3 * Abstraction for prime groups
5 * (c) 2004 Straylight/Edgeware
8 /*----- Licensing notice --------------------------------------------------*
10 * This file is part of Catacomb.
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
28 /*----- Header files ------------------------------------------------------*/
37 #include "group-guts.h"
39 /*----- Main code ---------------------------------------------------------*/
41 /* --- Group operations --- */
43 static void gdestroygroup(group *gg) {
44 gctx_prime *g = (gctx_prime *)gg;
45 mp_drop(g->gen); mp_drop(g->g.r); mp_drop(g->g.h);
46 mpmont_destroy(&g->mm);
50 static mp **gcreate(group *gg)
51 { mp **x = CREATE(mp *); *x = MP_COPY(*gg->i); return (x); }
53 static void gcopy(group *gg, mp **d, mp **x)
54 { mp *t = MP_COPY(*x); MP_DROP(*d); *d = t; }
56 static void gburn(group *gg, mp **x) { (*x)->f |= MP_BURN; }
58 static void gdestroy(group *gg, mp **x) { MP_DROP(*x); DESTROY(x); }
60 static int gsamep(group *gg, group *hh) {
61 gctx_prime *g = (gctx_prime *)gg, *h = (gctx_prime *)hh;
62 return (MP_EQ(g->mm.m, h->mm.m));
65 static int geq(group *gg, mp **x, mp **y) { return (MP_EQ(*x, *y)); }
67 static const char *gcheck(group *gg, grand *gr) {
68 gctx_prime *g = (gctx_prime *)gg; int rc; mp *t;
69 if (!pgen_primep(g->mm.m, gr)) return ("p is not prime");
70 t = mp_mul(MP_NEW, g->g.r, g->g.h); t = mp_add(t, t, MP_ONE);
71 rc = MP_EQ(t, g->mm.m); MP_DROP(t); if (!rc) return ("not a subgroup");
72 return (group_stdcheck(gg, gr));
75 static void gmul(group *gg, mp **d, mp **x, mp **y)
76 { gctx_prime *g = (gctx_prime *)gg; *d = mpmont_mul(&g->mm, *d, *x, *y); }
78 static void gsqr(group *gg, mp **d, mp **x) {
79 gctx_prime *g = (gctx_prime *)gg; mp *r = mp_sqr(*d, *x);
80 *d = mpmont_reduce(&g->mm, r, r);
83 static void ginv(group *gg, mp **d, mp **x) {
84 gctx_prime *g = (gctx_prime *)gg; mp *r = mpmont_reduce(&g->mm, *d, *x);
85 r = mp_modinv(r, r, g->mm.m); *d = mpmont_mul(&g->mm, r, r, g->mm.r2);
88 static void gexp(group *gg, mp **d, mp **x, mp *n)
89 { gctx_prime *g = (gctx_prime *)gg; *d = mpmont_expr(&g->mm, *d, *x, n); }
91 static void gmexp(group *gg, mp **d, const group_expfactor *f, size_t n) {
92 gctx_prime *g = (gctx_prime *)gg; size_t i;
93 mp_expfactor *ff = xmalloc(n * sizeof(mp_expfactor));
94 for (i = 0; i < n; i++) { ff[i].base = *f[i].base; ff[i].exp = f[i].exp; }
95 *d = mpmont_mexpr(&g->mm, *d, ff, n); xfree(ff);
98 static int gread(group *gg, mp **d, const mptext_ops *ops, void *p) {
99 gctx_prime *g = (gctx_prime *)gg; mp *t;
100 if ((t = mp_read(MP_NEW, 0, ops, p)) == 0) return (-1);
101 mp_drop(*d); *d = mpmont_mul(&g->mm, t, t, g->mm.r2); return (0);
104 static int gwrite(group *gg, mp **x, const mptext_ops *ops, void *p) {
105 gctx_prime *g = (gctx_prime *)gg;
106 mp *t = mpmont_reduce(&g->mm, MP_NEW, *x);
107 int rc = mp_write(t, 10, ops, p); MP_DROP(t); return (rc);
110 static mp *gtoint(group *gg, mp *d, mp **x) {
111 gctx_prime *g = (gctx_prime *)gg;
112 return (mpmont_reduce(&g->mm, d, *x));
115 static int gfromint(group *gg, mp **d, mp *x) {
116 gctx_prime *g = (gctx_prime *)gg; mp_div(0, d, x, g->mm.m);
117 *d = mpmont_mul(&g->mm, *d, *d, g->mm.r2); return (0);
120 static int gtobuf(group *gg, buf *b, mp **x) {
121 gctx_prime *g = (gctx_prime *)gg;
122 mp *t = mpmont_reduce(&g->mm, MP_NEW, *x);
123 int rc = buf_putmp(b, t); MP_DROP(t); return (rc);
126 static int gfrombuf(group *gg, buf *b, mp **d) {
127 gctx_prime * g = (gctx_prime *)gg; mp *x;
128 if ((x = buf_getmp(b)) == 0) return (-1);
129 mp_div(0, &x, x, g->mm.m); mp_drop(*d);
130 *d = mpmont_mul(&g->mm, x, x, g->mm.r2); return(0);
133 static int gtoraw(group *gg, buf *b, mp **x) {
134 gctx_prime *g = (gctx_prime *)gg; octet *q;
135 mp *t = mpmont_reduce(&g->mm, MP_NEW, *x);
136 if ((q = buf_get(b, g->g.noctets)) == 0) { MP_DROP(t); return (-1); }
137 mp_storeb(t, q, g->g.noctets); MP_DROP(t); return (0);
140 static int gfromraw(group *gg, buf *b, mp **d) {
141 gctx_prime * g = (gctx_prime *)gg; mp *x; octet *q;
142 if ((q = buf_get(b, g->g.noctets)) == 0) return (-1);
143 x = mp_loadb(MP_NEW, q, g->g.noctets);
144 mp_div(0, &x, x, g->mm.m); mp_drop(*d);
145 *d = mpmont_mul(&g->mm, x, x, g->mm.r2); return(0);
148 /* --- @group_prime@ --- *
150 * Arguments: @const gprime_param *gp@ = group parameters
152 * Returns: A pointer to the group, or null.
154 * Use: Constructs an abstract group interface for a subgroup of a
155 * prime field. Group elements are @mp *@ pointers.
158 static const group_ops gops = {
160 gdestroygroup, gcreate, gcopy, gburn, gdestroy,
161 gsamep, geq, group_stdidentp,
163 gmul, gsqr, ginv, group_stddiv, gexp, gmexp,
165 gtoint, gfromint, group_stdtoec, group_stdfromec, gtobuf, gfrombuf,
169 group *group_prime(const gprime_param *gp)
173 if (!MP_POSP(gp->p) || !MP_ODDP(gp->p))
175 g = CREATE(gctx_prime);
177 g->g.nbits = mp_bits(gp->p);
178 g->g.noctets = (g->g.nbits + 7) >> 3;
179 mpmont_create(&g->mm, gp->p);
181 g->gen = mpmont_mul(&g->mm, MP_NEW, gp->g, g->mm.r2);
183 g->g.r = MP_COPY(gp->q);
184 g->g.h = MP_NEW; mp_div(&g->g.h, 0, gp->p, gp->q);
188 /*----- That's all, folks -------------------------------------------------*/