3 * Efficient reduction modulo sparse binary polynomials
5 * (c) 2004 Straylight/Edgeware
8 /*----- Licensing notice --------------------------------------------------*
10 * This file is part of Catacomb.
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
28 /*----- Header files ------------------------------------------------------*/
30 #include <mLib/alloc.h>
31 #include <mLib/darray.h>
32 #include <mLib/macros.h>
36 #include "gfreduce-exp.h"
40 /*----- Data structures ---------------------------------------------------*/
42 DA_DECL(instr_v, gfreduce_instr);
44 /*----- Main code ---------------------------------------------------------*/
46 /* --- What's going on here? --- *
48 * Let's face it, @gfx_div@ sucks. It works (I hope), but it's not in any
49 * sense fast. Here, we do efficient reduction modulo sparse polynomials.
50 * (It works for arbitrary polynomials, but isn't efficient for dense ones.)
52 * Suppose that %$p = x^n + p'$% where %$p' = \sum_{0\le i<n} p_i x^i$%,
53 * hopefully with only a few %$p_i \ne 0$%. We're going to compile %$p$%
54 * into a sequence of instructions which can be used to perform reduction
55 * modulo %$p$%. The important observation is that
56 * %$x^n \equiv p' \pmod p$%.
58 * Suppose we're working with %$w$%-bit words; let %$n = N w + n'$% with
59 * %$0 \le n' < w$%. Let %$u(x)$% be some arbitrary polynomial. Write
60 * %$u = z x^k + u'$% with %$\deg u' < k \ge n$%. Then a reduction step uses
61 * that %$u \equiv u' + z p' x^{k-n} \pmod p$%: the right hand side has
62 * degree %$\max \{ \deg u', k + \deg p' - n + \deg z \} < \deg u$%, so this
63 * makes progress towards a complete reduction.
65 * The compiled instruction sequence computes
66 * %$u' + z p' x^{k-n} = u' + \sum_{0\le i<n} z x^{k-n+i}$%.
69 /* --- @gfreduce_create@ --- *
71 * Arguments: @gfreduce *r@ = structure to fill in
72 * @mp *x@ = a (hopefully sparse) polynomial
76 * Use: Initializes a context structure for reduction.
80 unsigned f; /* Flags */
81 #define f_lsr 1u /* Overflow from previous word */
82 #define f_load 2u /* Outstanding @LOAD@ */
83 #define f_fip 4u /* Final-pass offset is set */
84 instr_v iv; /* Instruction vector */
85 size_t fip; /* Offset for final-pass reduction */
86 size_t w; /* Currently loaded target word */
87 size_t wi; /* Left-shifts for current word */
88 gfreduce *r; /* Reduction context pointer */
91 #define INSTR(g_, op_, arg_) do { \
92 struct gen *_g = (g_); \
93 instr_v *_iv = &_g->iv; \
94 size_t _i = DA_LEN(_iv); \
97 DA(_iv)[_i].op = (op_); \
98 DA(_iv)[_i].arg = (arg_); \
102 static void emit_load(struct gen *g, size_t w)
104 /* --- If this is not the low-order word then note final-pass start --- *
106 * Once we've eliminated the whole high-degree words, there will possibly
107 * remain a few high-degree bits. We can further reduce the subject
108 * polynomial by subtracting an appropriate multiple of %$p'$%, but if we
109 * do this naively we'll end up addressing `low-order' words beyond the
110 * bottom of our input. We solve this problem by storing an alternative
111 * start position for this final pass (which works because we scan bits
115 if (!(g->f & f_fip) && w < g->r->lim) {
116 g->fip = DA_LEN(&g->iv);
120 /* --- Actually emit the instruction --- */
122 INSTR(g, GFRI_LOAD, w);
127 static void emit_right_shifts(struct gen *g)
132 /* --- Close off the current word --- *
134 * If we shifted into this current word with a nonzero bit offset, then
135 * we'll also need to arrange to perform a sequence of right shifts into
136 * the following word, which we might as well do by scanning the
137 * instruction sequence (which starts at @wi@).
139 * Either way, we leave a @LOAD@ unmatched if there was one before, in the
140 * hope that callers have an easier time; @g->w@ is updated to reflect the
141 * currently open word.
148 INSTR(g, GFRI_STORE, g->w);
149 emit_load(g, g->w - 1);
150 for (i = g->wi; i < wl; i++) {
152 assert(ip->op == GFRI_LSL);
154 INSTR(g, GFRI_LSR, MPW_BITS - ip->arg);
159 static void ensure_loaded(struct gen *g, size_t w)
161 if (!(g->f & f_load)) {
163 g->wi = DA_LEN(&g->iv);
164 } else if (w != g->w) {
165 emit_right_shifts(g);
167 INSTR(g, GFRI_STORE, g->w);
170 g->wi = DA_LEN(&g->iv);
174 void gfreduce_create(gfreduce *r, mp *p)
176 struct gen g = { 0, DA_INIT };
183 /* --- Sort out the easy stuff --- */
186 d = mp_bits(p); assert(d); d--;
192 r->mask = MPW(((mpw)-1) << dw);
197 /* --- How this works --- *
199 * The instruction sequence is run with two ambient parameters: a pointer
200 * (usually) just past the most significant word of the polynomial to be
201 * reduced; and a word %$z$% which is the multiple of %$p'$% we are meant
204 * The sequence visits each word of the polynomial at most once. Suppose
205 * %$u = z x^{w N} + u'$%; our pointer points just past the end of %$u'$%.
206 * Word %$I$% of %$u'$% will be affected by modulus bits %$p_i$% where
207 * %$(N - I - 1) w + 1 \le i \le (N - I + 1) w - 1$%, so %$p_i$% affects
208 * word %$I = \lceil (n - i + 1)/w \rceil$% and (if %$i$% is not a multiple
209 * of %$w$%) also word %$I - 1$%.
211 * We have four instructions: @LOAD@ reads a specified word of %$u$% into an
212 * accumulator, and @STORE@ stores it back (we'll always store back to the
213 * same word we most recently read, but this isn't a requirement); and
214 * @LSL@ and @LSR@, which XOR in appropriately shifted copies of %$z$% into
215 * the accumulator. So a typical program will contain sequences of @LSR@
216 * and @LSL@ instructions sandwiched between @LOAD@/@STORE@ pairs.
218 * We do a single right-to-left pass across %$p$%.
223 for (i = 0, mp_scan(&sc, p); mp_step(&sc) && i < d; i++) {
227 /* --- We've found a set bit, so work out which word it affects --- *
229 * In general, a bit affects two words: it needs to be shifted left into
230 * one, and shifted right into the next. We find the former here.
233 w = (d - i + MPW_BITS - 1)/MPW_BITS;
235 /* --- Concentrate on the appropriate word --- */
237 ensure_loaded(&g, w);
239 /* --- Accumulate a new @LSL@ instruction --- *
241 * If this was a nonzero shift, then we'll need to arrange to do right
242 * shifts into the following word.
245 INSTR(&g, GFRI_LSL, (bb + i)%MPW_BITS);
246 if ((bb + i)%MPW_BITS)
250 /* --- Wrapping up --- *
252 * We probably need a final @STORE@, and maybe a sequence of right shifts.
256 emit_right_shifts(&g);
257 INSTR(&g, GFRI_STORE, g.w);
260 /* --- Copy the instruction vector.
262 * If we've not set a final-pass offset yet then now would be an excellent
263 * time. Obviously it should be right at the end, because there's nothing
264 * for a final pass to do.
267 r->in = DA_LEN(&g.iv);
268 r->iv = xmalloc(r->in * sizeof(gfreduce_instr));
269 memcpy(r->iv, DA(&g.iv), r->in * sizeof(gfreduce_instr));
271 if (!(g.f & f_fip)) g.fip = DA_LEN(&g.iv);
272 r->fiv = r->iv + g.fip;
283 /* --- @gfreduce_destroy@ --- *
285 * Arguments: @gfreduce *r@ = structure to free
289 * Use: Reclaims the resources from a reduction context.
292 void gfreduce_destroy(gfreduce *r)
298 /* --- @gfreduce_dump@ --- *
300 * Arguments: @const gfreduce *r@ = structure to dump
301 * @FILE *fp@ = file to dump on
305 * Use: Dumps a reduction context.
308 void gfreduce_dump(const gfreduce *r, FILE *fp)
312 fprintf(fp, "poly = "); mp_writefile(r->p, fp, 16);
313 fprintf(fp, "\n lim = %lu; mask = %lx\n",
314 (unsigned long)r->lim, (unsigned long)r->mask);
315 for (i = 0; i < r->in; i++) {
316 static const char *opname[] = { "load", "lsl", "lsr", "store" };
317 if (&r->iv[i] == r->fiv)
318 fputs("final:\n", fp);
319 assert(r->iv[i].op < N(opname));
320 fprintf(fp, " %s %lu\n",
322 (unsigned long)r->iv[i].arg);
324 if (&r->iv[i] == r->fiv)
325 fputs("final:\n", fp);
328 /* --- @gfreduce_do@ --- *
330 * Arguments: @const gfreduce *r@ = reduction context
331 * @mp *d@ = destination
334 * Returns: Destination, @x@ reduced modulo the reduction poly.
337 static void run(const gfreduce_instr *i, const gfreduce_instr *il,
342 for (; i < il; i++) {
344 case GFRI_LOAD: w = *(v - i->arg); break;
345 case GFRI_LSL: w ^= z << i->arg; break;
346 case GFRI_LSR: w ^= z >> i->arg; break;
347 case GFRI_STORE: *(v - i->arg) = MPW(w); break;
353 mp *gfreduce_do(const gfreduce *r, mp *d, mp *x)
356 const gfreduce_instr *il;
359 /* --- Try to reuse the source's space --- */
363 MP_DEST(x, MP_LEN(x), x->f);
365 /* --- Do the reduction --- */
368 if (MP_LEN(x) >= r->lim) {
375 run(r->iv, il, vl, z);
379 while (*vl & r->mask) {
382 run(r->fiv, il, vl, z);
393 /* --- @gfreduce_sqrt@ --- *
395 * Arguments: @const gfreduce *r@ = pointer to reduction context
396 * @mp *d@ = destination
397 * @mp *x@ = some polynomial
399 * Returns: The square root of @x@ modulo @r->p@, or null.
402 mp *gfreduce_sqrt(const gfreduce *r, mp *d, mp *x)
405 mp *z, *spare = MP_NEW;
406 unsigned long m = mp_bits(r->p) - 1;
409 /* --- This is pretty easy --- *
411 * Note that %$x = x^{2^m}$%; therefore %$(x^{2^{m-1}})^2 = x^{2^m} = x$%,
412 * so %$x^{2^{m-1}}$% is the square root we seek.
415 for (i = 0; i < m - 1; i++) {
416 mp *t = gf_sqr(spare, y);
418 y = gfreduce_do(r, t, t);
420 z = gf_sqr(spare, y);
421 z = gfreduce_do(r, z, z);
431 /* --- @gfreduce_trace@ --- *
433 * Arguments: @const gfreduce *r@ = pointer to reduction context
434 * @mp *x@ = some polynomial
436 * Returns: The trace of @x@. (%$\Tr(x)=x + x^2 + \cdots + x^{2^{m-1}}$%
437 * if %$x \in \gf{2^m}$%). Since the trace is invariant under
438 * the Frobenius automorphism (i.e., %$\Tr(x)^2 = \Tr(x)$%), it
439 * must be an element of the base field, i.e., %$\gf{2}$%, and
440 * we only need a single bit to represent it.
443 int gfreduce_trace(const gfreduce *r, mp *x)
447 unsigned long m = mp_bits(r->p) - 1;
451 for (i = 0; i < m - 1; i++) {
452 mp *t = gf_sqr(spare, y);
454 y = gfreduce_do(r, t, t);
463 /* --- @gfreduce_halftrace@ --- *
465 * Arguments: @const gfreduce *r@ = pointer to reduction context
466 * @mp *d@ = destination
467 * @mp *x@ = some polynomial
469 * Returns: The half-trace of @x@.
470 * (%$\HfTr(x)= x + x^{2^2} + \cdots + x^{2^{m-1}}$%
471 * if %$x \in \gf{2^m}$% with %$m$% odd).
474 mp *gfreduce_halftrace(const gfreduce *r, mp *d, mp *x)
478 unsigned long m = mp_bits(r->p) - 1;
482 for (i = 0; i < m - 1; i += 2) {
483 mp *t = gf_sqr(spare, y);
485 y = gfreduce_do(r, t, t);
486 t = gf_sqr(spare, y);
488 y = gfreduce_do(r, t, t);
495 /* --- @gfreduce_quadsolve@ --- *
497 * Arguments: @const gfreduce *r@ = pointer to reduction context
498 * @mp *d@ = destination
499 * @mp *x@ = some polynomial
501 * Returns: A polynomial @z@ such that %$z^2 + z = x$%, or null.
503 * Use: Solves quadratic equations in a field with characteristic 2.
504 * Suppose we have an equation %$y^2 + A y + B = 0$% where
505 * %$A \ne 0$%. (If %$A = 0$% then %$y = \sqrt{B}$% and you
506 * want @gfreduce_sqrt@ instead.) Use this function to solve
507 * %$z^2 + z = B/A^2$%; then set %$y = A z$%, since
508 * %$y^2 + y = A^2 z^2 + A^2 z = A^2 (z^2 + z) = B$% as
511 * The two roots are %$z$% and %$z + 1$%; this function always
512 * returns the one with zero scalar coefficient.
515 mp *gfreduce_quadsolve(const gfreduce *r, mp *d, mp *x)
517 unsigned long m = mp_bits(r->p) - 1;
520 /* --- About the solutions --- *
522 * Factor %$z^2 + z = z (z + 1)$%. Therefore, if %$z^2 + z = x$% and
523 * %$z' = z + 1$% then %$z'^2 + z' = z^2 + 1 + z + 1 = z^2 + z$%, so
524 * %$z + 1$% is the other solution.
526 * A solution exists if and only if %$\Tr(x) = 0$%. To see the `only if'
527 * implication, recall that the trace function is linear, and hence
528 * $%\Tr(z^2 + z) = \Tr(z)^2 + \Tr(z) = \Tr(z) + \Tr(z) = 0$%. The `if'
529 * direction will be proven using explicit constructions captured in the
536 /* --- A short-cut for fields with odd degree ---
538 * The method below works in all binary fields, but there's a quicker way
539 * which works whenever the degree is odd. The half-trace is
540 * %$z = \sum_{0\le i\le (m-1)/2} x^{2^{2i}}$%. Then %$z^2 + z = {}$%
541 * %$\sum_{0\le i\le (m-1)/2} (x^{2^{2i}} + x^{2^{2i+1}}) = {}$%
542 * %$\Tr(x) + x^{2^m} = \Tr(x) + x$%. This therefore gives us the
543 * solution we want whenever %$\Tr(x) = 0$%.
546 d = gfreduce_halftrace(r, d, x);
548 mp *z, *w, *rho = MP_NEW;
550 grand *fr = fibrand_create(0);
553 /* --- Unpicking the magic --- *
555 * Choose %$\rho \inr \gf{2^m}$% with %$\Tr(\rho) = 1$%. Let
556 * %$z = \sum_{0\le i<m} \rho^{2^i} \sum_{0\le j<i} x^{2^j} = {}$%
557 * %$\rho^2 x + \rho^4 (x + x^2) + \rho^8 (x + x^2 + x^4) + \cdots + {}$%
558 * %$\rho^{2^{m-1}} (x + x^2 + x^{2^{m-2}})$%. Then %$z^2 = {}$%
559 * %$\sum_{0\le i<m} \rho^{2^{i+1}} \sum_{0\le j<i} x^{2^{j+1}} = {}$%
560 * %$\sum_{1\le i\le m} \rho^{2^i} \sum_{1\le j\le i} x^{2^j}$% and,
561 * somewhat miraculously, %$z^2 + z = \sum_{0\le i<m} \rho^{2^i} x + {}$%
562 * %$\rho \sum_{1\le i<m} x^{2^i} = x \Tr(\rho) + \rho \Tr(x)$%. Again,
563 * this gives us the root we want whenever %$\Tr(x) = 0$%.
565 * The loop below calculates %$w = \Tr(\rho)$% and %$z$% simultaneously,
566 * since the same powers of %$\rho$% are wanted in both calculations.
570 rho = mprand(rho, m, fr, 0);
573 for (i = 0; i < m - 1; i++) {
574 t = gf_sqr(spare, z); spare = z; z = gfreduce_do(r, t, t);
575 t = gf_sqr(spare, w); spare = w; w = gfreduce_do(r, t, t);
576 t = gf_mul(spare, w, x); t = gfreduce_do(r, t, t); spare = t;
578 w = gf_add(w, w, rho);
589 fr->ops->destroy(fr);
593 /* --- Check that we calculated the right answer --- *
595 * It should be correct; if it's not then maybe the ring we're working in
596 * isn't really a field.
599 t = gf_sqr(MP_NEW, d); t = gfreduce_do(r, t, t); t = gf_add(t, t, d);
607 /* --- Pick a canonical root --- *
609 * The two roots are %$z$% and %$z + 1$%; pick the one with a zero
610 * scalar coefficient just for consistency's sake.
613 if (d) d->v[0] &= ~(mpw)1;
617 /* --- @gfreduce_exp@ --- *
619 * Arguments: @const gfreduce *gr@ = pointer to reduction context
620 * @mp *d@ = fake destination
624 * Returns: Result, %$a^e \bmod m$%.
627 mp *gfreduce_exp(const gfreduce *gr, mp *d, mp *a, mp *e)
630 mp *spare = (e->f & MP_BURN) ? MP_NEWSEC : MP_NEW;
638 a = gf_modinv(a, a, gr->p);
639 if (MP_LEN(e) < EXP_THRESH)
650 /*----- Test rig ----------------------------------------------------------*/
654 static int vreduce(dstr *v)
656 mp *d = *(mp **)v[0].buf;
657 mp *n = *(mp **)v[1].buf;
658 mp *r = *(mp **)v[2].buf;
663 gfreduce_create(&rr, d);
664 c = gfreduce_do(&rr, MP_NEW, n);
666 fprintf(stderr, "\n*** reduction failed\n*** ");
667 gfreduce_dump(&rr, stderr);
668 fprintf(stderr, "\n*** n = "); mp_writefile(n, stderr, 16);
669 fprintf(stderr, "\n*** r = "); mp_writefile(r, stderr, 16);
670 fprintf(stderr, "\n*** c = "); mp_writefile(c, stderr, 16);
671 fprintf(stderr, "\n");
674 gfreduce_destroy(&rr);
675 mp_drop(n); mp_drop(d); mp_drop(r); mp_drop(c);
676 assert(mparena_count(MPARENA_GLOBAL) == 0);
680 static int vmodexp(dstr *v)
682 mp *p = *(mp **)v[0].buf;
683 mp *g = *(mp **)v[1].buf;
684 mp *x = *(mp **)v[2].buf;
685 mp *r = *(mp **)v[3].buf;
690 gfreduce_create(&rr, p);
691 c = gfreduce_exp(&rr, MP_NEW, g, x);
693 fprintf(stderr, "\n*** modexp failed\n*** ");
694 fprintf(stderr, "\n*** p = "); mp_writefile(p, stderr, 16);
695 fprintf(stderr, "\n*** g = "); mp_writefile(g, stderr, 16);
696 fprintf(stderr, "\n*** x = "); mp_writefile(x, stderr, 16);
697 fprintf(stderr, "\n*** c = "); mp_writefile(c, stderr, 16);
698 fprintf(stderr, "\n*** r = "); mp_writefile(r, stderr, 16);
699 fprintf(stderr, "\n");
702 gfreduce_destroy(&rr);
703 mp_drop(p); mp_drop(g); mp_drop(r); mp_drop(x); mp_drop(c);
704 assert(mparena_count(MPARENA_GLOBAL) == 0);
708 static int vsqrt(dstr *v)
710 mp *p = *(mp **)v[0].buf;
711 mp *x = *(mp **)v[1].buf;
712 mp *r = *(mp **)v[2].buf;
717 gfreduce_create(&rr, p);
718 c = gfreduce_sqrt(&rr, MP_NEW, x);
720 fprintf(stderr, "\n*** sqrt failed\n*** ");
721 fprintf(stderr, "\n*** p = "); mp_writefile(p, stderr, 16);
722 fprintf(stderr, "\n*** x = "); mp_writefile(x, stderr, 16);
723 fprintf(stderr, "\n*** c = "); mp_writefile(c, stderr, 16);
724 fprintf(stderr, "\n*** r = "); mp_writefile(r, stderr, 16);
725 fprintf(stderr, "\n");
728 gfreduce_destroy(&rr);
729 mp_drop(p); mp_drop(r); mp_drop(x); mp_drop(c);
730 assert(mparena_count(MPARENA_GLOBAL) == 0);
734 static int vtr(dstr *v)
736 mp *p = *(mp **)v[0].buf;
737 mp *x = *(mp **)v[1].buf;
738 int r = *(int *)v[2].buf, c;
742 gfreduce_create(&rr, p);
743 c = gfreduce_trace(&rr, x);
745 fprintf(stderr, "\n*** trace failed\n*** ");
746 fprintf(stderr, "\n*** p = "); mp_writefile(p, stderr, 16);
747 fprintf(stderr, "\n*** x = "); mp_writefile(x, stderr, 16);
748 fprintf(stderr, "\n*** c = %d", c);
749 fprintf(stderr, "\n*** r = %d", r);
750 fprintf(stderr, "\n");
753 gfreduce_destroy(&rr);
754 mp_drop(p); mp_drop(x);
755 assert(mparena_count(MPARENA_GLOBAL) == 0);
759 static int vhftr(dstr *v)
761 mp *p = *(mp **)v[0].buf;
762 mp *x = *(mp **)v[1].buf;
763 mp *r = *(mp **)v[2].buf;
768 gfreduce_create(&rr, p);
769 c = gfreduce_halftrace(&rr, MP_NEW, x);
771 fprintf(stderr, "\n*** halftrace failed\n*** ");
772 fprintf(stderr, "\n*** p = "); mp_writefile(p, stderr, 16);
773 fprintf(stderr, "\n*** x = "); mp_writefile(x, stderr, 16);
774 fprintf(stderr, "\n*** c = "); mp_writefile(c, stderr, 16);
775 fprintf(stderr, "\n*** r = "); mp_writefile(r, stderr, 16);
776 fprintf(stderr, "\n");
779 gfreduce_destroy(&rr);
780 mp_drop(p); mp_drop(r); mp_drop(x); mp_drop(c);
781 assert(mparena_count(MPARENA_GLOBAL) == 0);
785 static int vquad(dstr *v)
787 mp *p = *(mp **)v[0].buf;
788 mp *x = *(mp **)v[1].buf;
789 mp *r = *(mp **)v[2].buf;
794 gfreduce_create(&rr, p);
795 c = gfreduce_quadsolve(&rr, MP_NEW, x);
797 fprintf(stderr, "\n*** quadsolve failed\n*** ");
798 fprintf(stderr, "\n*** p = "); mp_writefile(p, stderr, 16);
799 fprintf(stderr, "\n*** x = "); mp_writefile(x, stderr, 16);
800 fprintf(stderr, "\n*** c = "); mp_writefile(c, stderr, 16);
801 fprintf(stderr, "\n*** r = "); mp_writefile(r, stderr, 16);
802 fprintf(stderr, "\n");
805 gfreduce_destroy(&rr);
806 mp_drop(p); mp_drop(r); mp_drop(x); mp_drop(c);
807 assert(mparena_count(MPARENA_GLOBAL) == 0);
811 static test_chunk defs[] = {
812 { "reduce", vreduce, { &type_mp, &type_mp, &type_mp, 0 } },
813 { "modexp", vmodexp, { &type_mp, &type_mp, &type_mp, &type_mp, 0 } },
814 { "sqrt", vsqrt, { &type_mp, &type_mp, &type_mp, 0 } },
815 { "trace", vtr, { &type_mp, &type_mp, &type_int, 0 } },
816 { "halftrace", vhftr, { &type_mp, &type_mp, &type_mp, 0 } },
817 { "quadsolve", vquad, { &type_mp, &type_mp, &type_mp, 0 } },
821 int main(int argc, char *argv[])
823 test_run(argc, argv, defs, SRCDIR"/t/gfreduce");
829 /*----- That's all, folks -------------------------------------------------*/