is ignorable for boundary specifications
153 * @param wb Word break property value
154 * @return non-0 if @p wb is unicode_Word_Break_Extend or unicode_Word_Break_Format
155 */
156static inline int utf32__boundary_ignorable(enum unicode_Word_Break wb) {
157 return (wb == unicode_Word_Break_Extend
158 || wb == unicode_Word_Break_Format);
159}
160
f98fcddb
RK
161/** @brief Return the canonical decomposition of @p c
162 * @param c Code point
163 * @return 0-terminated canonical decomposition, or 0
164 */
165static inline const uint32_t *utf32__decomposition_canon(uint32_t c) {
166 const struct unidata *const data = utf32__unidata(c);
167 const uint32_t *const decomp = data->decomp;
168
169 if(decomp && !(data->flags & unicode_compatibility_decomposition))
170 return decomp;
171 else
172 return 0;
173}
174
175/** @brief Return the compatibility decomposition of @p c
176 * @param c Code point
177 * @return 0-terminated decomposition, or 0
178 */
179static inline const uint32_t *utf32__decomposition_compat(uint32_t c) {
180 return utf32__unidata(c)->decomp;
181}
182
092f426f 183/*@}*/
e5a5a138
RK
184/** @defgroup utftransform Functions that transform between different Unicode encoding forms */
185/*@{*/
186
187/** @brief Convert UTF-32 to UTF-8
188 * @param s Source string
189 * @param ns Length of source string in code points
190 * @param ndp Where to store length of destination string (or NULL)
191 * @return Newly allocated destination string or NULL on error
192 *
56fd389c
RK
193 * If the UTF-32 is not valid then NULL is returned. A UTF-32 code point is
194 * invalid if:
e5a5a138
RK
195 * - it codes for a UTF-16 surrogate
196 * - it codes for a value outside the unicode code space
197 *
56fd389c
RK
198 * The return value is always 0-terminated. The value returned via @p *ndp
199 * does not include the terminator.
e5a5a138
RK
200 */
201char *utf32_to_utf8(const uint32_t *s, size_t ns, size_t *ndp) {
202 struct dynstr d;
203 uint32_t c;
204
205 dynstr_init(&d);
206 while(ns > 0) {
207 c = *s++;
208 if(c < 0x80)
209 dynstr_append(&d, c);
210 else if(c < 0x0800) {
211 dynstr_append(&d, 0xC0 | (c >> 6));
212 dynstr_append(&d, 0x80 | (c & 0x3F));
213 } else if(c < 0x10000) {
56fd389c 214 if(c >= 0xD800 && c <= 0xDFFF)
e5a5a138
RK
215 goto error;
216 dynstr_append(&d, 0xE0 | (c >> 12));
217 dynstr_append(&d, 0x80 | ((c >> 6) & 0x3F));
218 dynstr_append(&d, 0x80 | (c & 0x3F));
219 } else if(c < 0x110000) {
220 dynstr_append(&d, 0xF0 | (c >> 18));
221 dynstr_append(&d, 0x80 | ((c >> 12) & 0x3F));
222 dynstr_append(&d, 0x80 | ((c >> 6) & 0x3F));
223 dynstr_append(&d, 0x80 | (c & 0x3F));
224 } else
225 goto error;
226 --ns;
227 }
228 dynstr_terminate(&d);
229 if(ndp)
230 *ndp = d.nvec;
231 return d.vec;
232error:
233 xfree(d.vec);
234 return 0;
235}
236
237/** @brief Convert UTF-8 to UTF-32
238 * @param s Source string
239 * @param ns Length of source string in code points
240 * @param ndp Where to store length of destination string (or NULL)
f98fcddb 241 * @return Newly allocated destination string or NULL on error
e5a5a138 242 *
56fd389c
RK
243 * The return value is always 0-terminated. The value returned via @p *ndp
244 * does not include the terminator.
e5a5a138
RK
245 *
246 * If the UTF-8 is not valid then NULL is returned. A UTF-8 sequence
247 * for a code point is invalid if:
248 * - it is not the shortest possible sequence for the code point
249 * - it codes for a UTF-16 surrogate
250 * - it codes for a value outside the unicode code space
251 */
252uint32_t *utf8_to_utf32(const char *s, size_t ns, size_t *ndp) {
253 struct dynstr_ucs4 d;
32b158f2 254 uint32_t c32;
e5a5a138 255 const uint8_t *ss = (const uint8_t *)s;
32b158f2 256 int n;
e5a5a138
RK
257
258 dynstr_ucs4_init(&d);
259 while(ns > 0) {
32b158f2
RK
260 const struct unicode_utf8_row *const r = &unicode_utf8_valid[*ss];
261 if(r->count <= ns) {
262 switch(r->count) {
263 case 1:
264 c32 = *ss;
265 break;
266 case 2:
267 if(ss[1] < r->min2 || ss[1] > r->max2)
268 goto error;
269 c32 = *ss & 0x1F;
270 break;
271 case 3:
272 if(ss[1] < r->min2 || ss[1] > r->max2)
273 goto error;
274 c32 = *ss & 0x0F;
275 break;
276 case 4:
277 if(ss[1] < r->min2 || ss[1] > r->max2)
278 goto error;
279 c32 = *ss & 0x07;
280 break;
281 default:
282 goto error;
283 }
e5a5a138
RK
284 } else
285 goto error;
32b158f2
RK
286 for(n = 1; n < r->count; ++n) {
287 if(ss[n] < 0x80 || ss[n] > 0xBF)
288 goto error;
289 c32 = (c32 << 6) | (ss[n] & 0x3F);
290 }
e5a5a138 291 dynstr_ucs4_append(&d, c32);
32b158f2
RK
292 ss += r->count;
293 ns -= r->count;
e5a5a138
RK
294 }
295 dynstr_ucs4_terminate(&d);
296 if(ndp)
297 *ndp = d.nvec;
298 return d.vec;
299error:
300 xfree(d.vec);
301 return 0;
302}
303
18cda350
RK
304/** @brief Test whether [s,s+ns) is valid UTF-8
305 * @param s Start of string
306 * @param ns Length of string
307 * @return non-0 if @p s is valid UTF-8, 0 if it is not valid
308 *
309 * This function is intended to be much faster than calling utf8_to_utf32() and
310 * throwing away the result.
311 */
312int utf8_valid(const char *s, size_t ns) {
313 const uint8_t *ss = (const uint8_t *)s;
314 while(ns > 0) {
315 const struct unicode_utf8_row *const r = &unicode_utf8_valid[*ss];
316 if(r->count <= ns) {
317 switch(r->count) {
318 case 1:
319 break;
320 case 2:
321 if(ss[1] < r->min2 || ss[1] > r->max2)
322 return 0;
323 break;
324 case 3:
325 if(ss[1] < r->min2 || ss[1] > r->max2)
326 return 0;
327 if(ss[2] < 0x80 || ss[2] > 0xBF)
328 return 0;
329 break;
330 case 4:
331 if(ss[1] < r->min2 || ss[1] > r->max2)
332 return 0;
333 if(ss[2] < 0x80 || ss[2] > 0xBF)
334 return 0;
335 if(ss[3] < 0x80 || ss[3] > 0xBF)
336 return 0;
337 break;
338 default:
339 return 0;
340 }
341 } else
342 return 0;
343 ss += r->count;
344 ns -= r->count;
345 }
346 return 1;
347}
348
092f426f
RK
349/*@}*/
350/** @defgroup utf32iterator UTF-32 string iterators */
351/*@{*/
352
353struct utf32_iterator_data {
354 /** @brief Start of string */
355 const uint32_t *s;
356
357 /** @brief Length of string */
358 size_t ns;
359
360 /** @brief Current position */
361 size_t n;
362
363 /** @brief Last two non-ignorable characters or (uint32_t)-1
364 *
365 * last[1] is the non-Extend/Format character just before position @p n;
366 * last[0] is the one just before that.
367 *
368 * Exception 1: if there is no such non-Extend/Format character then an
369 * Extend/Format character is accepted instead.
370 *
371 * Exception 2: if there is no such character even taking that into account
372 * the value is (uint32_t)-1.
373 */
374 uint32_t last[2];
092f426f 375
c85b7022
RK
376 /** @brief Tailoring for Word_Break */
377 unicode_property_tailor *word_break;
378};
092f426f
RK
379
380/** @brief Initialize an internal private iterator
381 * @param it Iterator
382 * @param s Start of string
383 * @param ns Length of string
384 * @param n Absolute position
385 */
386static void utf32__iterator_init(utf32_iterator it,
387 const uint32_t *s, size_t ns, size_t n) {
388 it->s = s;
389 it->ns = ns;
390 it->n = 0;
391 it->last[0] = it->last[1] = -1;
c85b7022 392 it->word_break = 0;
b21a155c 393 utf32_iterator_set(it, n);
092f426f
RK
394}
395
c85b7022
RK
396/** @brief Create a new iterator pointing at the start of a string
397 * @param s Start of string
398 * @param ns Length of string
399 * @return New iterator
400 */
401utf32_iterator utf32_iterator_new(const uint32_t *s, size_t ns) {
402 utf32_iterator it = xmalloc(sizeof *it);
403 utf32__iterator_init(it, s, ns, 0);
404 return it;
405}
406
407/** @brief Tailor this iterator's interpretation of the Word_Break property.
408 * @param it Iterator
409 * @param pt Property tailor function or NULL
410 *
411 * After calling this the iterator will call @p pt to determine the Word_Break
412 * property of each code point. If it returns -1 the default value will be
413 * used otherwise the returned value will be used.
414 *
415 * @p pt can be NULL to revert to the default value of the property.
416 *
417 * It is safe to call this function at any time; the iterator's internal state
418 * will be reset to suit the new tailoring.
419 */
420void utf32_iterator_tailor_word_break(utf32_iterator it,
421 unicode_property_tailor *pt) {
422 it->word_break = pt;
423 utf32_iterator_set(it, it->n);
424}
425
426static inline enum unicode_Word_Break utf32__iterator_word_break(utf32_iterator it,
427 uint32_t c) {
428 if(!it->word_break)
429 return utf32__word_break(c);
430 else {
431 const int t = it->word_break(c);
432
433 if(t < 0)
434 return utf32__word_break(c);
435 else
436 return t;
437 }
438}
439
092f426f
RK
440/** @brief Destroy an iterator
441 * @param it Iterator
442 */
443void utf32_iterator_destroy(utf32_iterator it) {
444 xfree(it);
445}
446
447/** @brief Find the current position of an interator
448 * @param it Iterator
449 */
450size_t utf32_iterator_where(utf32_iterator it) {
451 return it->n;
452}
453
454/** @brief Set an iterator's absolute position
455 * @param it Iterator
456 * @param n Absolute position
457 * @return 0 on success, non-0 on error
458 *
459 * It is an error to position the iterator outside the string (but acceptable
460 * to point it at the hypothetical post-final character). If an invalid value
461 * of @p n is specified then the iterator is not changed.
f98fcddb
RK
462 *
463 * This function works by backing up and then advancing to reconstruct the
464 * iterator's internal state for position @p n. The worst case will be O(n)
465 * time complexity (with a worse constant factor that utf32_iterator_advance())
466 * but the typical case is essentially constant-time.
092f426f
RK
467 */
468int utf32_iterator_set(utf32_iterator it, size_t n) {
5617aaff
RK
469 /* We can't just jump to position @p n; the @p last[] values will be wrong.
470 * What we need is to jump a bit behind @p n and then advance forward,
471 * updating @p last[] along the way. How far back? We need to cross two
472 * non-ignorable code points as we advance forwards, so we'd better pass two
473 * such characters on the way back (if such are available).
474 */
b21a155c 475 size_t m;
5617aaff
RK
476
477 if(n > it->ns) /* range check */
092f426f 478 return -1;
b21a155c
RK
479 /* Walk backwards skipping ignorable code points */
480 m = n;
c85b7022
RK
481 while(m > 0
482 && (utf32__boundary_ignorable(utf32__iterator_word_break(it,
483 it->s[m-1]))))
b21a155c
RK
484 --m;
485 /* Either m=0 or s[m-1] is not ignorable */
486 if(m > 0) {
487 --m;
488 /* s[m] is our first non-ignorable code; look for a second in the same
489 way **/
c85b7022
RK
490 while(m > 0
491 && (utf32__boundary_ignorable(utf32__iterator_word_break(it,
492 it->s[m-1]))))
5617aaff 493 --m;
b21a155c
RK
494 /* Either m=0 or s[m-1] is not ignorable */
495 if(m > 0)
496 --m;
497 }
498 it->last[0] = it->last[1] = -1;
5617aaff
RK
499 it->n = m;
500 return utf32_iterator_advance(it, n - m);
092f426f
RK
501}
502
503/** @brief Advance an iterator
504 * @param it Iterator
505 * @param count Number of code points to advance by
506 * @return 0 on success, non-0 on error
507 *
508 * It is an error to advance an iterator beyond the hypothetical post-final
509 * character of the string. If an invalid value of @p n is specified then the
510 * iterator is not changed.
511 *
512 * This function has O(n) time complexity: it works by advancing naively
513 * forwards through the string.
514 */
515int utf32_iterator_advance(utf32_iterator it, size_t count) {
516 if(count <= it->ns - it->n) {
517 while(count > 0) {
518 const uint32_t c = it->s[it->n];
c85b7022 519 const enum unicode_Word_Break wb = utf32__iterator_word_break(it, c);
092f426f
RK
520 if(it->last[1] == (uint32_t)-1
521 || !utf32__boundary_ignorable(wb)) {
522 it->last[0] = it->last[1];
523 it->last[1] = c;
524 }
525 ++it->n;
526 --count;
527 }
528 return 0;
529 } else
530 return -1;
531}
532
533/** @brief Find the current code point
534 * @param it Iterator
535 * @return Current code point or 0
536 *
537 * If the iterator points at the hypothetical post-final character of the
538 * string then 0 is returned. NB that this doesn't mean that there aren't any
539 * 0 code points inside the string!
540 */
541uint32_t utf32_iterator_code(utf32_iterator it) {
542 if(it->n < it->ns)
543 return it->s[it->n];
544 else
545 return 0;
546}
547
548/** @brief Test for a grapheme boundary
549 * @param it Iterator
550 * @return Non-0 if pointing just after a grapheme boundary, otherwise 0
f98fcddb
RK
551 *
552 * This function identifies default grapheme cluster boundaries as described in
553 * UAX #29 s3. It returns non-0 if @p it points at the code point just after a
554 * grapheme cluster boundary (including the hypothetical code point just after
555 * the end of the string).
092f426f
RK
556 */
557int utf32_iterator_grapheme_boundary(utf32_iterator it) {
558 uint32_t before, after;
559 enum unicode_Grapheme_Break gbbefore, gbafter;
560 /* GB1 and GB2 */
561 if(it->n == 0 || it->n == it->ns)
562 return 1;
563 /* Now we know that s[n-1] and s[n] are safe to inspect */
564 /* GB3 */
565 before = it->s[it->n-1];
566 after = it->s[it->n];
567 if(before == 0x000D && after == 0x000A)
568 return 0;
569 gbbefore = utf32__grapheme_break(before);
570 gbafter = utf32__grapheme_break(after);
571 /* GB4 */
572 if(gbbefore == unicode_Grapheme_Break_Control
573 || before == 0x000D
574 || before == 0x000A)
575 return 1;
576 /* GB5 */
577 if(gbafter == unicode_Grapheme_Break_Control
578 || after == 0x000D
579 || after == 0x000A)
580 return 1;
581 /* GB6 */
582 if(gbbefore == unicode_Grapheme_Break_L
583 && (gbafter == unicode_Grapheme_Break_L
584 || gbafter == unicode_Grapheme_Break_V
585 || gbafter == unicode_Grapheme_Break_LV
586 || gbafter == unicode_Grapheme_Break_LVT))
587 return 0;
588 /* GB7 */
589 if((gbbefore == unicode_Grapheme_Break_LV
590 || gbbefore == unicode_Grapheme_Break_V)
591 && (gbafter == unicode_Grapheme_Break_V
592 || gbafter == unicode_Grapheme_Break_T))
593 return 0;
594 /* GB8 */
595 if((gbbefore == unicode_Grapheme_Break_LVT
596 || gbbefore == unicode_Grapheme_Break_T)
597 && gbafter == unicode_Grapheme_Break_T)
598 return 0;
599 /* GB9 */
600 if(gbafter == unicode_Grapheme_Break_Extend)
601 return 0;
602 /* GB10 */
603 return 1;
604
605}
606
607/** @brief Test for a word boundary
608 * @param it Iterator
609 * @return Non-0 if pointing just after a word boundary, otherwise 0
f98fcddb
RK
610 *
611 * This function identifies default word boundaries as described in UAX #29 s4.
612 * It returns non-0 if @p it points at the code point just after a word
613 * boundary (including the hypothetical code point just after the end of the
614 * string) and 0 otherwise.
092f426f
RK
615 */
616int utf32_iterator_word_boundary(utf32_iterator it) {
617 enum unicode_Word_Break twobefore, before, after, twoafter;
618 size_t nn;
619
620 /* WB1 and WB2 */
621 if(it->n == 0 || it->n == it->ns)
622 return 1;
623 /* WB3 */
624 if(it->s[it->n-1] == 0x000D && it->s[it->n] == 0x000A)
625 return 0;
626 /* WB4 */
627 /* (!Sep) x (Extend|Format) as in UAX #29 s6.2 */
628 if(utf32__sentence_break(it->s[it->n-1]) != unicode_Sentence_Break_Sep
c85b7022 629 && utf32__boundary_ignorable(utf32__iterator_word_break(it, it->s[it->n])))
092f426f
RK
630 return 0;
631 /* Gather the property values we'll need for the rest of the test taking the
632 * s6.2 changes into account */
633 /* First we look at the code points after the proposed boundary */
634 nn = it->n; /* <it->ns */
c85b7022 635 after = utf32__iterator_word_break(it, it->s[nn++]);
092f426f
RK
636 if(!utf32__boundary_ignorable(after)) {
637 /* X (Extend|Format)* -> X */
638 while(nn < it->ns
c85b7022
RK
639 && utf32__boundary_ignorable(utf32__iterator_word_break(it,
640 it->s[nn])))
092f426f
RK
641 ++nn;
642 }
643 /* It's possible now that nn=ns */
644 if(nn < it->ns)
c85b7022 645 twoafter = utf32__iterator_word_break(it, it->s[nn]);
092f426f
RK
646 else
647 twoafter = unicode_Word_Break_Other;
648
649 /* We've already recorded the non-ignorable code points before the proposed
650 * boundary */
c85b7022
RK
651 before = utf32__iterator_word_break(it, it->last[1]);
652 twobefore = utf32__iterator_word_break(it, it->last[0]);
092f426f
RK
653
654 /* WB5 */
655 if(before == unicode_Word_Break_ALetter
656 && after == unicode_Word_Break_ALetter)
657 return 0;
658 /* WB6 */
659 if(before == unicode_Word_Break_ALetter
660 && after == unicode_Word_Break_MidLetter
661 && twoafter == unicode_Word_Break_ALetter)
662 return 0;
663 /* WB7 */
664 if(twobefore == unicode_Word_Break_ALetter
665 && before == unicode_Word_Break_MidLetter
666 && after == unicode_Word_Break_ALetter)
667 return 0;
c85b7022 668 /* WB8 */
092f426f
RK
669 if(before == unicode_Word_Break_Numeric
670 && after == unicode_Word_Break_Numeric)
671 return 0;
672 /* WB9 */
673 if(before == unicode_Word_Break_ALetter
674 && after == unicode_Word_Break_Numeric)
675 return 0;
676 /* WB10 */
677 if(before == unicode_Word_Break_Numeric
678 && after == unicode_Word_Break_ALetter)
679 return 0;
680 /* WB11 */
681 if(twobefore == unicode_Word_Break_Numeric
682 && before == unicode_Word_Break_MidNum
683 && after == unicode_Word_Break_Numeric)
684 return 0;
685 /* WB12 */
686 if(before == unicode_Word_Break_Numeric
687 && after == unicode_Word_Break_MidNum
688 && twoafter == unicode_Word_Break_Numeric)
689 return 0;
690 /* WB13 */
691 if(before == unicode_Word_Break_Katakana
692 && after == unicode_Word_Break_Katakana)
693 return 0;
694 /* WB13a */
695 if((before == unicode_Word_Break_ALetter
696 || before == unicode_Word_Break_Numeric
697 || before == unicode_Word_Break_Katakana
698 || before == unicode_Word_Break_ExtendNumLet)
699 && after == unicode_Word_Break_ExtendNumLet)
700 return 0;
701 /* WB13b */
702 if(before == unicode_Word_Break_ExtendNumLet
703 && (after == unicode_Word_Break_ALetter
704 || after == unicode_Word_Break_Numeric
705 || after == unicode_Word_Break_Katakana))
706 return 0;
707 /* WB14 */
708 return 1;
709}
710
e5a5a138
RK
711/*@}*/
712/** @defgroup utf32 Functions that operate on UTF-32 strings */
713/*@{*/
714
715/** @brief Return the length of a 0-terminated UTF-32 string
716 * @param s Pointer to 0-terminated string
717 * @return Length of string in code points (excluding terminator)
718 *
56fd389c 719 * Unlike the conversion functions no validity checking is done on the string.
e5a5a138
RK
720 */
721size_t utf32_len(const uint32_t *s) {
722 const uint32_t *t = s;
723
724 while(*t)
725 ++t;
726 return (size_t)(t - s);
727}
728
e5a5a138
RK
729/** @brief Stably sort [s,s+ns) into descending order of combining class
730 * @param s Start of array
731 * @param ns Number of elements, must be at least 1
732 * @param buffer Buffer of at least @p ns elements
733 */
734static void utf32__sort_ccc(uint32_t *s, size_t ns, uint32_t *buffer) {
735 uint32_t *a, *b, *bp;
736 size_t na, nb;
737
738 switch(ns) {
739 case 1: /* 1-element array is always sorted */
740 return;
741 case 2: /* 2-element arrays are trivial to sort */
742 if(utf32__combining_class(s[0]) > utf32__combining_class(s[1])) {
743 uint32_t tmp = s[0];
744 s[0] = s[1];
745 s[1] = tmp;
746 }
747 return;
748 default:
749 /* Partition the array */
750 na = ns / 2;
751 nb = ns - na;
752 a = s;
753 b = s + na;
754 /* Sort the two halves of the array */
755 utf32__sort_ccc(a, na, buffer);
756 utf32__sort_ccc(b, nb, buffer);
757 /* Merge them back into one, via the buffer */
758 bp = buffer;
759 while(na > 0 && nb > 0) {
16506c9d 760 /* We want ascending order of combining class (hence <)
e5a5a138
RK
761 * and we want stability within combining classes (hence <=)
762 */
763 if(utf32__combining_class(*a) <= utf32__combining_class(*b)) {
764 *bp++ = *a++;
765 --na;
766 } else {
767 *bp++ = *b++;
768 --nb;
769 }
770 }
771 while(na > 0) {
772 *bp++ = *a++;
773 --na;
774 }
775 while(nb > 0) {
776 *bp++ = *b++;
777 --nb;
778 }
779 memcpy(s, buffer, ns * sizeof(uint32_t));
780 return;
781 }
782}
783
784/** @brief Put combining characters into canonical order
785 * @param s Pointer to UTF-32 string
786 * @param ns Length of @p s
f98fcddb 787 * @return 0 on success, non-0 on error
e5a5a138 788 *
56fd389c
RK
789 * @p s is modified in-place. See Unicode 5.0 s3.11 for details of the
790 * ordering.
e5a5a138 791 *
56fd389c 792 * Currently we only support a maximum of 1024 combining characters after each
f98fcddb 793 * base character. If this limit is exceeded then a non-0 value is returned.
e5a5a138
RK
794 */
795static int utf32__canonical_ordering(uint32_t *s, size_t ns) {
796 size_t nc;
797 uint32_t buffer[1024];
798
799 /* The ordering amounts to a stable sort of each contiguous group of
800 * characters with non-0 combining class. */
801 while(ns > 0) {
802 /* Skip non-combining characters */
803 if(utf32__combining_class(*s) == 0) {
804 ++s;
805 --ns;
806 continue;
807 }
808 /* We must now have at least one combining character; see how many
809 * there are */
810 for(nc = 1; nc < ns && utf32__combining_class(s[nc]) != 0; ++nc)
811 ;
812 if(nc > 1024)
813 return -1;
814 /* Sort the array */
815 utf32__sort_ccc(s, nc, buffer);
816 s += nc;
817 ns -= nc;
818 }
819 return 0;
820}
821
822/* Magic numbers from UAX #15 s16 */
823#define SBase 0xAC00
824#define LBase 0x1100
825#define VBase 0x1161
826#define TBase 0x11A7
827#define LCount 19
828#define VCount 21
829#define TCount 28
830#define NCount (VCount * TCount)
831#define SCount (LCount * NCount)
832
833/** @brief Guts of the decomposition lookup functions */
834#define utf32__decompose_one_generic(WHICH) do { \
f98fcddb 835 const uint32_t *dc = utf32__decomposition_##WHICH(c); \
e5a5a138
RK
836 if(dc) { \
837 /* Found a canonical decomposition in the table */ \
838 while(*dc) \
839 utf32__decompose_one_##WHICH(d, *dc++); \
840 } else if(c >= SBase && c < SBase + SCount) { \
841 /* Mechanically decomposable Hangul syllable (UAX #15 s16) */ \
842 const uint32_t SIndex = c - SBase; \
843 const uint32_t L = LBase + SIndex / NCount; \
844 const uint32_t V = VBase + (SIndex % NCount) / TCount; \
845 const uint32_t T = TBase + SIndex % TCount; \
846 dynstr_ucs4_append(d, L); \
847 dynstr_ucs4_append(d, V); \
848 if(T != TBase) \
849 dynstr_ucs4_append(d, T); \
850 } else \
851 /* Equal to own canonical decomposition */ \
852 dynstr_ucs4_append(d, c); \
853} while(0)
854
855/** @brief Recursively compute the canonical decomposition of @p c
856 * @param d Dynamic string to store decomposition in
857 * @param c Code point to decompose (must be a valid!)
f98fcddb 858 * @return 0 on success, non-0 on error
e5a5a138
RK
859 */
860static void utf32__decompose_one_canon(struct dynstr_ucs4 *d, uint32_t c) {
861 utf32__decompose_one_generic(canon);
862}
863
864/** @brief Recursively compute the compatibility decomposition of @p c
865 * @param d Dynamic string to store decomposition in
866 * @param c Code point to decompose (must be a valid!)
f98fcddb 867 * @return 0 on success, non-0 on error
e5a5a138
RK
868 */
869static void utf32__decompose_one_compat(struct dynstr_ucs4 *d, uint32_t c) {
870 utf32__decompose_one_generic(compat);
871}
872
16506c9d
RK
873/** @brief Magic utf32__compositions() return value for Hangul Choseong */
874static const uint32_t utf32__hangul_L[1];
875
876/** @brief Return the list of compositions that @p c starts
877 * @param c Starter code point
878 * @return Composition list or NULL
879 *
880 * For Hangul leading (Choseong) jamo we return the special value
881 * utf32__hangul_L. These code points are not listed as the targets of
882 * canonical decompositions (make-unidata checks) so there is no confusion with
883 * real decompositions here.
884 */
885static const uint32_t *utf32__compositions(uint32_t c) {
886 const uint32_t *compositions = utf32__unidata(c)->composed;
887
888 if(compositions)
889 return compositions;
890 /* Special-casing for Hangul */
891 switch(utf32__grapheme_break(c)) {
892 default:
893 return 0;
894 case unicode_Grapheme_Break_L:
895 return utf32__hangul_L;
896 }
897}
898
899/** @brief Composition step
900 * @param s Start of string
901 * @param ns Length of string
902 * @return New length of string
903 *
904 * This is called from utf32__decompose_generic() to compose the result string
905 * in place.
906 */
907static size_t utf32__compose(uint32_t *s, size_t ns) {
908 const uint32_t *compositions;
909 uint32_t *start = s, *t = s, *tt, cc;
910
911 while(ns > 0) {
912 uint32_t starter = *s++;
913 int block_starters = 0;
914 --ns;
915 /* We don't attempt to compose the following things:
916 * - final characters whatever kind they are
917 * - non-starter characters
918 * - starters that don't take part in a canonical decomposition mapping
919 */
920 if(ns == 0
921 || utf32__combining_class(starter)
922 || !(compositions = utf32__compositions(starter))) {
923 *t++ = starter;
924 continue;
925 }
926 if(compositions != utf32__hangul_L) {
927 /* Where we'll put the eventual starter */
928 tt = t++;
929 do {
930 /* See if we can find composition of starter+*s */
931 const uint32_t cchar = *s, *cp = compositions;
932 while((cc = *cp++)) {
933 const uint32_t *decomp = utf32__decomposition_canon(cc);
934 /* We know decomp[0] == starter */
935 if(decomp[1] == cchar)
936 break;
937 }
938 if(cc) {
939 /* Found a composition: cc decomposes to starter,*s */
940 starter = cc;
941 compositions = utf32__compositions(starter);
942 ++s;
943 --ns;
944 } else {
945 /* No composition found. */
946 const int class = utf32__combining_class(*s);
947 if(class) {
948 /* Transfer the uncomposable combining character to the output */
949 *t++ = *s++;
950 --ns;
951 /* All the combining characters of the same class of the
952 * uncomposable character are blocked by it, but there may be
953 * others of higher class later. We eat the uncomposable and
954 * blocked characters and go back round the loop for that higher
955 * class. */
956 while(ns > 0 && utf32__combining_class(*s) == class) {
957 *t++ = *s++;
958 --ns;
959 }
960 /* Block any subsequent starters */
961 block_starters = 1;
962 } else {
963 /* The uncombinable character is itself a starter, so we don't
964 * transfer it to the output but instead go back round the main
965 * loop. */
966 break;
967 }
968 }
969 /* Keep going while there are still characters and the starter takes
970 * part in some composition */
971 } while(ns > 0 && compositions
972 && (!block_starters || utf32__combining_class(*s)));
973 /* Store any remaining combining characters */
974 while(ns > 0 && utf32__combining_class(*s)) {
975 *t++ = *s++;
976 --ns;
977 }
978 /* Store the resulting starter */
979 *tt = starter;
980 } else {
981 /* Special-casing for Hangul
982 *
983 * If there are combining characters between the L and the V then they
984 * will block the V and so no composition happens. Similarly combining
985 * characters between V and T will block the T and so we only get as far
986 * as LV.
987 */
988 if(utf32__grapheme_break(*s) == unicode_Grapheme_Break_V) {
989 const uint32_t V = *s++;
990 const uint32_t LIndex = starter - LBase;
991 const uint32_t VIndex = V - VBase;
992 uint32_t TIndex;
993 --ns;
994 if(ns > 0
995 && utf32__grapheme_break(*s) == unicode_Grapheme_Break_T) {
996 /* We have an L V T sequence */
997 const uint32_t T = *s++;
998 TIndex = T - TBase;
999 --ns;
1000 } else
1001 /* It's just L V */
1002 TIndex = 0;
1003 /* Compose to LVT or LV as appropriate */
1004 starter = (LIndex * VCount + VIndex) * TCount + TIndex + SBase;
1005 } /* else we only have L or LV and no V or T */
1006 *t++ = starter;
1007 /* There could be some combining characters that belong to the V or T.
1008 * These will be treated as non-starter characters at the top of the loop
1009 * and thuss transferred to the output. */
1010 }
1011 }
1012 return t - start;
1013}
1014
1015/** @brief Guts of the composition and decomposition functions
1016 * @param WHICH @c canon or @c compat to choose decomposition
1017 * @param COMPOSE @c 0 or @c 1 to compose
1018 */
1019#define utf32__decompose_generic(WHICH, COMPOSE) do { \
e5a5a138
RK
1020 struct dynstr_ucs4 d; \
1021 uint32_t c; \
1022 \
1023 dynstr_ucs4_init(&d); \
1024 while(ns) { \
1025 c = *s++; \
56fd389c 1026 if((c >= 0xD800 && c <= 0xDFFF) || c > 0x10FFFF) \
e5a5a138
RK
1027 goto error; \
1028 utf32__decompose_one_##WHICH(&d, c); \
1029 --ns; \
1030 } \
1031 if(utf32__canonical_ordering(d.vec, d.nvec)) \
1032 goto error; \
16506c9d
RK
1033 if(COMPOSE) \
1034 d.nvec = utf32__compose(d.vec, d.nvec); \
e5a5a138
RK
1035 dynstr_ucs4_terminate(&d); \
1036 if(ndp) \
1037 *ndp = d.nvec; \
1038 return d.vec; \
1039error: \
1040 xfree(d.vec); \
1041 return 0; \
1042} while(0)
1043
1044/** @brief Canonically decompose @p [s,s+ns)
1045 * @param s Pointer to string
1046 * @param ns Length of string
1047 * @param ndp Where to store length of result
f98fcddb 1048 * @return Pointer to result string, or NULL on error
e5a5a138 1049 *
16506c9d
RK
1050 * Computes NFD (Normalization Form D) of the string at @p s. This implies
1051 * performing all canonical decompositions and then normalizing the order of
1052 * combining characters.
e5a5a138 1053 *
56fd389c 1054 * Returns NULL if the string is not valid for either of the following reasons:
e5a5a138
RK
1055 * - it codes for a UTF-16 surrogate
1056 * - it codes for a value outside the unicode code space
16506c9d
RK
1057 *
1058 * See also:
1059 * - utf32_decompose_compat()
1060 * - utf32_compose_canon()
e5a5a138
RK
1061 */
1062uint32_t *utf32_decompose_canon(const uint32_t *s, size_t ns, size_t *ndp) {
16506c9d 1063 utf32__decompose_generic(canon, 0);
e5a5a138
RK
1064}
1065
1066/** @brief Compatibility decompose @p [s,s+ns)
1067 * @param s Pointer to string
1068 * @param ns Length of string
1069 * @param ndp Where to store length of result
f98fcddb 1070 * @return Pointer to result string, or NULL on error
e5a5a138 1071 *
16506c9d
RK
1072 * Computes NFKD (Normalization Form KD) of the string at @p s. This implies
1073 * performing all canonical and compatibility decompositions and then
1074 * normalizing the order of combining characters.
e5a5a138 1075 *
56fd389c 1076 * Returns NULL if the string is not valid for either of the following reasons:
e5a5a138
RK
1077 * - it codes for a UTF-16 surrogate
1078 * - it codes for a value outside the unicode code space
16506c9d
RK
1079 *
1080 * See also:
1081 * - utf32_decompose_canon()
1082 * - utf32_compose_compat()
e5a5a138
RK
1083 */
1084uint32_t *utf32_decompose_compat(const uint32_t *s, size_t ns, size_t *ndp) {
16506c9d
RK
1085 utf32__decompose_generic(compat, 0);
1086}
1087
1088/** @brief Canonically compose @p [s,s+ns)
1089 * @param s Pointer to string
1090 * @param ns Length of string
1091 * @param ndp Where to store length of result
1092 * @return Pointer to result string, or NULL on error
1093 *
1094 * Computes NFC (Normalization Form C) of the string at @p s. This implies
1095 * performing all canonical decompositions, normalizing the order of combining
1096 * characters and then composing all unblocked primary compositables.
1097 *
1098 * Returns NULL if the string is not valid for either of the following reasons:
1099 * - it codes for a UTF-16 surrogate
1100 * - it codes for a value outside the unicode code space
1101 *
1102 * See also:
1103 * - utf32_compose_compat()
1104 * - utf32_decompose_canon()
1105 */
1106uint32_t *utf32_compose_canon(const uint32_t *s, size_t ns, size_t *ndp) {
1107 utf32__decompose_generic(canon, 1);
1108}
1109
1110/** @brief Compatibility compose @p [s,s+ns)
1111 * @param s Pointer to string
1112 * @param ns Length of string
1113 * @param ndp Where to store length of result
1114 * @return Pointer to result string, or NULL on error
1115 *
1116 * Computes NFKC (Normalization Form KC) of the string at @p s. This implies
1117 * performing all canonical and compatibility decompositions, normalizing the
1118 * order of combining characters and then composing all unblocked primary
1119 * compositables.
1120 *
1121 * Returns NULL if the string is not valid for either of the following reasons:
1122 * - it codes for a UTF-16 surrogate
1123 * - it codes for a value outside the unicode code space
1124 *
1125 * See also:
1126 * - utf32_compose_canon()
1127 * - utf32_decompose_compat()
1128 */
1129uint32_t *utf32_compose_compat(const uint32_t *s, size_t ns, size_t *ndp) {
1130 utf32__decompose_generic(compat, 1);
e5a5a138
RK
1131}
1132
56fd389c
RK
1133/** @brief Single-character case-fold and decompose operation */
1134#define utf32__casefold_one(WHICH) do { \
bcf9ed7f 1135 const uint32_t *cf = utf32__unidata(c)->casefold; \
56fd389c
RK
1136 if(cf) { \
1137 /* Found a case-fold mapping in the table */ \
1138 while(*cf) \
1139 utf32__decompose_one_##WHICH(&d, *cf++); \
1140 } else \
1141 utf32__decompose_one_##WHICH(&d, c); \
1142} while(0)
e5a5a138
RK
1143
1144/** @brief Case-fold @p [s,s+ns)
1145 * @param s Pointer to string
1146 * @param ns Length of string
1147 * @param ndp Where to store length of result
f98fcddb 1148 * @return Pointer to result string, or NULL on error
e5a5a138
RK
1149 *
1150 * Case-fold the string at @p s according to full default case-folding rules
56fd389c 1151 * (s3.13) for caseless matching. The result will be in NFD.
e5a5a138 1152 *
56fd389c 1153 * Returns NULL if the string is not valid for either of the following reasons:
e5a5a138
RK
1154 * - it codes for a UTF-16 surrogate
1155 * - it codes for a value outside the unicode code space
1156 */
1157uint32_t *utf32_casefold_canon(const uint32_t *s, size_t ns, size_t *ndp) {
1158 struct dynstr_ucs4 d;
1159 uint32_t c;
1160 size_t n;
1161 uint32_t *ss = 0;
1162
1163 /* If the canonical decomposition of the string includes any combining
1164 * character that case-folds to a non-combining character then we must
1165 * normalize before we fold. In Unicode 5.0.0 this means 0345 COMBINING
1166 * GREEK YPOGEGRAMMENI in its decomposition and the various characters that
1167 * canonically decompose to it. */
bcf9ed7f
RK
1168 for(n = 0; n < ns; ++n)
1169 if(utf32__unidata(s[n])->flags & unicode_normalize_before_casefold)
e5a5a138 1170 break;
e5a5a138
RK
1171 if(n < ns) {
1172 /* We need a preliminary decomposition */
1173 if(!(ss = utf32_decompose_canon(s, ns, &ns)))
1174 return 0;
1175 s = ss;
1176 }
1177 dynstr_ucs4_init(&d);
1178 while(ns) {
1179 c = *s++;
56fd389c 1180 if((c >= 0xD800 && c <= 0xDFFF) || c > 0x10FFFF)
e5a5a138 1181 goto error;
56fd389c 1182 utf32__casefold_one(canon);
e5a5a138
RK
1183 --ns;
1184 }
1185 if(utf32__canonical_ordering(d.vec, d.nvec))
1186 goto error;
1187 dynstr_ucs4_terminate(&d);
1188 if(ndp)
1189 *ndp = d.nvec;
1190 return d.vec;
1191error:
1192 xfree(d.vec);
1193 xfree(ss);
1194 return 0;
1195}
1196
f98fcddb 1197/** @brief Compatibility case-fold @p [s,s+ns)
56fd389c
RK
1198 * @param s Pointer to string
1199 * @param ns Length of string
1200 * @param ndp Where to store length of result
f98fcddb 1201 * @return Pointer to result string, or NULL on error
56fd389c
RK
1202 *
1203 * Case-fold the string at @p s according to full default case-folding rules
1204 * (s3.13) for compatibility caseless matching. The result will be in NFKD.
1205 *
1206 * Returns NULL if the string is not valid for either of the following reasons:
1207 * - it codes for a UTF-16 surrogate
1208 * - it codes for a value outside the unicode code space
1209 */
1210uint32_t *utf32_casefold_compat(const uint32_t *s, size_t ns, size_t *ndp) {
1211 struct dynstr_ucs4 d;
1212 uint32_t c;
1213 size_t n;
1214 uint32_t *ss = 0;
1215
bcf9ed7f
RK
1216 for(n = 0; n < ns; ++n)
1217 if(utf32__unidata(s[n])->flags & unicode_normalize_before_casefold)
56fd389c 1218 break;
56fd389c
RK
1219 if(n < ns) {
1220 /* We need a preliminary _canonical_ decomposition */
1221 if(!(ss = utf32_decompose_canon(s, ns, &ns)))
1222 return 0;
1223 s = ss;
1224 }
1225 /* This computes NFKD(toCaseFold(s)) */
1226#define compat_casefold_middle() do { \
1227 dynstr_ucs4_init(&d); \
1228 while(ns) { \
1229 c = *s++; \
1230 if((c >= 0xD800 && c <= 0xDFFF) || c > 0x10FFFF) \
1231 goto error; \
1232 utf32__casefold_one(compat); \
1233 --ns; \
1234 } \
1235 if(utf32__canonical_ordering(d.vec, d.nvec)) \
1236 goto error; \
1237} while(0)
1238 /* Do the inner (NFKD o toCaseFold) */
1239 compat_casefold_middle();
1240 /* We can do away with the NFD'd copy of the input now */
1241 xfree(ss);
1242 s = ss = d.vec;
1243 ns = d.nvec;
1244 /* Do the outer (NFKD o toCaseFold) */
1245 compat_casefold_middle();
1246 /* That's all */
1247 dynstr_ucs4_terminate(&d);
1248 if(ndp)
1249 *ndp = d.nvec;
1250 return d.vec;
1251error:
1252 xfree(d.vec);
1253 xfree(ss);
1254 return 0;
1255}
1256
e5a5a138
RK
1257/** @brief Order a pair of UTF-32 strings
1258 * @param a First 0-terminated string
1259 * @param b Second 0-terminated string
1260 * @return -1, 0 or 1 for a less than, equal to or greater than b
1261 *
1262 * "Comparable to strcmp() at its best."
1263 */
1264int utf32_cmp(const uint32_t *a, const uint32_t *b) {
1265 while(*a && *b && *a == *b) {
1266 ++a;
1267 ++b;
1268 }
1269 return *a < *b ? -1 : (*a > *b ? 1 : 0);
1270}
1271
35b651f0
RK
1272/** @brief Identify a grapheme cluster boundary
1273 * @param s Start of string (must be NFD)
1274 * @param ns Length of string
1275 * @param n Index within string (in [0,ns].)
1276 * @return 1 at a grapheme cluster boundary, 0 otherwise
1277 *
1278 * This function identifies default grapheme cluster boundaries as described in
f98fcddb 1279 * UAX #29 s3. It returns non-0 if @p n points at the code point just after a
35b651f0
RK
1280 * grapheme cluster boundary (including the hypothetical code point just after
1281 * the end of the string).
f98fcddb
RK
1282 *
1283 * This function uses utf32_iterator_set() internally; see that function for
1284 * remarks on performance.
35b651f0 1285 */
1625e11a 1286int utf32_is_grapheme_boundary(const uint32_t *s, size_t ns, size_t n) {
092f426f 1287 struct utf32_iterator_data it[1];
35b651f0 1288
092f426f
RK
1289 utf32__iterator_init(it, s, ns, n);
1290 return utf32_iterator_grapheme_boundary(it);
0b7052da
RK
1291}
1292
1293/** @brief Identify a word boundary
1294 * @param s Start of string (must be NFD)
1295 * @param ns Length of string
1296 * @param n Index within string (in [0,ns].)
1297 * @return 1 at a word boundary, 0 otherwise
1298 *
1299 * This function identifies default word boundaries as described in UAX #29 s4.
f98fcddb 1300 * It returns non-0 if @p n points at the code point just after a word boundary
0b7052da 1301 * (including the hypothetical code point just after the end of the string).
f98fcddb
RK
1302 *
1303 * This function uses utf32_iterator_set() internally; see that function for
1304 * remarks on performance.
0b7052da
RK
1305 */
1306int utf32_is_word_boundary(const uint32_t *s, size_t ns, size_t n) {
092f426f 1307 struct utf32_iterator_data it[1];
0b7052da 1308
092f426f
RK
1309 utf32__iterator_init(it, s, ns, n);
1310 return utf32_iterator_word_boundary(it);
0b7052da
RK
1311}
1312
8818b7fc
RK
1313/** @brief Split [s,ns) into multiple words
1314 * @param s Pointer to start of string
1315 * @param ns Length of string
1316 * @param nwp Where to store word count, or NULL
c85b7022 1317 * @param wbreak Word_Break property tailor, or NULL
8818b7fc
RK
1318 * @return Pointer to array of pointers to words
1319 *
1320 * The returned array is terminated by a NULL pointer and individual
1321 * strings are 0-terminated.
1322 */
c85b7022
RK
1323uint32_t **utf32_word_split(const uint32_t *s, size_t ns, size_t *nwp,
1324 unicode_property_tailor *wbreak) {
8818b7fc
RK
1325 struct utf32_iterator_data it[1];
1326 size_t b1 = 0, b2 = 0 ,i;
1327 int isword;
1328 struct vector32 v32[1];
1329 uint32_t *w;
1330
1331 vector32_init(v32);
1332 utf32__iterator_init(it, s, ns, 0);
c85b7022 1333 it->word_break = wbreak;
8818b7fc
RK
1334 /* Work our way through the string stopping at each word break. */
1335 do {
1336 if(utf32_iterator_word_boundary(it)) {
1337 /* We've found a new boundary */
1338 b1 = b2;
1339 b2 = it->n;
1340 /*fprintf(stderr, "[%zu, %zu) is a candidate word\n", b1, b2);*/
1341 /* Inspect the characters between the boundary and form an opinion as to
1342 * whether they are a word or not */
1343 isword = 0;
1344 for(i = b1; i < b2; ++i) {
c85b7022 1345 switch(utf32__iterator_word_break(it, it->s[i])) {
8818b7fc
RK
1346 case unicode_Word_Break_ALetter:
1347 case unicode_Word_Break_Numeric:
1348 case unicode_Word_Break_Katakana:
1349 isword = 1;
1350 break;
1351 default:
1352 break;
1353 }
1354 }
1355 /* If it's a word add it to the list of results */
1356 if(isword) {
1357 w = xcalloc(b2 - b1 + 1, sizeof(uint32_t));
1358 memcpy(w, it->s + b1, (b2 - b1) * sizeof (uint32_t));
1359 vector32_append(v32, w);
1360 }
1361 }
1362 } while(!utf32_iterator_advance(it, 1));
1363 vector32_terminate(v32);
1364 if(nwp)
1365 *nwp = v32->nvec;
1366 return v32->vec;
1367}
1368
e5a5a138 1369/*@}*/
349b7b74 1370/** @defgroup utf8 Functions that operate on UTF-8 strings */
e5a5a138
RK
1371/*@{*/
1372
1373/** @brief Wrapper to transform a UTF-8 string using the UTF-32 function */
1374#define utf8__transform(FN) do { \
1375 uint32_t *to32 = 0, *decomp32 = 0; \
1376 size_t nto32, ndecomp32; \
1377 char *decomp8 = 0; \
1378 \
1379 if(!(to32 = utf8_to_utf32(s, ns, &nto32))) goto error; \
1380 if(!(decomp32 = FN(to32, nto32, &ndecomp32))) goto error; \
1381 decomp8 = utf32_to_utf8(decomp32, ndecomp32, ndp); \
1382error: \
1383 xfree(to32); \
1384 xfree(decomp32); \
1385 return decomp8; \
1386} while(0)
1387
1388/** @brief Canonically decompose @p [s,s+ns)
1389 * @param s Pointer to string
1390 * @param ns Length of string
1391 * @param ndp Where to store length of result
f98fcddb 1392 * @return Pointer to result string, or NULL on error
e5a5a138 1393 *
0ae60b83
RK
1394 * Computes NFD (Normalization Form D) of the string at @p s. This implies
1395 * performing all canonical decompositions and then normalizing the order of
1396 * combining characters.
e5a5a138
RK
1397 *
1398 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1399 * this might be.
1400 *
0ae60b83
RK
1401 * See also:
1402 * - utf32_decompose_canon().
1403 * - utf8_decompose_compat()
1404 * - utf8_compose_canon()
e5a5a138
RK
1405 */
1406char *utf8_decompose_canon(const char *s, size_t ns, size_t *ndp) {
1407 utf8__transform(utf32_decompose_canon);
1408}
1409
1410/** @brief Compatibility decompose @p [s,s+ns)
1411 * @param s Pointer to string
1412 * @param ns Length of string
1413 * @param ndp Where to store length of result
f98fcddb 1414 * @return Pointer to result string, or NULL on error
e5a5a138 1415 *
0ae60b83
RK
1416 * Computes NFKD (Normalization Form KD) of the string at @p s. This implies
1417 * performing all canonical and compatibility decompositions and then
1418 * normalizing the order of combining characters.
e5a5a138
RK
1419 *
1420 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1421 * this might be.
1422 *
0ae60b83
RK
1423 * See also:
1424 * - utf32_decompose_compat().
1425 * - utf8_decompose_canon()
1426 * - utf8_compose_compat()
e5a5a138
RK
1427 */
1428char *utf8_decompose_compat(const char *s, size_t ns, size_t *ndp) {
1429 utf8__transform(utf32_decompose_compat);
1430}
1431
0ae60b83
RK
1432/** @brief Canonically compose @p [s,s+ns)
1433 * @param s Pointer to string
1434 * @param ns Length of string
1435 * @param ndp Where to store length of result
1436 * @return Pointer to result string, or NULL on error
1437 *
1438 * Computes NFC (Normalization Form C) of the string at @p s. This implies
1439 * performing all canonical decompositions, normalizing the order of combining
1440 * characters and then composing all unblocked primary compositables.
1441 *
1442 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1443 * this might be.
1444 *
1445 * See also:
1446 * - utf32_compose_canon()
1447 * - utf8_compose_compat()
1448 * - utf8_decompose_canon()
1449 */
1450char *utf8_compose_canon(const char *s, size_t ns, size_t *ndp) {
1451 utf8__transform(utf32_compose_canon);
1452}
1453
1454/** @brief Compatibility compose @p [s,s+ns)
1455 * @param s Pointer to string
1456 * @param ns Length of string
1457 * @param ndp Where to store length of result
1458 * @return Pointer to result string, or NULL on error
1459 *
1460 * Computes NFKC (Normalization Form KC) of the string at @p s. This implies
1461 * performing all canonical and compatibility decompositions, normalizing the
1462 * order of combining characters and then composing all unblocked primary
1463 * compositables.
1464 *
1465 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1466 * this might be.
1467 *
1468 * See also:
1469 * - utf32_compose_compat()
1470 * - utf8_compose_canon()
1471 * - utf8_decompose_compat()
1472 */
1473char *utf8_compose_compat(const char *s, size_t ns, size_t *ndp) {
1474 utf8__transform(utf32_compose_compat);
1475}
1476
e5a5a138
RK
1477/** @brief Case-fold @p [s,s+ns)
1478 * @param s Pointer to string
1479 * @param ns Length of string
1480 * @param ndp Where to store length of result
f98fcddb 1481 * @return Pointer to result string, or NULL on error
e5a5a138
RK
1482 *
1483 * Case-fold the string at @p s according to full default case-folding rules
1484 * (s3.13). The result will be in NFD.
1485 *
1486 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1487 * this might be.
1488 */
1489char *utf8_casefold_canon(const char *s, size_t ns, size_t *ndp) {
1490 utf8__transform(utf32_casefold_canon);
1491}
1492
1493/** @brief Compatibility case-fold @p [s,s+ns)
1494 * @param s Pointer to string
1495 * @param ns Length of string
1496 * @param ndp Where to store length of result
f98fcddb 1497 * @return Pointer to result string, or NULL on error
e5a5a138
RK
1498 *
1499 * Case-fold the string at @p s according to full default case-folding rules
1500 * (s3.13). The result will be in NFKD.
1501 *
1502 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1503 * this might be.
1504 */
e5a5a138
RK
1505char *utf8_casefold_compat(const char *s, size_t ns, size_t *ndp) {
1506 utf8__transform(utf32_casefold_compat);
1507}
e5a5a138 1508
8818b7fc
RK
1509/** @brief Split [s,ns) into multiple words
1510 * @param s Pointer to start of string
1511 * @param ns Length of string
1512 * @param nwp Where to store word count, or NULL
c85b7022 1513 * @param wbreak Word_Break property tailor, or NULL
8818b7fc
RK
1514 * @return Pointer to array of pointers to words
1515 *
1516 * The returned array is terminated by a NULL pointer and individual
1517 * strings are 0-terminated.
1518 */
c85b7022
RK
1519char **utf8_word_split(const char *s, size_t ns, size_t *nwp,
1520 unicode_property_tailor *wbreak) {
8818b7fc
RK
1521 uint32_t *to32 = 0, **v32 = 0;
1522 size_t nto32, nv, n;
1523 char **v8 = 0, **ret = 0;
c85b7022 1524
8818b7fc 1525 if(!(to32 = utf8_to_utf32(s, ns, &nto32))) goto error;
c85b7022 1526 if(!(v32 = utf32_word_split(to32, nto32, &nv, wbreak))) goto error;
8818b7fc
RK
1527 v8 = xcalloc(sizeof (char *), nv + 1);
1528 for(n = 0; n < nv; ++n)
1529 if(!(v8[n] = utf32_to_utf8(v32[n], utf32_len(v32[n]), 0)))
1530 goto error;
1531 ret = v8;
1532 *nwp = nv;
1533 v8 = 0; /* don't free */
c85b7022 1534error:
8818b7fc
RK
1535 if(v8) {
1536 for(n = 0; n < nv; ++n)
1537 xfree(v8[n]);
1538 xfree(v8);
1539 }
1540 if(v32) {
1541 for(n = 0; n < nv; ++n)
1542 xfree(v32[n]);
1543 xfree(v32);
1544 }
1545 xfree(to32);
1546 return ret;
1547}
1548
1549
e5a5a138
RK
1550/*@}*/
1551
1552/*
1553Local Variables:
1554c-basic-offset:2
1555comment-column:40
1556fill-column:79
1557indent-tabs-mode:nil
1558End:
1559*/