chiark / gitweb /
c4594dbde12f69faa5fa575acb4fa91accfcba2e
[cura.git] / Cura / util / mesh.py
1 from __future__ import absolute_import
2 __copyright__ = "Copyright (C) 2013 David Braam - Released under terms of the AGPLv3 License"
3
4 import time
5 import math
6 import os
7
8 import numpy
9 numpy.seterr(all='ignore')
10
11 class printableObject(object):
12         def __init__(self, originFilename):
13                 self._originFilename = originFilename
14                 if originFilename is None:
15                         self._name = 'None'
16                 else:
17                         self._name = os.path.basename(originFilename)
18                 if '.' in self._name:
19                         self._name = os.path.splitext(self._name)[0]
20                 self._meshList = []
21                 self._position = numpy.array([0.0, 0.0])
22                 self._matrix = numpy.matrix([[1,0,0],[0,1,0],[0,0,1]], numpy.float64)
23                 self._transformedMin = None
24                 self._transformedMax = None
25                 self._transformedSize = None
26                 self._boundaryCircleSize = None
27                 self._drawOffset = None
28                 self._loadAnim = None
29
30         def copy(self):
31                 ret = printableObject(self._originFilename)
32                 ret._matrix = self._matrix.copy()
33                 ret._transformedMin = self._transformedMin.copy()
34                 ret._transformedMax = self._transformedMax.copy()
35                 ret._transformedSize = self._transformedSize.copy()
36                 ret._boundaryCircleSize = self._boundaryCircleSize
37                 ret._drawOffset = self._drawOffset.copy()
38                 for m in self._meshList[:]:
39                         m2 = ret._addMesh()
40                         m2.vertexes = m.vertexes
41                         m2.vertexCount = m.vertexCount
42                         m2.vbo = m.vbo
43                         m2.vbo.incRef()
44                 return ret
45
46         def _addMesh(self):
47                 m = mesh(self)
48                 self._meshList.append(m)
49                 return m
50
51         def _postProcessAfterLoad(self):
52                 for m in self._meshList:
53                         m._calculateNormals()
54                 self.processMatrix()
55
56         def applyMatrix(self, m):
57                 self._matrix *= m
58                 self.processMatrix()
59
60         def processMatrix(self):
61                 self._transformedMin = numpy.array([999999999999,999999999999,999999999999], numpy.float64)
62                 self._transformedMax = numpy.array([-999999999999,-999999999999,-999999999999], numpy.float64)
63                 self._boundaryCircleSize = 0
64
65                 for m in self._meshList:
66                         transformedVertexes = m.getTransformedVertexes()
67                         transformedMin = transformedVertexes.min(0)
68                         transformedMax = transformedVertexes.max(0)
69                         for n in xrange(0, 3):
70                                 self._transformedMin[n] = min(transformedMin[n], self._transformedMin[n])
71                                 self._transformedMax[n] = max(transformedMax[n], self._transformedMax[n])
72
73                         #Calculate the boundary circle
74                         transformedSize = transformedMax - transformedMin
75                         center = transformedMin + transformedSize / 2.0
76                         boundaryCircleSize = round(math.sqrt(numpy.max(((transformedVertexes[::,0] - center[0]) * (transformedVertexes[::,0] - center[0])) + ((transformedVertexes[::,1] - center[1]) * (transformedVertexes[::,1] - center[1])) + ((transformedVertexes[::,2] - center[2]) * (transformedVertexes[::,2] - center[2])))), 3)
77                         self._boundaryCircleSize = max(self._boundaryCircleSize, boundaryCircleSize)
78                 self._transformedSize = self._transformedMax - self._transformedMin
79                 self._drawOffset = (self._transformedMax + self._transformedMin) / 2
80                 self._drawOffset[2] = self._transformedMin[2]
81                 self._transformedMax -= self._drawOffset
82                 self._transformedMin -= self._drawOffset
83
84         def getName(self):
85                 return self._name
86         def getOriginFilename(self):
87                 return self._originFilename
88         def getPosition(self):
89                 return self._position
90         def setPosition(self, newPos):
91                 self._position = newPos
92         def getMatrix(self):
93                 return self._matrix
94
95         def getMaximum(self):
96                 return self._transformedMax
97         def getMinimum(self):
98                 return self._transformedMin
99         def getSize(self):
100                 return self._transformedSize
101         def getDrawOffset(self):
102                 return self._drawOffset
103         def getBoundaryCircle(self):
104                 return self._boundaryCircleSize
105
106         def mirror(self, axis):
107                 matrix = [[1,0,0], [0, 1, 0], [0, 0, 1]]
108                 matrix[axis][axis] = -1
109                 self.applyMatrix(numpy.matrix(matrix, numpy.float64))
110
111         def getScale(self):
112                 return numpy.array([
113                         numpy.linalg.norm(self._matrix[::,0].getA().flatten()),
114                         numpy.linalg.norm(self._matrix[::,1].getA().flatten()),
115                         numpy.linalg.norm(self._matrix[::,2].getA().flatten())], numpy.float64);
116
117         def setScale(self, scale, axis, uniform):
118                 currentScale = numpy.linalg.norm(self._matrix[::,axis].getA().flatten())
119                 scale /= currentScale
120                 if scale == 0:
121                         return
122                 if uniform:
123                         matrix = [[scale,0,0], [0, scale, 0], [0, 0, scale]]
124                 else:
125                         matrix = [[1.0,0,0], [0, 1.0, 0], [0, 0, 1.0]]
126                         matrix[axis][axis] = scale
127                 self.applyMatrix(numpy.matrix(matrix, numpy.float64))
128
129         def setSize(self, size, axis, uniform):
130                 scale = self.getSize()[axis]
131                 scale = size / scale
132                 if scale == 0:
133                         return
134                 if uniform:
135                         matrix = [[scale,0,0], [0, scale, 0], [0, 0, scale]]
136                 else:
137                         matrix = [[1,0,0], [0, 1, 0], [0, 0, 1]]
138                         matrix[axis][axis] = scale
139                 self.applyMatrix(numpy.matrix(matrix, numpy.float64))
140
141         def resetScale(self):
142                 x = 1/numpy.linalg.norm(self._matrix[::,0].getA().flatten())
143                 y = 1/numpy.linalg.norm(self._matrix[::,1].getA().flatten())
144                 z = 1/numpy.linalg.norm(self._matrix[::,2].getA().flatten())
145                 self.applyMatrix(numpy.matrix([[x,0,0],[0,y,0],[0,0,z]], numpy.float64))
146
147         def resetRotation(self):
148                 x = numpy.linalg.norm(self._matrix[::,0].getA().flatten())
149                 y = numpy.linalg.norm(self._matrix[::,1].getA().flatten())
150                 z = numpy.linalg.norm(self._matrix[::,2].getA().flatten())
151                 self._matrix = numpy.matrix([[x,0,0],[0,y,0],[0,0,z]], numpy.float64)
152                 self.processMatrix()
153
154         def layFlat(self):
155                 transformedVertexes = self._meshList[0].getTransformedVertexes()
156                 minZvertex = transformedVertexes[transformedVertexes.argmin(0)[2]]
157                 dotMin = 1.0
158                 dotV = None
159                 for v in transformedVertexes:
160                         diff = v - minZvertex
161                         len = math.sqrt(diff[0] * diff[0] + diff[1] * diff[1] + diff[2] * diff[2])
162                         if len < 5:
163                                 continue
164                         dot = (diff[2] / len)
165                         if dotMin > dot:
166                                 dotMin = dot
167                                 dotV = diff
168                 if dotV is None:
169                         return
170                 rad = -math.atan2(dotV[1], dotV[0])
171                 self._matrix *= numpy.matrix([[math.cos(rad), math.sin(rad), 0], [-math.sin(rad), math.cos(rad), 0], [0,0,1]], numpy.float64)
172                 rad = -math.asin(dotMin)
173                 self._matrix *= numpy.matrix([[math.cos(rad), 0, math.sin(rad)], [0,1,0], [-math.sin(rad), 0, math.cos(rad)]], numpy.float64)
174
175
176                 transformedVertexes = self._meshList[0].getTransformedVertexes()
177                 minZvertex = transformedVertexes[transformedVertexes.argmin(0)[2]]
178                 dotMin = 1.0
179                 dotV = None
180                 for v in transformedVertexes:
181                         diff = v - minZvertex
182                         len = math.sqrt(diff[1] * diff[1] + diff[2] * diff[2])
183                         if len < 5:
184                                 continue
185                         dot = (diff[2] / len)
186                         if dotMin > dot:
187                                 dotMin = dot
188                                 dotV = diff
189                 if dotV is None:
190                         return
191                 if dotV[1] < 0:
192                         rad = math.asin(dotMin)
193                 else:
194                         rad = -math.asin(dotMin)
195                 self.applyMatrix(numpy.matrix([[1,0,0], [0, math.cos(rad), math.sin(rad)], [0, -math.sin(rad), math.cos(rad)]], numpy.float64))
196
197         def scaleUpTo(self, size):
198                 vMin = self._transformedMin
199                 vMax = self._transformedMax
200
201                 scaleX1 = (size[0] / 2 - self._position[0]) / ((vMax[0] - vMin[0]) / 2)
202                 scaleY1 = (size[1] / 2 - self._position[1]) / ((vMax[1] - vMin[1]) / 2)
203                 scaleX2 = (self._position[0] + size[0] / 2) / ((vMax[0] - vMin[0]) / 2)
204                 scaleY2 = (self._position[1] + size[1] / 2) / ((vMax[1] - vMin[1]) / 2)
205                 scaleZ = size[2] / (vMax[2] - vMin[2])
206                 scale = min(scaleX1, scaleY1, scaleX2, scaleY2, scaleZ)
207                 if scale > 0:
208                         self.applyMatrix(numpy.matrix([[scale,0,0],[0,scale,0],[0,0,scale]], numpy.float64))
209
210         #Split splits an object with multiple meshes into different objects, where each object is a part of the original mesh that has
211         # connected faces. This is useful to split up plate STL files.
212         def split(self, callback):
213                 ret = []
214                 for oriMesh in self._meshList:
215                         ret += oriMesh.split(callback)
216                 return ret
217
218         def canStoreAsSTL(self):
219                 return len(self._meshList) < 2
220
221         #getVertexIndexList returns an array of vertexes, and an integer array for each mesh in this object.
222         # the integer arrays are indexes into the vertex array for each triangle in the model.
223         def getVertexIndexList(self):
224                 vertexMap = {}
225                 vertexList = []
226                 meshList = []
227                 for m in self._meshList:
228                         verts = m.getTransformedVertexes(True)
229                         meshIdxList = []
230                         for idx in xrange(0, len(verts)):
231                                 v = verts[idx]
232                                 hashNr = int(v[0] * 100) | int(v[1] * 100) << 10 | int(v[2] * 100) << 20
233                                 vIdx = None
234                                 if hashNr in vertexMap:
235                                         for idx2 in vertexMap[hashNr]:
236                                                 if numpy.linalg.norm(v - vertexList[idx2]) < 0.001:
237                                                         vIdx = idx2
238                                 if vIdx is None:
239                                         vIdx = len(vertexList)
240                                         vertexMap[hashNr] = [vIdx]
241                                         vertexList.append(v)
242                                 meshIdxList.append(vIdx)
243                         meshList.append(numpy.array(meshIdxList, numpy.int32))
244                 return numpy.array(vertexList, numpy.float32), meshList
245
246 class mesh(object):
247         def __init__(self, obj):
248                 self.vertexes = None
249                 self.vertexCount = 0
250                 self.vbo = None
251                 self._obj = obj
252
253         def _addFace(self, x0, y0, z0, x1, y1, z1, x2, y2, z2):
254                 n = self.vertexCount
255                 self.vertexes[n][0] = x0
256                 self.vertexes[n][1] = y0
257                 self.vertexes[n][2] = z0
258                 n += 1
259                 self.vertexes[n][0] = x1
260                 self.vertexes[n][1] = y1
261                 self.vertexes[n][2] = z1
262                 n += 1
263                 self.vertexes[n][0] = x2
264                 self.vertexes[n][1] = y2
265                 self.vertexes[n][2] = z2
266                 self.vertexCount += 3
267         
268         def _prepareFaceCount(self, faceNumber):
269                 #Set the amount of faces before loading data in them. This way we can create the numpy arrays before we fill them.
270                 self.vertexes = numpy.zeros((faceNumber*3, 3), numpy.float32)
271                 self.normal = numpy.zeros((faceNumber*3, 3), numpy.float32)
272                 self.vertexCount = 0
273
274         def _calculateNormals(self):
275                 #Calculate the normals
276                 tris = self.vertexes.reshape(self.vertexCount / 3, 3, 3)
277                 normals = numpy.cross( tris[::,1 ] - tris[::,0]  , tris[::,2 ] - tris[::,0] )
278                 lens = numpy.sqrt( normals[:,0]**2 + normals[:,1]**2 + normals[:,2]**2 )
279                 normals[:,0] /= lens
280                 normals[:,1] /= lens
281                 normals[:,2] /= lens
282                 
283                 n = numpy.zeros((self.vertexCount / 3, 9), numpy.float32)
284                 n[:,0:3] = normals
285                 n[:,3:6] = normals
286                 n[:,6:9] = normals
287                 self.normal = n.reshape(self.vertexCount, 3)
288                 self.invNormal = -self.normal
289
290         def _vertexHash(self, idx):
291                 v = self.vertexes[idx]
292                 return int(v[0] * 100) | int(v[1] * 100) << 10 | int(v[2] * 100) << 20
293
294         def _idxFromHash(self, map, idx):
295                 vHash = self._vertexHash(idx)
296                 for i in map[vHash]:
297                         if numpy.linalg.norm(self.vertexes[i] - self.vertexes[idx]) < 0.001:
298                                 return i
299
300         def getTransformedVertexes(self, applyOffsets = False):
301                 if applyOffsets:
302                         pos = self._obj._position.copy()
303                         pos.resize((3))
304                         pos[2] = self._obj.getSize()[2] / 2
305                         offset = self._obj._drawOffset.copy()
306                         offset[2] += self._obj.getSize()[2] / 2
307                         return (numpy.matrix(self.vertexes, copy = False) * numpy.matrix(self._obj._matrix, numpy.float32)).getA() - offset + pos
308                 return (numpy.matrix(self.vertexes, copy = False) * numpy.matrix(self._obj._matrix, numpy.float32)).getA()
309
310         def split(self, callback):
311                 vertexMap = {}
312
313                 vertexToFace = []
314                 for idx in xrange(0, self.vertexCount):
315                         if (idx % 100) == 0:
316                                 callback(idx * 100 / self.vertexCount)
317                         vHash = self._vertexHash(idx)
318                         if vHash not in vertexMap:
319                                 vertexMap[vHash] = []
320                         vertexMap[vHash].append(idx)
321                         vertexToFace.append([])
322
323                 faceList = []
324                 for idx in xrange(0, self.vertexCount, 3):
325                         if (idx % 100) == 0:
326                                 callback(idx * 100 / self.vertexCount)
327                         f = [self._idxFromHash(vertexMap, idx), self._idxFromHash(vertexMap, idx+1), self._idxFromHash(vertexMap, idx+2)]
328                         vertexToFace[f[0]].append(idx / 3)
329                         vertexToFace[f[1]].append(idx / 3)
330                         vertexToFace[f[2]].append(idx / 3)
331                         faceList.append(f)
332
333                 ret = []
334                 doneSet = set()
335                 for idx in xrange(0, len(faceList)):
336                         if idx in doneSet:
337                                 continue
338                         doneSet.add(idx)
339                         todoList = [idx]
340                         meshFaceList = []
341                         while len(todoList) > 0:
342                                 idx = todoList.pop()
343                                 meshFaceList.append(idx)
344                                 for n in xrange(0, 3):
345                                         for i in vertexToFace[faceList[idx][n]]:
346                                                 if not i in doneSet:
347                                                         doneSet.add(i)
348                                                         todoList.append(i)
349
350                         obj = printableObject(self._obj.getOriginFilename())
351                         obj._matrix = self._obj._matrix.copy()
352                         m = obj._addMesh()
353                         m._prepareFaceCount(len(meshFaceList))
354                         for idx in meshFaceList:
355                                 m.vertexes[m.vertexCount] = self.vertexes[faceList[idx][0]]
356                                 m.vertexCount += 1
357                                 m.vertexes[m.vertexCount] = self.vertexes[faceList[idx][1]]
358                                 m.vertexCount += 1
359                                 m.vertexes[m.vertexCount] = self.vertexes[faceList[idx][2]]
360                                 m.vertexCount += 1
361                         obj._postProcessAfterLoad()
362                         ret.append(obj)
363                 return ret