chiark / gitweb /
bootchart: merge bootchart
[elogind.git] / src / bootchart / svg.c
1 /*
2  * svg.c
3  *
4  * Copyright (C) 2009-2012 Intel Coproration
5  *
6  * Authors:
7  *   Auke Kok <auke-jan.h.kok@intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14
15 #include <stdio.h>
16 #include <stdarg.h>
17 #include <stdlib.h>
18 #include <string.h>
19 #include <time.h>
20 #include <limits.h>
21 #include <unistd.h>
22 #include <sys/utsname.h>
23
24 #include "bootchart.h"
25
26
27 #define time_to_graph(t) ((t) * scale_x)
28 #define ps_to_graph(n) ((n) * scale_y)
29 #define kb_to_graph(m) ((m) * scale_y * 0.0001)
30 #define to_color(n) (192.0 - ((n) * 192.0))
31
32 #define max(x, y) (((x) > (y)) ? (x) : (y))
33 #define min(x, y) (((x) < (y)) ? (x) : (y))
34
35 static char str[8092];
36
37 #define svg(a...) do { snprintf(str, 8092, ## a); fputs(str, of); fflush(of); } while (0)
38
39 static const char *colorwheel[12] = {
40         "rgb(255,32,32)",  // red
41         "rgb(32,192,192)", // cyan
42         "rgb(255,128,32)", // orange
43         "rgb(128,32,192)", // blue-violet
44         "rgb(255,255,32)", // yellow
45         "rgb(192,32,128)", // red-violet
46         "rgb(32,255,32)",  // green
47         "rgb(255,64,32)",  // red-orange
48         "rgb(32,32,255)",  // blue
49         "rgb(255,192,32)", // yellow-orange
50         "rgb(192,32,192)", // violet
51         "rgb(32,192,32)"   // yellow-green
52 };
53
54 static double idletime = -1.0;
55 static int pfiltered = 0;
56 static int pcount = 0;
57 static int kcount = 0;
58 static float psize = 0;
59 static float ksize = 0;
60 static float esize = 0;
61
62
63 static void svg_header(void)
64 {
65         float w;
66         float h;
67
68         /* min width is about 1600px due to the label */
69         w = 150.0 + 10.0 + time_to_graph(sampletime[samples-1] - graph_start);
70         w = ((w < 1600.0) ? 1600.0 : w);
71
72         /* height is variable based on pss, psize, ksize */
73         h = 400.0 + (scale_y * 30.0) /* base graphs and title */
74             + (pss ? (100.0 * scale_y) + (scale_y * 7.0) : 0.0) /* pss estimate */
75             + psize + ksize + esize;
76
77         svg("<?xml version=\"1.0\" standalone=\"no\"?>\n");
78         svg("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" ");
79         svg("\"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n");
80
81         //svg("<g transform=\"translate(10,%d)\">\n", 1000 + 150 + (pcount * 20));
82         svg("<svg width=\"%.0fpx\" height=\"%.0fpx\" version=\"1.1\" ",
83             w, h);
84         svg("xmlns=\"http://www.w3.org/2000/svg\">\n\n");
85
86         /* write some basic info as a comment, including some help */
87         svg("<!-- This file is a bootchart SVG file. It is best rendered in a browser -->\n");
88         svg("<!-- such as Chrome/Chromium, firefox. Other applications that render    -->\n");
89         svg("<!-- these files properly but much more slow are ImageMagick, gimp,      -->\n");
90         svg("<!-- inkscape, etc.. To display the files on your system, just point     -->\n");
91         svg("<!-- your browser to file:///var/log/ and click. This bootchart was      -->\n\n");
92
93         svg("<!-- generated by bootchart version %s, running with options:  -->\n", VERSION);
94         svg("<!-- hz=\"%f\" n=\"%d\" -->\n", hz, len);
95         svg("<!-- x=\"%f\" y=\"%f\" -->\n", scale_x, scale_y);
96         svg("<!-- rel=\"%d\" f=\"%d\" -->\n", relative, filter);
97         svg("<!-- p=\"%d\" e=\"%d\" -->\n", pss, entropy);
98         svg("<!-- o=\"%s\" i=\"%s\" -->\n\n", output_path, init_path);
99
100         /* style sheet */
101         svg("<defs>\n  <style type=\"text/css\">\n    <![CDATA[\n");
102
103         svg("      rect       { stroke-width: 1; }\n");
104         svg("      rect.cpu   { fill: rgb(64,64,240); stroke-width: 0; fill-opacity: 0.7; }\n");
105         svg("      rect.wait  { fill: rgb(240,240,0); stroke-width: 0; fill-opacity: 0.7; }\n");
106         svg("      rect.bi    { fill: rgb(240,128,128); stroke-width: 0; fill-opacity: 0.7; }\n");
107         svg("      rect.bo    { fill: rgb(192,64,64); stroke-width: 0; fill-opacity: 0.7; }\n");
108         svg("      rect.ps    { fill: rgb(192,192,192); stroke: rgb(128,128,128); fill-opacity: 0.7; }\n");
109         svg("      rect.krnl  { fill: rgb(240,240,0); stroke: rgb(128,128,128); fill-opacity: 0.7; }\n");
110         svg("      rect.box   { fill: rgb(240,240,240); stroke: rgb(192,192,192); }\n");
111         svg("      rect.clrw  { stroke-width: 0; fill-opacity: 0.7;}\n");
112         svg("      line       { stroke: rgb(64,64,64); stroke-width: 1; }\n");
113         svg("//    line.sec1  { }\n");
114         svg("      line.sec5  { stroke-width: 2; }\n");
115         svg("      line.sec01 { stroke: rgb(224,224,224); stroke-width: 1; }\n");
116         svg("      line.dot   { stroke-dasharray: 2 4; }\n");
117         svg("      line.idle  { stroke: rgb(64,64,64); stroke-dasharray: 10 6; stroke-opacity: 0.7; }\n");
118
119         svg("      .run       { font-size: 8; font-style: italic; }\n");
120         svg("      text       { font-family: Verdana, Helvetica; font-size: 10; }\n");
121         svg("      text.sec   { font-size: 8; }\n");
122         svg("      text.t1    { font-size: 24; }\n");
123         svg("      text.t2    { font-size: 12; }\n");
124         svg("      text.idle  { font-size: 18; }\n");
125
126         svg("    ]]>\n   </style>\n</defs>\n\n");
127
128 }
129
130
131 static void svg_title(void)
132 {
133         char cmdline[256] = "";
134         char filename[PATH_MAX];
135         char buf[256];
136         char rootbdev[16] = "Unknown";
137         char model[256] = "Unknown";
138         char date[256] = "Unknown";
139         char cpu[256] = "Unknown";
140         char build[256] = "Unknown";
141         char *c;
142         FILE *f;
143         time_t t;
144         struct utsname uts;
145
146         /* grab /proc/cmdline */
147         f = fopen("/proc/cmdline", "r");
148         if (f) {
149                 if (!fgets(cmdline, 255, f))
150                         sprintf(cmdline, "Unknown");
151                 fclose(f);
152         }
153
154         /* extract root fs so we can find disk model name in sysfs */
155         c = strstr(cmdline, "root=/dev/");
156         if (c) {
157                 strncpy(rootbdev, &c[10], 3);
158                 rootbdev[3] = '\0';
159         }
160         sprintf(filename, "/sys/block/%s/device/model", rootbdev);
161         f = fopen(filename, "r");
162         if (f) {
163                 if (!fgets(model, 255, f))
164                         fprintf(stderr, "Error reading disk model for %s\n", rootbdev);
165                 fclose(f);
166         }
167
168         /* various utsname parameters */
169         if (uname(&uts))
170                 fprintf(stderr, "Error getting uname info\n");
171
172         /* date */
173         t = time(NULL);
174         strftime(date, sizeof(date), "%a, %d %b %Y %H:%M:%S %z", localtime(&t));
175
176         /* CPU type */
177         f = fopen("/proc/cpuinfo", "r");
178         if (f) {
179                 while (fgets(buf, 255, f)) {
180                         if (strstr(buf, "model name")) {
181                                 strncpy(cpu, &buf[13], 255);
182                                 break;
183                         }
184                 }
185                 fclose(f);
186         }
187
188         /* Build - 1st line from /etc/system-release */
189         f = fopen("/etc/system-release", "r");
190         if (f) {
191                 if (fgets(buf, 255, f))
192                         strncpy(build, buf, 255);
193                 fclose(f);
194         }
195
196         svg("<text class=\"t1\" x=\"0\" y=\"30\">Bootchart for %s - %s</text>\n",
197             uts.nodename, date);
198         svg("<text class=\"t2\" x=\"20\" y=\"50\">System: %s %s %s %s</text>\n",
199             uts.sysname, uts.release, uts.version, uts.machine);
200         svg("<text class=\"t2\" x=\"20\" y=\"65\">CPU: %s</text>\n",
201             cpu);
202         svg("<text class=\"t2\" x=\"20\" y=\"80\">Disk: %s</text>\n",
203             model);
204         svg("<text class=\"t2\" x=\"20\" y=\"95\">Boot options: %s</text>\n",
205             cmdline);
206         svg("<text class=\"t2\" x=\"20\" y=\"110\">Build: %s</text>\n",
207             build);
208         svg("<text class=\"t2\" x=\"20\" y=\"125\">Log start time: %.03fs</text>\n", log_start);
209         svg("<text class=\"t2\" x=\"20\" y=\"140\">Idle time: ");
210
211         if (idletime >= 0.0)
212                 svg("%.03fs", idletime);
213         else
214                 svg("Not detected");
215         svg("</text>\n");
216         svg("<text class=\"sec\" x=\"20\" y=\"155\">Graph data: %.03f samples/sec, recorded %i total, dropped %i samples, %i processes, %i filtered</text>\n",
217             hz, len, overrun, pscount, pfiltered);
218 }
219
220
221 static void svg_graph_box(int height)
222 {
223         double d = 0.0;
224         int i = 0;
225
226         /* outside box, fill */
227         svg("<rect class=\"box\" x=\"%.03f\" y=\"0\" width=\"%.03f\" height=\"%.03f\" />\n",
228             time_to_graph(0.0),
229             time_to_graph(sampletime[samples-1] - graph_start),
230             ps_to_graph(height));
231
232         for (d = graph_start; d <= sampletime[samples-1];
233              d += (scale_x < 2.0 ? 60.0 : scale_x < 10.0 ? 1.0 : 0.1)) {
234                 /* lines for each second */
235                 if (i % 50 == 0)
236                         svg("  <line class=\"sec5\" x1=\"%.03f\" y1=\"0\" x2=\"%.03f\" y2=\"%.03f\" />\n",
237                             time_to_graph(d - graph_start),
238                             time_to_graph(d - graph_start),
239                             ps_to_graph(height));
240                 else if (i % 10 == 0)
241                         svg("  <line class=\"sec1\" x1=\"%.03f\" y1=\"0\" x2=\"%.03f\" y2=\"%.03f\" />\n",
242                             time_to_graph(d - graph_start),
243                             time_to_graph(d - graph_start),
244                             ps_to_graph(height));
245                 else
246                         svg("  <line class=\"sec01\" x1=\"%.03f\" y1=\"0\" x2=\"%.03f\" y2=\"%.03f\" />\n",
247                             time_to_graph(d - graph_start),
248                             time_to_graph(d - graph_start),
249                             ps_to_graph(height));
250
251                 /* time label */
252                 if (i % 10 == 0)
253                         svg("  <text class=\"sec\" x=\"%.03f\" y=\"%.03f\" >%.01fs</text>\n",
254                             time_to_graph(d - graph_start),
255                             -5.0,
256                             d - graph_start);
257
258                 i++;
259         }
260 }
261
262
263 static void svg_pss_graph(void)
264 {
265         struct ps_struct *ps;
266         int i;
267
268         svg("\n\n<!-- Pss memory size graph -->\n");
269
270         svg("\n  <text class=\"t2\" x=\"5\" y=\"-15\">Memory allocation - Pss</text>\n");
271
272         /* vsize 1000 == 1000mb */
273         svg_graph_box(100);
274         /* draw some hlines for usable memory sizes */
275         for (i = 100000; i < 1000000; i += 100000) {
276                 svg("  <line class=\"sec01\" x1=\"%.03f\" y1=\"%.0f\" x2=\"%.03f\" y2=\"%.0f\"/>\n",
277                         time_to_graph(.0),
278                         kb_to_graph(i),
279                         time_to_graph(sampletime[samples-1] - graph_start),
280                         kb_to_graph(i));
281                 svg("  <text class=\"sec\" x=\"%.03f\" y=\"%.0f\">%dM</text>\n",
282                     time_to_graph(sampletime[samples-1] - graph_start) + 5,
283                     kb_to_graph(i), (1000000 - i) / 1000);
284         }
285         svg("\n");
286
287         /* now plot the graph itself */
288         for (i = 1; i < samples ; i++) {
289                 int bottom;
290                 int top;
291
292                 bottom = 0;
293                 top = 0;
294
295                 /* put all the small pss blocks into the bottom */
296                 ps = ps_first;
297                 while (ps->next_ps) {
298                         ps = ps->next_ps;
299                         if (!ps)
300                                 continue;
301                         if (ps->sample[i].pss <= (100 * scale_y))
302                                 top += ps->sample[i].pss;
303                 };
304                 svg("    <rect class=\"clrw\" style=\"fill: %s\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
305                     "rgb(64,64,64)",
306                     time_to_graph(sampletime[i - 1] - graph_start),
307                     kb_to_graph(1000000.0 - top),
308                     time_to_graph(sampletime[i] - sampletime[i - 1]),
309                     kb_to_graph(top - bottom));
310
311                 bottom = top;
312
313                 /* now plot the ones that are of significant size */
314                 ps = ps_first;
315                 while (ps->next_ps) {
316                         ps = ps->next_ps;
317                         if (!ps)
318                                 continue;
319                         /* don't draw anything smaller than 2mb */
320                         if (ps->sample[i].pss > (100 * scale_y)) {
321                                 top = bottom + ps->sample[i].pss;
322                                 svg("    <rect class=\"clrw\" style=\"fill: %s\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
323                                     colorwheel[ps->pid % 12],
324                                     time_to_graph(sampletime[i - 1] - graph_start),
325                                     kb_to_graph(1000000.0 - top),
326                                     time_to_graph(sampletime[i] - sampletime[i - 1]),
327                                     kb_to_graph(top - bottom));
328                                 bottom = top;
329                         }
330                 }
331         }
332
333         /* overlay all the text labels */
334         for (i = 1; i < samples ; i++) {
335                 int bottom;
336                 int top;
337
338                 bottom = 0;
339                 top = 0;
340
341                 /* put all the small pss blocks into the bottom */
342                 ps = ps_first;
343                 while (ps->next_ps) {
344                         ps = ps->next_ps;
345                         if (!ps)
346                                 continue;
347                         if (ps->sample[i].pss <= (100 * scale_y))
348                                 top += ps->sample[i].pss;
349                 };
350
351                 bottom = top;
352
353                 /* now plot the ones that are of significant size */
354                 ps = ps_first;
355                 while (ps->next_ps) {
356                         ps = ps->next_ps;
357                         if (!ps)
358                                 continue;
359                         /* don't draw anything smaller than 2mb */
360                         if (ps->sample[i].pss > (100 * scale_y)) {
361                                 top = bottom + ps->sample[i].pss;
362                                 /* draw a label with the process / PID */
363                                 if ((i == 1) || (ps->sample[i - 1].pss <= (100 * scale_y)))
364                                         svg("  <text x=\"%.03f\" y=\"%.03f\">%s [%i]</text>\n",
365                                             time_to_graph(sampletime[i] - graph_start),
366                                             kb_to_graph(1000000.0 - bottom - ((top -  bottom) / 2)),
367                                             ps->name,
368                                             ps->pid);
369                                 bottom = top;
370                         }
371                 }
372         }
373
374         /* debug output - full data dump */
375         svg("\n\n<!-- PSS map - csv format -->\n");
376         ps = ps_first;
377         while (ps->next_ps) {
378                 ps = ps->next_ps;
379                 if (!ps)
380                         continue;
381                 svg("<!-- %s [%d] pss=", ps->name, ps->pid);
382                 for (i = 0; i < samples ; i++) {
383                         svg("%d," , ps->sample[i].pss);
384                 }
385                 svg(" -->\n");
386         }
387
388 }
389
390 static void svg_io_bi_bar(void)
391 {
392         double max = 0.0;
393         double range;
394         int max_here = 0;
395         int i;
396
397         svg("<!-- IO utilization graph - In -->\n");
398
399         svg("<text class=\"t2\" x=\"5\" y=\"-15\">IO utilization - read</text>\n");
400
401         /*
402          * calculate rounding range
403          *
404          * We need to round IO data since IO block data is not updated on
405          * each poll. Applying a smoothing function loses some burst data,
406          * so keep the smoothing range short.
407          */
408         range = 0.25 / (1.0 / hz);
409         if (range < 2.0)
410                 range = 2.0; /* no smoothing */
411
412         /* surrounding box */
413         svg_graph_box(5);
414
415         /* find the max IO first */
416         for (i = 1; i < samples; i++) {
417                 int start;
418                 int stop;
419                 double tot;
420
421                 start = max(i - ((range / 2) - 1), 0);
422                 stop = min(i + (range / 2), samples - 1);
423
424                 tot = (double)(blockstat[stop].bi - blockstat[start].bi)
425                       / (stop - start);
426                 if (tot > max) {
427                         max = tot;
428                         max_here = i;
429                 }
430                 tot = (double)(blockstat[stop].bo - blockstat[start].bo)
431                       / (stop - start);
432                 if (tot > max)
433                         max = tot;
434         }
435
436         /* plot bi */
437         for (i = 1; i < samples; i++) {
438                 int start;
439                 int stop;
440                 double tot;
441                 double pbi;
442
443                 start = max(i - ((range / 2) - 1), 0);
444                 stop = min(i + (range / 2), samples);
445
446                 tot = (double)(blockstat[stop].bi - blockstat[start].bi)
447                       / (stop - start);
448                 pbi = tot / max;
449
450                 if (pbi > 0.001)
451                         svg("<rect class=\"bi\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
452                             time_to_graph(sampletime[i - 1] - graph_start),
453                             (scale_y * 5) - (pbi * (scale_y * 5)),
454                             time_to_graph(sampletime[i] - sampletime[i - 1]),
455                             pbi * (scale_y * 5));
456
457                 /* labels around highest value */
458                 if (i == max_here) {
459                         svg("  <text class=\"sec\" x=\"%.03f\" y=\"%.03f\">%0.2fmb/sec</text>\n",
460                             time_to_graph(sampletime[i] - graph_start) + 5,
461                             ((scale_y * 5) - (pbi * (scale_y * 5))) + 15,
462                             max / 1024.0 / (interval / 1000000000.0));
463                 }
464         }
465 }
466
467 static void svg_io_bo_bar(void)
468 {
469         double max = 0.0;
470         double range;
471         int max_here = 0;
472         int i;
473
474         svg("<!-- IO utilization graph - out -->\n");
475
476         svg("<text class=\"t2\" x=\"5\" y=\"-15\">IO utilization - write</text>\n");
477
478         /*
479          * calculate rounding range
480          *
481          * We need to round IO data since IO block data is not updated on
482          * each poll. Applying a smoothing function loses some burst data,
483          * so keep the smoothing range short.
484          */
485         range = 0.25 / (1.0 / hz);
486         if (range < 2.0)
487                 range = 2.0; /* no smoothing */
488
489         /* surrounding box */
490         svg_graph_box(5);
491
492         /* find the max IO first */
493         for (i = 1; i < samples; i++) {
494                 int start;
495                 int stop;
496                 double tot;
497
498                 start = max(i - ((range / 2) - 1), 0);
499                 stop = min(i + (range / 2), samples - 1);
500
501                 tot = (double)(blockstat[stop].bi - blockstat[start].bi)
502                       / (stop - start);
503                 if (tot > max)
504                         max = tot;
505                 tot = (double)(blockstat[stop].bo - blockstat[start].bo)
506                       / (stop - start);
507                 if (tot > max) {
508                         max = tot;
509                         max_here = i;
510                 }
511         }
512
513         /* plot bo */
514         for (i = 1; i < samples; i++) {
515                 int start;
516                 int stop;
517                 double tot;
518                 double pbo;
519
520                 start = max(i - ((range / 2) - 1), 0);
521                 stop = min(i + (range / 2), samples);
522
523                 tot = (double)(blockstat[stop].bo - blockstat[start].bo)
524                       / (stop - start);
525                 pbo = tot / max;
526
527                 if (pbo > 0.001)
528                         svg("<rect class=\"bo\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
529                             time_to_graph(sampletime[i - 1] - graph_start),
530                             (scale_y * 5) - (pbo * (scale_y * 5)),
531                             time_to_graph(sampletime[i] - sampletime[i - 1]),
532                             pbo * (scale_y * 5));
533
534                 /* labels around highest bo value */
535                 if (i == max_here) {
536                         svg("  <text class=\"sec\" x=\"%.03f\" y=\"%.03f\">%0.2fmb/sec</text>\n",
537                             time_to_graph(sampletime[i] - graph_start) + 5,
538                             ((scale_y * 5) - (pbo * (scale_y * 5))),
539                             max / 1024.0 / (interval / 1000000000.0));
540                 }
541         }
542 }
543
544
545 static void svg_cpu_bar(void)
546 {
547         int i;
548
549         svg("<!-- CPU utilization graph -->\n");
550
551         svg("<text class=\"t2\" x=\"5\" y=\"-15\">CPU utilization</text>\n");
552         /* surrounding box */
553         svg_graph_box(5);
554
555         /* bars for each sample, proportional to the CPU util. */
556         for (i = 1; i < samples; i++) {
557                 int c;
558                 double trt;
559                 double ptrt;
560
561                 ptrt = trt = 0.0;
562
563                 for (c = 0; c < cpus; c++)
564                         trt += cpustat[c].sample[i].runtime - cpustat[c].sample[i - 1].runtime;
565
566                 trt = trt / 1000000000.0;
567
568                 trt = trt / (double)cpus;
569
570                 if (trt > 0.0)
571                         ptrt = trt / (sampletime[i] - sampletime[i - 1]);
572
573                 if (ptrt > 1.0)
574                         ptrt = 1.0;
575
576                 if (ptrt > 0.001) {
577                         svg("<rect class=\"cpu\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
578                             time_to_graph(sampletime[i - 1] - graph_start),
579                             (scale_y * 5) - (ptrt * (scale_y * 5)),
580                             time_to_graph(sampletime[i] - sampletime[i - 1]),
581                             ptrt * (scale_y * 5));
582                 }
583         }
584 }
585
586 static void svg_wait_bar(void)
587 {
588         int i;
589
590         svg("<!-- Wait time aggregation box -->\n");
591
592         svg("<text class=\"t2\" x=\"5\" y=\"-15\">CPU wait</text>\n");
593
594         /* surrounding box */
595         svg_graph_box(5);
596
597         /* bars for each sample, proportional to the CPU util. */
598         for (i = 1; i < samples; i++) {
599                 int c;
600                 double twt;
601                 double ptwt;
602
603                 ptwt = twt = 0.0;
604
605                 for (c = 0; c < cpus; c++)
606                         twt += cpustat[c].sample[i].waittime - cpustat[c].sample[i - 1].waittime;
607
608                 twt = twt / 1000000000.0;
609
610                 twt = twt / (double)cpus;
611
612                 if (twt > 0.0)
613                         ptwt = twt / (sampletime[i] - sampletime[i - 1]);
614
615                 if (ptwt > 1.0)
616                         ptwt = 1.0;
617
618                 if (ptwt > 0.001) {
619                         svg("<rect class=\"wait\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
620                             time_to_graph(sampletime[i - 1] - graph_start),
621                             ((scale_y * 5) - (ptwt * (scale_y * 5))),
622                             time_to_graph(sampletime[i] - sampletime[i - 1]),
623                             ptwt * (scale_y * 5));
624                 }
625         }
626 }
627
628
629 static void svg_entropy_bar(void)
630 {
631         int i;
632
633         svg("<!-- entropy pool graph -->\n");
634
635         svg("<text class=\"t2\" x=\"5\" y=\"-15\">Entropy pool size</text>\n");
636         /* surrounding box */
637         svg_graph_box(5);
638
639         /* bars for each sample, scale 0-4096 */
640         for (i = 1; i < samples; i++) {
641                 /* svg("<!-- entropy %.03f %i -->\n", sampletime[i], entropy_avail[i]); */
642                 svg("<rect class=\"cpu\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
643                     time_to_graph(sampletime[i - 1] - graph_start),
644                     ((scale_y * 5) - ((entropy_avail[i] / 4096.) * (scale_y * 5))),
645                     time_to_graph(sampletime[i] - sampletime[i - 1]),
646                     (entropy_avail[i] / 4096.) * (scale_y * 5));
647         }
648 }
649
650
651 static struct ps_struct *get_next_ps(struct ps_struct *ps)
652 {
653         /*
654          * walk the list of processes and return the next one to be
655          * painted
656          */
657         if (ps == ps_first)
658                 return ps->next_ps;
659
660         /* go deep */
661         if (ps->children)
662                 return ps->children;
663
664         /* find siblings */
665         if (ps->next)
666                 return ps->next;
667
668         /* go back for parent siblings */
669         while (1) {
670                 if (ps->parent)
671                         if (ps->parent->next)
672                                 return ps->parent->next;
673                 ps = ps->parent;
674                 if (!ps)
675                         return ps;
676         }
677
678         return NULL;
679 }
680
681
682 static int ps_filter(struct ps_struct *ps)
683 {
684         if (!filter)
685                 return 0;
686
687         /* can't draw data when there is only 1 sample (need start + stop) */
688         if (ps->first == ps->last)
689                 return -1;
690
691         /* don't filter kthreadd */
692         if (ps->pid == 2)
693                 return 0;
694
695         /* drop stuff that doesn't use any real CPU time */
696         if (ps->total <= 0.001)
697                 return -1;
698
699         return 0;
700 }
701
702
703 static void svg_do_initcall(int count_only)
704 {
705         FILE *f;
706         double t;
707         char func[256];
708         int ret;
709         int usecs;
710
711         /* can't plot initcall when disabled or in relative mode */
712         if (!initcall || relative) {
713                 kcount = 0;
714                 return;
715         }
716
717         if (!count_only) {
718                 svg("<!-- initcall -->\n");
719
720                 svg("<text class=\"t2\" x=\"5\" y=\"-15\">Kernel init threads</text>\n");
721                 /* surrounding box */
722                 svg_graph_box(kcount);
723         }
724
725         kcount = 0;
726
727         /*
728          * Initcall graphing - parses dmesg buffer and displays kernel threads
729          * This somewhat uses the same methods and scaling to show processes
730          * but looks a lot simpler. It's overlaid entirely onto the PS graph
731          * when appropriate.
732          */
733
734         f = popen("dmesg", "r");
735         if (!f)
736                 return;
737
738         while (!feof(f)) {
739                 int c;
740                 int z = 0;
741                 char l[256];
742
743                 if (fgets(l, sizeof(l) - 1, f) == NULL)
744                         continue;
745
746                 c = sscanf(l, "[%lf] initcall %s %*s %d %*s %d %*s",
747                            &t, func, &ret, &usecs);
748                 if (c != 4) {
749                         /* also parse initcalls done by module loading */
750                         c = sscanf(l, "[%lf] initcall %s %*s %*s %d %*s %d %*s",
751                                    &t, func, &ret, &usecs);
752                         if (c != 4)
753                                 continue;
754                 }
755
756                 /* chop the +0xXX/0xXX stuff */
757                 while(func[z] != '+')
758                         z++;
759                 func[z] = 0;
760
761                 if (count_only) {
762                         /* filter out irrelevant stuff */
763                         if (usecs >= 1000)
764                                 kcount++;
765                         continue;
766                 }
767
768                 svg("<!-- thread=\"%s\" time=\"%.3f\" elapsed=\"%d\" result=\"%d\" -->\n",
769                     func, t, usecs, ret);
770
771                 if (usecs < 1000)
772                         continue;
773
774                 /* rect */
775                 svg("  <rect class=\"krnl\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
776                     time_to_graph(t - (usecs / 1000000.0)),
777                     ps_to_graph(kcount),
778                     time_to_graph(usecs / 1000000.0),
779                     ps_to_graph(1));
780
781                 /* label */
782                 svg("  <text x=\"%.03f\" y=\"%.03f\">%s <tspan class=\"run\">%.03fs</tspan></text>\n",
783                     time_to_graph(t - (usecs / 1000000.0)) + 5,
784                     ps_to_graph(kcount) + 15,
785                     func,
786                     usecs / 1000000.0);
787
788                 kcount++;
789         }
790
791         fclose(f);
792 }
793
794
795 static void svg_ps_bars(void)
796 {
797         struct ps_struct *ps;
798         int i = 0;
799         int j = 0;
800         int w;
801         int pid;
802
803         svg("<!-- Process graph -->\n");
804
805         svg("<text class=\"t2\" x=\"5\" y=\"-15\">Processes</text>\n");
806
807         /* surrounding box */
808         svg_graph_box(pcount);
809
810         /* pass 2 - ps boxes */
811         ps = ps_first;
812         while ((ps = get_next_ps(ps))) {
813                 double starttime;
814                 int t;
815
816                 if (!ps)
817                         continue;
818
819                 /* leave some trace of what we actually filtered etc. */
820                 svg("<!-- %s [%i] ppid=%i runtime=%.03fs -->\n", ps->name, ps->pid,
821                     ps->ppid, ps->total);
822
823                 /* it would be nice if we could use exec_start from /proc/pid/sched,
824                  * but it's unreliable and gives bogus numbers */
825                 starttime = sampletime[ps->first];
826
827                 if (!ps_filter(ps)) {
828                         /* remember where _to_ our children need to draw a line */
829                         ps->pos_x = time_to_graph(starttime - graph_start);
830                         ps->pos_y = ps_to_graph(j+1); /* bottom left corner */
831                 } else {
832                         /* hook children to our parent coords instead */
833                         ps->pos_x = ps->parent->pos_x;
834                         ps->pos_y = ps->parent->pos_y;
835
836                         /* if this is the last child, we might still need to draw a connecting line */
837                         if ((!ps->next) && (ps->parent))
838                                 svg("  <line class=\"dot\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n",
839                                     ps->parent->pos_x,
840                                     ps_to_graph(j-1) + 10.0, /* whee, use the last value here */
841                                     ps->parent->pos_x,
842                                     ps->parent->pos_y);
843                         continue;
844                 }
845
846                 svg("  <rect class=\"ps\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
847                     time_to_graph(starttime - graph_start),
848                     ps_to_graph(j),
849                     time_to_graph(sampletime[ps->last] - starttime),
850                     ps_to_graph(1));
851
852                 /* paint cpu load over these */
853                 for (t = ps->first + 1; t < ps->last; t++) {
854                         double rt, prt;
855                         double wt, wrt;
856
857                         /* calculate over interval */
858                         rt = ps->sample[t].runtime - ps->sample[t-1].runtime;
859                         wt = ps->sample[t].waittime - ps->sample[t-1].waittime;
860
861                         prt = (rt / 1000000000) / (sampletime[t] - sampletime[t-1]);
862                         wrt = (wt / 1000000000) / (sampletime[t] - sampletime[t-1]);
863
864                         /* this can happen if timekeeping isn't accurate enough */
865                         if (prt > 1.0)
866                                 prt = 1.0;
867                         if (wrt > 1.0)
868                                 wrt = 1.0;
869
870                         if ((prt < 0.1) && (wrt < 0.1)) /* =~ 26 (color threshold) */
871                                 continue;
872
873                         svg("    <rect class=\"wait\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
874                             time_to_graph(sampletime[t - 1] - graph_start),
875                             ps_to_graph(j),
876                             time_to_graph(sampletime[t] - sampletime[t - 1]),
877                             ps_to_graph(wrt));
878
879                         /* draw cpu over wait - TODO figure out how/why run + wait > interval */
880                         svg("    <rect class=\"cpu\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
881                             time_to_graph(sampletime[t - 1] - graph_start),
882                             ps_to_graph(j + (1.0 - prt)),
883                             time_to_graph(sampletime[t] - sampletime[t - 1]),
884                             ps_to_graph(prt));
885                 }
886
887                 /* determine where to display the process name */
888                 if (sampletime[ps->last] - sampletime[ps->first] < 1.5)
889                         /* too small to fit label inside the box */
890                         w = ps->last;
891                 else
892                         w = ps->first;
893
894                 /* text label of process name */
895                 svg("  <text x=\"%.03f\" y=\"%.03f\">%s [%i] <tspan class=\"run\">%.03fs</tspan></text>\n",
896                     time_to_graph(sampletime[w] - graph_start) + 5.0,
897                     ps_to_graph(j) + 14.0,
898                     ps->name,
899                     ps->pid,
900                     (ps->sample[ps->last].runtime - ps->sample[ps->first].runtime) / 1000000000.0);
901                 /* paint lines to the parent process */
902                 if (ps->parent) {
903                         /* horizontal part */
904                         svg("  <line class=\"dot\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n",
905                             time_to_graph(starttime - graph_start),
906                             ps_to_graph(j) + 10.0,
907                             ps->parent->pos_x,
908                             ps_to_graph(j) + 10.0);
909
910                         /* one vertical line connecting all the horizontal ones up */
911                         if (!ps->next)
912                                 svg("  <line class=\"dot\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n",
913                                     ps->parent->pos_x,
914                                     ps_to_graph(j) + 10.0,
915                                     ps->parent->pos_x,
916                                     ps->parent->pos_y);
917                 }
918
919                 j++; /* count boxes */
920
921                 svg("\n");
922         }
923
924         /* last pass - determine when idle */
925         pid = getpid();
926         /* make sure we start counting from the point where we actually have
927          * data: assume that bootchart's first sample is when data started
928          */
929         ps = ps_first;
930         while (ps->next_ps) {
931                 ps = ps->next_ps;
932                 if (ps->pid == pid)
933                         break;
934         }
935
936         for (i = ps->first; i < samples - (hz / 2); i++) {
937                 double crt;
938                 double brt;
939                 int c;
940
941                 /* subtract bootchart cpu utilization from total */
942                 crt = 0.0;
943                 for (c = 0; c < cpus; c++)
944                         crt += cpustat[c].sample[i + ((int)hz / 2)].runtime - cpustat[c].sample[i].runtime;
945                 brt = ps->sample[i + ((int)hz / 2)].runtime - ps->sample[i].runtime;
946
947                 /*
948                  * our definition of "idle":
949                  *
950                  * if for (hz / 2) we've used less CPU than (interval / 2) ...
951                  * defaults to 4.0%, which experimentally, is where atom idles
952                  */
953                 if ((crt - brt) < (interval / 2.0)) {
954                         idletime = sampletime[i] - graph_start;
955                         svg("\n<!-- idle detected at %.03f seconds -->\n",
956                             idletime);
957                         svg("<line class=\"idle\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n",
958                             time_to_graph(idletime),
959                             -scale_y,
960                             time_to_graph(idletime),
961                             ps_to_graph(pcount) + scale_y);
962                         svg("<text class=\"idle\" x=\"%.03f\" y=\"%.03f\">%.01fs</text>\n",
963                             time_to_graph(idletime) + 5.0,
964                             ps_to_graph(pcount) + scale_y,
965                             idletime);
966                         break;
967                 }
968         }
969 }
970
971
972 static void svg_top_ten_cpu(void)
973 {
974         struct ps_struct *top[10];
975         struct ps_struct emptyps;
976         struct ps_struct *ps;
977         int n, m;
978
979         memset(&emptyps, 0, sizeof(struct ps_struct));
980         for (n=0; n < 10; n++)
981                 top[n] = &emptyps;
982
983         /* walk all ps's and setup ptrs */
984         ps = ps_first;
985         while ((ps = get_next_ps(ps))) {
986                 for (n = 0; n < 10; n++) {
987                         if (ps->total <= top[n]->total)
988                                 continue;
989                         /* cascade insert */
990                         for (m = 9; m > n; m--)
991                                 top[m] = top[m-1];
992                         top[n] = ps;
993                         break;
994                 }
995         }
996
997         svg("<text class=\"t2\" x=\"20\" y=\"0\">Top CPU consumers:</text>\n");
998         for (n = 0; n < 10; n++)
999                 svg("<text class=\"t3\" x=\"20\" y=\"%d\">%3.03fs - %s[%d]</text>\n",
1000                     20 + (n * 13),
1001                     top[n]->total,
1002                     top[n]->name,
1003                     top[n]->pid);
1004 }
1005
1006
1007 static void svg_top_ten_pss(void)
1008 {
1009         struct ps_struct *top[10];
1010         struct ps_struct emptyps;
1011         struct ps_struct *ps;
1012         int n, m;
1013
1014         memset(&emptyps, 0, sizeof(struct ps_struct));
1015         for (n=0; n < 10; n++)
1016                 top[n] = &emptyps;
1017
1018         /* walk all ps's and setup ptrs */
1019         ps = ps_first;
1020         while ((ps = get_next_ps(ps))) {
1021                 for (n = 0; n < 10; n++) {
1022                         if (ps->pss_max <= top[n]->pss_max)
1023                                 continue;
1024                         /* cascade insert */
1025                         for (m = 9; m > n; m--)
1026                                 top[m] = top[m-1];
1027                         top[n] = ps;
1028                         break;
1029                 }
1030         }
1031
1032         svg("<text class=\"t2\" x=\"20\" y=\"0\">Top PSS consumers:</text>\n");
1033         for (n = 0; n < 10; n++)
1034                 svg("<text class=\"t3\" x=\"20\" y=\"%d\">%dK - %s[%d]</text>\n",
1035                     20 + (n * 13),
1036                     top[n]->pss_max,
1037                     top[n]->name,
1038                     top[n]->pid);
1039 }
1040
1041
1042 void svg_do(void)
1043 {
1044         struct ps_struct *ps;
1045
1046         memset(&str, 0, sizeof(str));
1047
1048         ps = ps_first;
1049
1050         /* count initcall thread count first */
1051         svg_do_initcall(1);
1052         ksize = (kcount ? ps_to_graph(kcount) + (scale_y * 2) : 0);
1053
1054         /* then count processes */
1055         while ((ps = get_next_ps(ps))) {
1056                 if (!ps_filter(ps))
1057                         pcount++;
1058                 else
1059                         pfiltered++;
1060         }
1061         psize = ps_to_graph(pcount) + (scale_y * 2);
1062
1063         esize = (entropy ? scale_y * 7 : 0);
1064
1065         /* after this, we can draw the header with proper sizing */
1066         svg_header();
1067
1068         svg("<g transform=\"translate(10,400)\">\n");
1069         svg_io_bi_bar();
1070         svg("</g>\n\n");
1071
1072         svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 7.0));
1073         svg_io_bo_bar();
1074         svg("</g>\n\n");
1075
1076         svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 14.0));
1077         svg_cpu_bar();
1078         svg("</g>\n\n");
1079
1080         svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 21.0));
1081         svg_wait_bar();
1082         svg("</g>\n\n");
1083
1084         if (kcount) {
1085                 svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 28.0));
1086                 svg_do_initcall(0);
1087                 svg("</g>\n\n");
1088         }
1089
1090         svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 28.0) + ksize);
1091         svg_ps_bars();
1092         svg("</g>\n\n");
1093
1094         svg("<g transform=\"translate(10,  0)\">\n");
1095         svg_title();
1096         svg("</g>\n\n");
1097
1098         svg("<g transform=\"translate(10,200)\">\n");
1099         svg_top_ten_cpu();
1100         svg("</g>\n\n");
1101
1102         if (entropy) {
1103                 svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 28.0) + ksize + psize);
1104                 svg_entropy_bar();
1105                 svg("</g>\n\n");
1106         }
1107
1108         if (pss) {
1109                 svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 28.0) + ksize + psize + esize);
1110                 svg_pss_graph();
1111                 svg("</g>\n\n");
1112
1113                 svg("<g transform=\"translate(410,200)\">\n");
1114                 svg_top_ten_pss();
1115                 svg("</g>\n\n");
1116         }
1117
1118         /* svg footer */
1119         svg("\n</svg>\n");
1120 }