chiark / gitweb /
finish merge unique base (we think)
authorIan Jackson <ijackson@chiark.greenend.org.uk>
Mon, 5 Mar 2012 18:07:15 +0000 (18:07 +0000)
committerIan Jackson <ijackson@chiark.greenend.org.uk>
Mon, 5 Mar 2012 18:07:15 +0000 (18:07 +0000)
article.tex

index f8acb22..1e42670 100644 (file)
@@ -409,34 +409,17 @@ $A \le R \equiv A \le \baseof{R}$.
 But by Tip Merge condition on $\baseof{R}$,
 $A \le \baseof{L} \implies A \le \baseof{R}$, so
 $A \le \baseof{R} \lor A \le \baseof{L} \equiv A \le \baseof{R}$.
-Thus $A \le C \equiv A \le \baseof{R}$.  Ie, $\baseof{C} =
-\baseof{R}$.
+Thus $A \le C \equiv A \le \baseof{R}$.  
+That is, $\baseof{C} = \baseof{R}$.
 
 \subsubsection{For $R \in \pn$:}
 
 By Tip Merge condition on $R$,
-$A \le \baseof{L} \implies A \le R$
+$A \le \baseof{L} \implies A \le R$, so
+$A \le R \lor A \le \baseof{L} \equiv A \le R$.  
+Thus $A \le C \equiv A \le R$.  
+That is, $\baseof{C} = R$.
 
-UP TO HERE
-
-Let $S =
-   \begin{cases} 
-     R \in \py : & \baseof{R} \\
-     R \in \pn : & R
-   \end{cases}$.  
-Then by Tip Merge $S \ge \baseof{L}$, and $R \ge S$ so $C \ge S$.
-   
-Consider some $A \in \pn$.  If $A \le S$ then $A \le C$.
-If $A \not\le S$ then 
-
-Let $A \in \pends{C}{\pn}$.  
-Then by Calculation Of Ends $A \in \pendsof{L,\pn} \lor A \in
-\pendsof{R,\pn}$.
-
-
-
-%$\pends{C,
-
-%%\subsubsection{For $R \in \py$:}
+$\qed$
 
 \end{document}