chiark / gitweb /
Fix completion checking in Killer Solo.
[sgt-puzzles.git] / solo.c
diff --git a/solo.c b/solo.c
index 70eaa99c000737423bbe193f202e17ebe89d5ea3..a8a67e81445ea7240cfecc5ace84c8986ec9388e 100644 (file)
--- a/solo.c
+++ b/solo.c
@@ -3,25 +3,36 @@
  *
  * TODO:
  *
- *  - can we do anything about nasty centring of text in GTK? It
- *    seems to be taking ascenders/descenders into account when
- *    centring. Ick.
- *
- *  - implement stronger modes of reasoning in nsolve, thus
- *    enabling harder puzzles
- *     + and having done that, supply configurable difficulty
- *      levels
- *
+ *  - reports from users are that `Trivial'-mode puzzles are still
+ *    rather hard compared to newspapers' easy ones, so some better
+ *    low-end difficulty grading would be nice
+ *     + it's possible that really easy puzzles always have
+ *       _several_ things you can do, so don't make you hunt too
+ *       hard for the one deduction you can currently make
+ *     + it's also possible that easy puzzles require fewer
+ *       cross-eliminations: perhaps there's a higher incidence of
+ *       things you can deduce by looking only at (say) rows,
+ *       rather than things you have to check both rows and columns
+ *       for
+ *     + but really, what I need to do is find some really easy
+ *       puzzles and _play_ them, to see what's actually easy about
+ *       them
+ *     + while I'm revamping this area, filling in the _last_
+ *       number in a nearly-full row or column should certainly be
+ *       permitted even at the lowest difficulty level.
+ *     + also Owen noticed that `Basic' grids requiring numeric
+ *       elimination are actually very hard, so I wonder if a
+ *       difficulty gradation between that and positional-
+ *       elimination-only might be in order
+ *     + but it's not good to have _too_ many difficulty levels, or
+ *       it'll take too long to randomly generate a given level.
+ * 
  *  - it might still be nice to do some prioritisation on the
  *    removal of numbers from the grid
  *     + one possibility is to try to minimise the maximum number
  *      of filled squares in any block, which in particular ought
  *      to enforce never leaving a completely filled block in the
  *      puzzle as presented.
- *     + be careful of being too clever here, though, until after
- *      I've tried implementing difficulty levels. It's not
- *      impossible that those might impose much more important
- *      constraints on this process.
  *
  *  - alternative interface modes
  *     + sudoku.com's Windows program has a palette of possible
  *      click, _or_ you highlight a square and then type. At most
  *      one thing is ever highlighted at a time, so there's no way
  *      to confuse the two.
- *     + `pencil marks' might be useful for more subtle forms of
- *      deduction, once we implement creation of puzzles that
- *      require it.
+ *     + then again, I don't actually like sudoku.com's interface;
+ *       it's too much like a paint package whereas I prefer to
+ *       think of Solo as a text editor.
+ *     + another PDA-friendly possibility is a drag interface:
+ *       _drag_ numbers from the palette into the grid squares.
+ *       Thought experiments suggest I'd prefer that to the
+ *       sudoku.com approach, but I haven't actually tried it.
  */
 
 /*
 #include <ctype.h>
 #include <math.h>
 
+#ifdef STANDALONE_SOLVER
+#include <stdarg.h>
+int solver_show_working, solver_recurse_depth;
+#endif
+
 #include "puzzles.h"
 
 /*
 typedef unsigned char digit;
 #define ORDER_MAX 255
 
-#define TILE_SIZE 32
-#define BORDER 18
+#define PREFERRED_TILE_SIZE 48
+#define TILE_SIZE (ds->tilesize)
+#define BORDER (TILE_SIZE / 2)
+#define GRIDEXTRA max((TILE_SIZE / 32),1)
 
 #define FLASH_TIME 0.4F
 
-enum { SYMM_NONE, SYMM_ROT2, SYMM_ROT4, SYMM_REF4 };
+enum { SYMM_NONE, SYMM_ROT2, SYMM_ROT4, SYMM_REF2, SYMM_REF2D, SYMM_REF4,
+       SYMM_REF4D, SYMM_REF8 };
+
+enum { DIFF_BLOCK,
+       DIFF_SIMPLE, DIFF_INTERSECT, DIFF_SET, DIFF_EXTREME, DIFF_RECURSIVE,
+       DIFF_AMBIGUOUS, DIFF_IMPOSSIBLE };
+
+enum { DIFF_KSINGLE, DIFF_KMINMAX, DIFF_KSUMS, DIFF_KINTERSECT };
 
 enum {
     COL_BACKGROUND,
+    COL_XDIAGONALS,
     COL_GRID,
     COL_CLUE,
     COL_USER,
     COL_HIGHLIGHT,
+    COL_ERROR,
+    COL_PENCIL,
+    COL_KILLER,
     NCOLOURS
 };
 
+/*
+ * To determine all possible ways to reach a given sum by adding two or
+ * three numbers from 1..9, each of which occurs exactly once in the sum,
+ * these arrays contain a list of bitmasks for each sum value, where if
+ * bit N is set, it means that N occurs in the sum.  Each list is
+ * terminated by a zero if it is shorter than the size of the array.
+ */
+#define MAX_2SUMS 5
+#define MAX_3SUMS 8
+#define MAX_4SUMS 12
+unsigned long sum_bits2[18][MAX_2SUMS];
+unsigned long sum_bits3[25][MAX_3SUMS];
+unsigned long sum_bits4[31][MAX_4SUMS];
+
+static int find_sum_bits(unsigned long *array, int idx, int value_left,
+                        int addends_left, int min_addend,
+                        unsigned long bitmask_so_far)
+{
+    int i;
+    assert(addends_left >= 2);
+
+    for (i = min_addend; i < value_left; i++) {
+       unsigned long new_bitmask = bitmask_so_far | (1L << i);
+       assert(bitmask_so_far != new_bitmask);
+
+       if (addends_left == 2) {
+           int j = value_left - i;
+           if (j <= i)
+               break;
+           if (j > 9)
+               continue;
+           array[idx++] = new_bitmask | (1L << j);
+       } else
+           idx = find_sum_bits(array, idx, value_left - i,
+                               addends_left - 1, i + 1,
+                               new_bitmask);
+    }
+    return idx;
+}
+
+static void precompute_sum_bits(void)
+{
+    int i;
+    for (i = 3; i < 31; i++) {
+       int j;
+       if (i < 18) {
+           j = find_sum_bits(sum_bits2[i], 0, i, 2, 1, 0);
+           assert (j <= MAX_2SUMS);
+           if (j < MAX_2SUMS)
+               sum_bits2[i][j] = 0;
+       }
+       if (i < 25) {
+           j = find_sum_bits(sum_bits3[i], 0, i, 3, 1, 0);
+           assert (j <= MAX_3SUMS);
+           if (j < MAX_3SUMS)
+               sum_bits3[i][j] = 0;
+       }
+       j = find_sum_bits(sum_bits4[i], 0, i, 4, 1, 0);
+       assert (j <= MAX_4SUMS);
+       if (j < MAX_4SUMS)
+           sum_bits4[i][j] = 0;
+    }
+}
+
 struct game_params {
-    int c, r, symm;
+    /*
+     * For a square puzzle, `c' and `r' indicate the puzzle
+     * parameters as described above.
+     * 
+     * A jigsaw-style puzzle is indicated by r==1, in which case c
+     * can be whatever it likes (there is no constraint on
+     * compositeness - a 7x7 jigsaw sudoku makes perfect sense).
+     */
+    int c, r, symm, diff, kdiff;
+    int xtype;                        /* require all digits in X-diagonals */
+    int killer;
+};
+
+struct block_structure {
+    int refcount;
+
+    /*
+     * For text formatting, we do need c and r here.
+     */
+    int c, r, area;
+
+    /*
+     * For any square index, whichblock[i] gives its block index.
+     *
+     * For 0 <= b,i < cr, blocks[b][i] gives the index of the ith
+     * square in block b.  nr_squares[b] gives the number of squares
+     * in block b (also the number of valid elements in blocks[b]).
+     *
+     * blocks_data holds the data pointed to by blocks.
+     *
+     * nr_squares may be NULL for block structures where all blocks are
+     * the same size.
+     */
+    int *whichblock, **blocks, *nr_squares, *blocks_data;
+    int nr_blocks, max_nr_squares;
+
+#ifdef STANDALONE_SOLVER
+    /*
+     * Textual descriptions of each block. For normal Sudoku these
+     * are of the form "(1,3)"; for jigsaw they are "starting at
+     * (5,7)". So the sensible usage in both cases is to say
+     * "elimination within block %s" with one of these strings.
+     * 
+     * Only blocknames itself needs individually freeing; it's all
+     * one block.
+     */
+    char **blocknames;
+#endif
 };
 
 struct game_state {
-    int c, r;
-    digit *grid;
+    /*
+     * For historical reasons, I use `cr' to denote the overall
+     * width/height of the puzzle. It was a natural notation when
+     * all puzzles were divided into blocks in a grid, but doesn't
+     * really make much sense given jigsaw puzzles. However, the
+     * obvious `n' is heavily used in the solver to describe the
+     * index of a number being placed, so `cr' will have to stay.
+     */
+    int cr;
+    struct block_structure *blocks;
+    struct block_structure *kblocks;   /* Blocks for killer puzzles.  */
+    int xtype, killer;
+    digit *grid, *kgrid;
+    unsigned char *pencil;             /* c*r*c*r elements */
     unsigned char *immutable;         /* marks which digits are clues */
-    int completed;
+    int completed, cheated;
 };
 
 static game_params *default_params(void)
@@ -119,98 +275,172 @@ static game_params *default_params(void)
     game_params *ret = snew(game_params);
 
     ret->c = ret->r = 3;
+    ret->xtype = FALSE;
+    ret->killer = FALSE;
     ret->symm = SYMM_ROT2;            /* a plausible default */
+    ret->diff = DIFF_BLOCK;           /* so is this */
+    ret->kdiff = DIFF_KINTERSECT;      /* so is this */
 
     return ret;
 }
 
-static int game_fetch_preset(int i, char **name, game_params **params)
-{
-    game_params *ret;
-    int c, r;
-    char buf[80];
-
-    switch (i) {
-      case 0: c = 2, r = 2; break;
-      case 1: c = 2, r = 3; break;
-      case 2: c = 3, r = 3; break;
-      case 3: c = 3, r = 4; break;
-      case 4: c = 4, r = 4; break;
-      default: return FALSE;
-    }
-
-    sprintf(buf, "%dx%d", c, r);
-    *name = dupstr(buf);
-    *params = ret = snew(game_params);
-    ret->c = c;
-    ret->r = r;
-    ret->symm = SYMM_ROT2;
-    /* FIXME: difficulty presets? */
-    return TRUE;
-}
-
 static void free_params(game_params *params)
 {
     sfree(params);
 }
 
-static game_params *dup_params(game_params *params)
+static game_params *dup_params(const game_params *params)
 {
     game_params *ret = snew(game_params);
     *ret = *params;                   /* structure copy */
     return ret;
 }
 
-static game_params *decode_params(char const *string)
+static int game_fetch_preset(int i, char **name, game_params **params)
+{
+    static struct {
+        char *title;
+        game_params params;
+    } presets[] = {
+        { "2x2 Trivial", { 2, 2, SYMM_ROT2, DIFF_BLOCK, DIFF_KMINMAX, FALSE, FALSE } },
+        { "2x3 Basic", { 2, 3, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
+        { "3x3 Trivial", { 3, 3, SYMM_ROT2, DIFF_BLOCK, DIFF_KMINMAX, FALSE, FALSE } },
+        { "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
+        { "3x3 Basic X", { 3, 3, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, TRUE } },
+        { "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT, DIFF_KMINMAX, FALSE, FALSE } },
+        { "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET, DIFF_KMINMAX, FALSE, FALSE } },
+        { "3x3 Advanced X", { 3, 3, SYMM_ROT2, DIFF_SET, DIFF_KMINMAX, TRUE } },
+        { "3x3 Extreme", { 3, 3, SYMM_ROT2, DIFF_EXTREME, DIFF_KMINMAX, FALSE, FALSE } },
+        { "3x3 Unreasonable", { 3, 3, SYMM_ROT2, DIFF_RECURSIVE, DIFF_KMINMAX, FALSE, FALSE } },
+        { "3x3 Killer", { 3, 3, SYMM_NONE, DIFF_BLOCK, DIFF_KINTERSECT, FALSE, TRUE } },
+        { "9 Jigsaw Basic", { 9, 1, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
+        { "9 Jigsaw Basic X", { 9, 1, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, TRUE } },
+        { "9 Jigsaw Advanced", { 9, 1, SYMM_ROT2, DIFF_SET, DIFF_KMINMAX, FALSE, FALSE } },
+#ifndef SLOW_SYSTEM
+        { "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
+        { "4x4 Basic", { 4, 4, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
+#endif
+    };
+
+    if (i < 0 || i >= lenof(presets))
+        return FALSE;
+
+    *name = dupstr(presets[i].title);
+    *params = dup_params(&presets[i].params);
+
+    return TRUE;
+}
+
+static void decode_params(game_params *ret, char const *string)
 {
-    game_params *ret = default_params();
+    int seen_r = FALSE;
 
     ret->c = ret->r = atoi(string);
-    ret->symm = SYMM_ROT2;
+    ret->xtype = FALSE;
+    ret->killer = FALSE;
     while (*string && isdigit((unsigned char)*string)) string++;
     if (*string == 'x') {
         string++;
         ret->r = atoi(string);
+       seen_r = TRUE;
        while (*string && isdigit((unsigned char)*string)) string++;
     }
-    if (*string == 'r' || *string == 'm' || *string == 'a') {
-       int sn, sc;
-       sc = *string++;
-        sn = atoi(string);
-       while (*string && isdigit((unsigned char)*string)) string++;
-       if (sc == 'm' && sn == 4)
-           ret->symm = SYMM_REF4;
-       if (sc == 'r' && sn == 4)
-           ret->symm = SYMM_ROT4;
-       if (sc == 'r' && sn == 2)
-           ret->symm = SYMM_ROT2;
-       if (sc == 'a')
-           ret->symm = SYMM_NONE;
+    while (*string) {
+        if (*string == 'j') {
+           string++;
+           if (seen_r)
+               ret->c *= ret->r;
+           ret->r = 1;
+       } else if (*string == 'x') {
+           string++;
+           ret->xtype = TRUE;
+       } else if (*string == 'k') {
+           string++;
+           ret->killer = TRUE;
+       } else if (*string == 'r' || *string == 'm' || *string == 'a') {
+            int sn, sc, sd;
+            sc = *string++;
+            if (sc == 'm' && *string == 'd') {
+                sd = TRUE;
+                string++;
+            } else {
+                sd = FALSE;
+            }
+            sn = atoi(string);
+            while (*string && isdigit((unsigned char)*string)) string++;
+            if (sc == 'm' && sn == 8)
+                ret->symm = SYMM_REF8;
+            if (sc == 'm' && sn == 4)
+                ret->symm = sd ? SYMM_REF4D : SYMM_REF4;
+            if (sc == 'm' && sn == 2)
+                ret->symm = sd ? SYMM_REF2D : SYMM_REF2;
+            if (sc == 'r' && sn == 4)
+                ret->symm = SYMM_ROT4;
+            if (sc == 'r' && sn == 2)
+                ret->symm = SYMM_ROT2;
+            if (sc == 'a')
+                ret->symm = SYMM_NONE;
+        } else if (*string == 'd') {
+            string++;
+            if (*string == 't')        /* trivial */
+                string++, ret->diff = DIFF_BLOCK;
+            else if (*string == 'b')   /* basic */
+                string++, ret->diff = DIFF_SIMPLE;
+            else if (*string == 'i')   /* intermediate */
+                string++, ret->diff = DIFF_INTERSECT;
+            else if (*string == 'a')   /* advanced */
+                string++, ret->diff = DIFF_SET;
+            else if (*string == 'e')   /* extreme */
+                string++, ret->diff = DIFF_EXTREME;
+            else if (*string == 'u')   /* unreasonable */
+                string++, ret->diff = DIFF_RECURSIVE;
+        } else
+            string++;                  /* eat unknown character */
     }
-    /* FIXME: difficulty levels */
-
-    return ret;
 }
 
-static char *encode_params(game_params *params)
+static char *encode_params(const game_params *params, int full)
 {
     char str[80];
 
-    /*
-     * Symmetry is a game generation preference and hence is left
-     * out of the encoding. Users can add it back in as they see
-     * fit.
-     */
-    sprintf(str, "%dx%d", params->c, params->r);
+    if (params->r > 1)
+       sprintf(str, "%dx%d", params->c, params->r);
+    else
+       sprintf(str, "%dj", params->c);
+    if (params->xtype)
+       strcat(str, "x");
+    if (params->killer)
+       strcat(str, "k");
+
+    if (full) {
+        switch (params->symm) {
+          case SYMM_REF8: strcat(str, "m8"); break;
+          case SYMM_REF4: strcat(str, "m4"); break;
+          case SYMM_REF4D: strcat(str, "md4"); break;
+          case SYMM_REF2: strcat(str, "m2"); break;
+          case SYMM_REF2D: strcat(str, "md2"); break;
+          case SYMM_ROT4: strcat(str, "r4"); break;
+          /* case SYMM_ROT2: strcat(str, "r2"); break; [default] */
+          case SYMM_NONE: strcat(str, "a"); break;
+        }
+        switch (params->diff) {
+          /* case DIFF_BLOCK: strcat(str, "dt"); break; [default] */
+          case DIFF_SIMPLE: strcat(str, "db"); break;
+          case DIFF_INTERSECT: strcat(str, "di"); break;
+          case DIFF_SET: strcat(str, "da"); break;
+          case DIFF_EXTREME: strcat(str, "de"); break;
+          case DIFF_RECURSIVE: strcat(str, "du"); break;
+        }
+    }
     return dupstr(str);
 }
 
-static config_item *game_configure(game_params *params)
+static config_item *game_configure(const game_params *params)
 {
     config_item *ret;
     char buf[80];
 
-    ret = snewn(5, config_item);
+    ret = snewn(8, config_item);
 
     ret[0].name = "Columns of sub-blocks";
     ret[0].type = C_STRING;
@@ -224,314 +454,202 @@ static config_item *game_configure(game_params *params)
     ret[1].sval = dupstr(buf);
     ret[1].ival = 0;
 
-    ret[2].name = "Symmetry";
-    ret[2].type = C_CHOICES;
-    ret[2].sval = ":None:2-way rotation:4-way rotation:4-way mirror";
-    ret[2].ival = params->symm;
-
-    /*
-     * FIXME: difficulty level.
-     */
+    ret[2].name = "\"X\" (require every number in each main diagonal)";
+    ret[2].type = C_BOOLEAN;
+    ret[2].sval = NULL;
+    ret[2].ival = params->xtype;
 
-    ret[3].name = NULL;
-    ret[3].type = C_END;
+    ret[3].name = "Jigsaw (irregularly shaped sub-blocks)";
+    ret[3].type = C_BOOLEAN;
     ret[3].sval = NULL;
-    ret[3].ival = 0;
+    ret[3].ival = (params->r == 1);
+
+    ret[4].name = "Killer (digit sums)";
+    ret[4].type = C_BOOLEAN;
+    ret[4].sval = NULL;
+    ret[4].ival = params->killer;
+
+    ret[5].name = "Symmetry";
+    ret[5].type = C_CHOICES;
+    ret[5].sval = ":None:2-way rotation:4-way rotation:2-way mirror:"
+        "2-way diagonal mirror:4-way mirror:4-way diagonal mirror:"
+        "8-way mirror";
+    ret[5].ival = params->symm;
+
+    ret[6].name = "Difficulty";
+    ret[6].type = C_CHOICES;
+    ret[6].sval = ":Trivial:Basic:Intermediate:Advanced:Extreme:Unreasonable";
+    ret[6].ival = params->diff;
+
+    ret[7].name = NULL;
+    ret[7].type = C_END;
+    ret[7].sval = NULL;
+    ret[7].ival = 0;
 
     return ret;
 }
 
-static game_params *custom_params(config_item *cfg)
+static game_params *custom_params(const config_item *cfg)
 {
     game_params *ret = snew(game_params);
 
     ret->c = atoi(cfg[0].sval);
     ret->r = atoi(cfg[1].sval);
-    ret->symm = cfg[2].ival;
+    ret->xtype = cfg[2].ival;
+    if (cfg[3].ival) {
+       ret->c *= ret->r;
+       ret->r = 1;
+    }
+    ret->killer = cfg[4].ival;
+    ret->symm = cfg[5].ival;
+    ret->diff = cfg[6].ival;
+    ret->kdiff = DIFF_KINTERSECT;
 
     return ret;
 }
 
-static char *validate_params(game_params *params)
+static char *validate_params(const game_params *params, int full)
 {
-    if (params->c < 2 || params->r < 2)
+    if (params->c < 2)
        return "Both dimensions must be at least 2";
     if (params->c > ORDER_MAX || params->r > ORDER_MAX)
        return "Dimensions greater than "STR(ORDER_MAX)" are not supported";
+    if ((params->c * params->r) > 31)
+        return "Unable to support more than 31 distinct symbols in a puzzle";
+    if (params->killer && params->c * params->r > 9)
+       return "Killer puzzle dimensions must be smaller than 10.";
     return NULL;
 }
 
-/* ----------------------------------------------------------------------
- * Full recursive Solo solver.
- *
- * The algorithm for this solver is shamelessly copied from a
- * Python solver written by Andrew Wilkinson (which is GPLed, but
- * I've reused only ideas and no code). It mostly just does the
- * obvious recursive thing: pick an empty square, put one of the
- * possible digits in it, recurse until all squares are filled,
- * backtrack and change some choices if necessary.
- *
- * The clever bit is that every time it chooses which square to
- * fill in next, it does so by counting the number of _possible_
- * numbers that can go in each square, and it prioritises so that
- * it picks a square with the _lowest_ number of possibilities. The
- * idea is that filling in lots of the obvious bits (particularly
- * any squares with only one possibility) will cut down on the list
- * of possibilities for other squares and hence reduce the enormous
- * search space as much as possible as early as possible.
- *
- * In practice the algorithm appeared to work very well; run on
- * sample problems from the Times it completed in well under a
- * second on my G5 even when written in Python, and given an empty
- * grid (so that in principle it would enumerate _all_ solved
- * grids!) it found the first valid solution just as quickly. So
- * with a bit more randomisation I see no reason not to use this as
- * my grid generator.
- */
-
 /*
- * Internal data structure used in solver to keep track of
- * progress.
+ * ----------------------------------------------------------------------
+ * Block structure functions.
  */
-struct rsolve_coord { int x, y, r; };
-struct rsolve_usage {
-    int c, r, cr;                     /* cr == c*r */
-    /* grid is a copy of the input grid, modified as we go along */
-    digit *grid;
-    /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
-    unsigned char *row;
-    /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
-    unsigned char *col;
-    /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
-    unsigned char *blk;
-    /* This lists all the empty spaces remaining in the grid. */
-    struct rsolve_coord *spaces;
-    int nspaces;
-    /* If we need randomisation in the solve, this is our random state. */
-    random_state *rs;
-    /* Number of solutions so far found, and maximum number we care about. */
-    int solns, maxsolns;
-};
 
-/*
- * The real recursive step in the solving function.
- */
-static void rsolve_real(struct rsolve_usage *usage, digit *grid)
+static struct block_structure *alloc_block_structure(int c, int r, int area,
+                                                    int max_nr_squares,
+                                                    int nr_blocks)
 {
-    int c = usage->c, r = usage->r, cr = usage->cr;
-    int i, j, n, sx, sy, bestm, bestr;
-    int *digits;
+    int i;
+    struct block_structure *b = snew(struct block_structure);
+
+    b->refcount = 1;
+    b->nr_blocks = nr_blocks;
+    b->max_nr_squares = max_nr_squares;
+    b->c = c; b->r = r; b->area = area;
+    b->whichblock = snewn(area, int);
+    b->blocks_data = snewn(nr_blocks * max_nr_squares, int);
+    b->blocks = snewn(nr_blocks, int *);
+    b->nr_squares = snewn(nr_blocks, int);
+
+    for (i = 0; i < nr_blocks; i++)
+       b->blocks[i] = b->blocks_data + i*max_nr_squares;
+
+#ifdef STANDALONE_SOLVER
+    b->blocknames = (char **)smalloc(c*r*(sizeof(char *)+80));
+    for (i = 0; i < c * r; i++)
+       b->blocknames[i] = NULL;
+#endif
+    return b;
+}
 
-    /*
-     * Firstly, check for completion! If there are no spaces left
-     * in the grid, we have a solution.
-     */
-    if (usage->nspaces == 0) {
-       if (!usage->solns) {
-           /*
-            * This is our first solution, so fill in the output grid.
-            */
-           memcpy(grid, usage->grid, cr * cr);
-       }
-       usage->solns++;
-       return;
+static void free_block_structure(struct block_structure *b)
+{
+    if (--b->refcount == 0) {
+       sfree(b->whichblock);
+       sfree(b->blocks);
+       sfree(b->blocks_data);
+#ifdef STANDALONE_SOLVER
+       sfree(b->blocknames);
+#endif
+       sfree(b->nr_squares);
+       sfree(b);
     }
+}
 
-    /*
-     * Otherwise, there must be at least one space. Find the most
-     * constrained space, using the `r' field as a tie-breaker.
-     */
-    bestm = cr+1;                     /* so that any space will beat it */
-    bestr = 0;
-    i = sx = sy = -1;
-    for (j = 0; j < usage->nspaces; j++) {
-       int x = usage->spaces[j].x, y = usage->spaces[j].y;
-       int m;
-
-       /*
-        * Find the number of digits that could go in this space.
-        */
-       m = 0;
-       for (n = 0; n < cr; n++)
-           if (!usage->row[y*cr+n] && !usage->col[x*cr+n] &&
-               !usage->blk[((y/c)*c+(x/r))*cr+n])
-               m++;
-
-       if (m < bestm || (m == bestm && usage->spaces[j].r < bestr)) {
-           bestm = m;
-           bestr = usage->spaces[j].r;
-           sx = x;
-           sy = y;
-           i = j;
-       }
-    }
+static struct block_structure *dup_block_structure(struct block_structure *b)
+{
+    struct block_structure *nb;
+    int i;
 
-    /*
-     * Swap that square into the final place in the spaces array,
-     * so that decrementing nspaces will remove it from the list.
-     */
-    if (i != usage->nspaces-1) {
-       struct rsolve_coord t;
-       t = usage->spaces[usage->nspaces-1];
-       usage->spaces[usage->nspaces-1] = usage->spaces[i];
-       usage->spaces[i] = t;
+    nb = alloc_block_structure(b->c, b->r, b->area, b->max_nr_squares,
+                              b->nr_blocks);
+    memcpy(nb->nr_squares, b->nr_squares, b->nr_blocks * sizeof *b->nr_squares);
+    memcpy(nb->whichblock, b->whichblock, b->area * sizeof *b->whichblock);
+    memcpy(nb->blocks_data, b->blocks_data,
+          b->nr_blocks * b->max_nr_squares * sizeof *b->blocks_data);
+    for (i = 0; i < b->nr_blocks; i++)
+       nb->blocks[i] = nb->blocks_data + i*nb->max_nr_squares;
+
+#ifdef STANDALONE_SOLVER
+    memcpy(nb->blocknames, b->blocknames, b->c * b->r *(sizeof(char *)+80));
+    {
+       int i;
+       for (i = 0; i < b->c * b->r; i++)
+           if (b->blocknames[i] == NULL)
+               nb->blocknames[i] = NULL;
+           else
+               nb->blocknames[i] = ((char *)nb->blocknames) + (b->blocknames[i] - (char *)b->blocknames);
     }
+#endif
+    return nb;
+}
 
-    /*
-     * Now we've decided which square to start our recursion at,
-     * simply go through all possible values, shuffling them
-     * randomly first if necessary.
-     */
-    digits = snewn(bestm, int);
-    j = 0;
-    for (n = 0; n < cr; n++)
-       if (!usage->row[sy*cr+n] && !usage->col[sx*cr+n] &&
-           !usage->blk[((sy/c)*c+(sx/r))*cr+n]) {
-           digits[j++] = n+1;
-       }
-
-    if (usage->rs) {
-       /* shuffle */
-       for (i = j; i > 1; i--) {
-           int p = random_upto(usage->rs, i);
-           if (p != i-1) {
-               int t = digits[p];
-               digits[p] = digits[i-1];
-               digits[i-1] = t;
-           }
-       }
+static void split_block(struct block_structure *b, int *squares, int nr_squares)
+{
+    int i, j;
+    int previous_block = b->whichblock[squares[0]];
+    int newblock = b->nr_blocks;
+
+    assert(b->max_nr_squares >= nr_squares);
+    assert(b->nr_squares[previous_block] > nr_squares);
+
+    b->nr_blocks++;
+    b->blocks_data = sresize(b->blocks_data,
+                            b->nr_blocks * b->max_nr_squares, int);
+    b->nr_squares = sresize(b->nr_squares, b->nr_blocks, int);
+    sfree(b->blocks);
+    b->blocks = snewn(b->nr_blocks, int *);
+    for (i = 0; i < b->nr_blocks; i++)
+       b->blocks[i] = b->blocks_data + i*b->max_nr_squares;
+    for (i = 0; i < nr_squares; i++) {
+       assert(b->whichblock[squares[i]] == previous_block);
+       b->whichblock[squares[i]] = newblock;
+       b->blocks[newblock][i] = squares[i];
     }
-
-    /* And finally, go through the digit list and actually recurse. */
-    for (i = 0; i < j; i++) {
-       n = digits[i];
-
-       /* Update the usage structure to reflect the placing of this digit. */
-       usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] =
-           usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = TRUE;
-       usage->grid[sy*cr+sx] = n;
-       usage->nspaces--;
-
-       /* Call the solver recursively. */
-       rsolve_real(usage, grid);
-
-       /*
-        * If we have seen as many solutions as we need, terminate
-        * all processing immediately.
-        */
-       if (usage->solns >= usage->maxsolns)
-           break;
-
-       /* Revert the usage structure. */
-       usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] =
-           usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = FALSE;
-       usage->grid[sy*cr+sx] = 0;
-       usage->nspaces++;
+    for (i = j = 0; i < b->nr_squares[previous_block]; i++) {
+       int k;
+       int sq = b->blocks[previous_block][i];
+       for (k = 0; k < nr_squares; k++)
+           if (squares[k] == sq)
+               break;
+       if (k == nr_squares)
+           b->blocks[previous_block][j++] = sq;
     }
-
-    sfree(digits);
+    b->nr_squares[previous_block] -= nr_squares;
+    b->nr_squares[newblock] = nr_squares;
 }
 
-/*
- * Entry point to solver. You give it dimensions and a starting
- * grid, which is simply an array of N^4 digits. In that array, 0
- * means an empty square, and 1..N mean a clue square.
- *
- * Return value is the number of solutions found; searching will
- * stop after the provided `max'. (Thus, you can pass max==1 to
- * indicate that you only care about finding _one_ solution, or
- * max==2 to indicate that you want to know the difference between
- * a unique and non-unique solution.) The input parameter `grid' is
- * also filled in with the _first_ (or only) solution found by the
- * solver.
- */
-static int rsolve(int c, int r, digit *grid, random_state *rs, int max)
+static void remove_from_block(struct block_structure *blocks, int b, int n)
 {
-    struct rsolve_usage *usage;
-    int x, y, cr = c*r;
-    int ret;
-
-    /*
-     * Create an rsolve_usage structure.
-     */
-    usage = snew(struct rsolve_usage);
-
-    usage->c = c;
-    usage->r = r;
-    usage->cr = cr;
-
-    usage->grid = snewn(cr * cr, digit);
-    memcpy(usage->grid, grid, cr * cr);
-
-    usage->row = snewn(cr * cr, unsigned char);
-    usage->col = snewn(cr * cr, unsigned char);
-    usage->blk = snewn(cr * cr, unsigned char);
-    memset(usage->row, FALSE, cr * cr);
-    memset(usage->col, FALSE, cr * cr);
-    memset(usage->blk, FALSE, cr * cr);
-
-    usage->spaces = snewn(cr * cr, struct rsolve_coord);
-    usage->nspaces = 0;
-
-    usage->solns = 0;
-    usage->maxsolns = max;
-
-    usage->rs = rs;
-
-    /*
-     * Now fill it in with data from the input grid.
-     */
-    for (y = 0; y < cr; y++) {
-       for (x = 0; x < cr; x++) {
-           int v = grid[y*cr+x];
-           if (v == 0) {
-               usage->spaces[usage->nspaces].x = x;
-               usage->spaces[usage->nspaces].y = y;
-               if (rs)
-                   usage->spaces[usage->nspaces].r = random_bits(rs, 31);
-               else
-                   usage->spaces[usage->nspaces].r = usage->nspaces;
-               usage->nspaces++;
-           } else {
-               usage->row[y*cr+v-1] = TRUE;
-               usage->col[x*cr+v-1] = TRUE;
-               usage->blk[((y/c)*c+(x/r))*cr+v-1] = TRUE;
-           }
-       }
-    }
-
-    /*
-     * Run the real recursive solving function.
-     */
-    rsolve_real(usage, grid);
-    ret = usage->solns;
-
-    /*
-     * Clean up the usage structure now we have our answer.
-     */
-    sfree(usage->spaces);
-    sfree(usage->blk);
-    sfree(usage->col);
-    sfree(usage->row);
-    sfree(usage->grid);
-    sfree(usage);
-
-    /*
-     * And return.
-     */
-    return ret;
+    int i, j;
+    blocks->whichblock[n] = -1;
+    for (i = j = 0; i < blocks->nr_squares[b]; i++)
+       if (blocks->blocks[b][i] != n)
+           blocks->blocks[b][j++] = blocks->blocks[b][i];
+    assert(j+1 == i);
+    blocks->nr_squares[b]--;
 }
 
 /* ----------------------------------------------------------------------
- * End of recursive solver code.
- */
-
-/* ----------------------------------------------------------------------
- * Less capable non-recursive solver. This one is used to check
- * solubility of a grid as we gradually remove numbers from it: by
- * verifying a grid using this solver we can ensure it isn't _too_
- * hard (e.g. does not actually require guessing and backtracking).
- *
+ * Solver.
+ * 
+ * This solver is used for two purposes:
+ *  + to check solubility of a grid as we gradually remove numbers
+ *    from it
+ *  + to solve an externally generated puzzle when the user selects
+ *    `Solve'.
+ * 
  * It supports a variety of specific modes of reasoning. By
  * enabling or disabling subsets of these modes we can arrange a
  * range of difficulty levels.
@@ -544,56 +662,62 @@ static int rsolve(int c, int r, digit *grid, random_state *rs, int max)
  *    square because all the other empty squares in a given
  *    row/col/blk are ruled out.
  *
+ *  - Killer minmax elimination: for killer-type puzzles, a number
+ *    is impossible if choosing it would cause the sum in a killer
+ *    region to be guaranteed to be too large or too small.
+ *
  *  - Numeric elimination: a square must have a particular number
  *    in because all the other numbers that could go in it are
  *    ruled out.
  *
- * More advanced modes of reasoning I'd like to support in future:
- *
- *  - Intersectional elimination: given two domains which overlap
+ *  - Intersectional analysis: given two domains which overlap
  *    (hence one must be a block, and the other can be a row or
  *    col), if the possible locations for a particular number in
  *    one of the domains can be narrowed down to the overlap, then
  *    that number can be ruled out everywhere but the overlap in
  *    the other domain too.
  *
- *  - Setwise numeric elimination: if there is a subset of the
- *    empty squares within a domain such that the union of the
- *    possible numbers in that subset has the same size as the
- *    subset itself, then those numbers can be ruled out everywhere
- *    else in the domain. (For example, if there are five empty
- *    squares and the possible numbers in each are 12, 23, 13, 134
- *    and 1345, then the first three empty squares form such a
- *    subset: the numbers 1, 2 and 3 _must_ be in those three
- *    squares in some permutation, and hence we can deduce none of
- *    them can be in the fourth or fifth squares.)
- */
-
-/*
- * Within this solver, I'm going to transform all y-coordinates by
- * inverting the significance of the block number and the position
- * within the block. That is, we will start with the top row of
- * each block in order, then the second row of each block in order,
- * etc.
+ *  - Set elimination: if there is a subset of the empty squares
+ *    within a domain such that the union of the possible numbers
+ *    in that subset has the same size as the subset itself, then
+ *    those numbers can be ruled out everywhere else in the domain.
+ *    (For example, if there are five empty squares and the
+ *    possible numbers in each are 12, 23, 13, 134 and 1345, then
+ *    the first three empty squares form such a subset: the numbers
+ *    1, 2 and 3 _must_ be in those three squares in some
+ *    permutation, and hence we can deduce none of them can be in
+ *    the fourth or fifth squares.)
+ *     + You can also see this the other way round, concentrating
+ *       on numbers rather than squares: if there is a subset of
+ *       the unplaced numbers within a domain such that the union
+ *       of all their possible positions has the same size as the
+ *       subset itself, then all other numbers can be ruled out for
+ *       those positions. However, it turns out that this is
+ *       exactly equivalent to the first formulation at all times:
+ *       there is a 1-1 correspondence between suitable subsets of
+ *       the unplaced numbers and suitable subsets of the unfilled
+ *       places, found by taking the _complement_ of the union of
+ *       the numbers' possible positions (or the spaces' possible
+ *       contents).
+ * 
+ *  - Forcing chains (see comment for solver_forcing().)
  * 
- * This transformation has the enormous advantage that it means
- * every row, column _and_ block is described by an arithmetic
- * progression of coordinates within the cubic array, so that I can
- * use the same very simple function to do blockwise, row-wise and
- * column-wise elimination.
+ *  - Recursion. If all else fails, we pick one of the currently
+ *    most constrained empty squares and take a random guess at its
+ *    contents, then continue solving on that basis and see if we
+ *    get any further.
  */
-#define YTRANS(y) (((y)%c)*r+(y)/c)
-#define YUNTRANS(y) (((y)%r)*c+(y)/r)
 
-struct nsolve_usage {
-    int c, r, cr;
+struct solver_usage {
+    int cr;
+    struct block_structure *blocks, *kblocks, *extra_cages;
     /*
      * We set up a cubic array, indexed by x, y and digit; each
      * element of this array is TRUE or FALSE according to whether
      * or not that digit _could_ in principle go in that position.
      *
-     * The way to index this array is cube[(x*cr+y)*cr+n-1].
-     * y-coordinates in here are transformed.
+     * The way to index this array is cube[(y*cr+x)*cr+n-1]; there
+     * are macros below to help with this.
      */
     unsigned char *cube;
     /*
@@ -601,6 +725,11 @@ struct nsolve_usage {
      * deductions. y-coordinates in here are _not_ transformed.
      */
     digit *grid;
+    /*
+     * For killer-type puzzles, kclues holds the secondary clue for
+     * each cage.  For derived cages, the clue is in extra_clues.
+     */
+    digit *kclues, *extra_clues;
     /*
      * Now we keep track, at a slightly higher level, of what we
      * have yet to work out, to prevent doing the same deduction
@@ -610,21 +739,35 @@ struct nsolve_usage {
     unsigned char *row;
     /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
     unsigned char *col;
-    /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
+    /* blk[i*cr+n-1] TRUE if digit n has been placed in block i */
     unsigned char *blk;
+    /* diag[i*cr+n-1] TRUE if digit n has been placed in diagonal i */
+    unsigned char *diag;              /* diag 0 is \, 1 is / */
+
+    int *regions;
+    int nr_regions;
+    int **sq2region;
 };
-#define cubepos(x,y,n) (((x)*usage->cr+(y))*usage->cr+(n)-1)
+#define cubepos2(xy,n) ((xy)*usage->cr+(n)-1)
+#define cubepos(x,y,n) cubepos2((y)*usage->cr+(x),n)
 #define cube(x,y,n) (usage->cube[cubepos(x,y,n)])
+#define cube2(xy,n) (usage->cube[cubepos2(xy,n)])
+
+#define ondiag0(xy) ((xy) % (cr+1) == 0)
+#define ondiag1(xy) ((xy) % (cr-1) == 0 && (xy) > 0 && (xy) < cr*cr-1)
+#define diag0(i) ((i) * (cr+1))
+#define diag1(i) ((i+1) * (cr-1))
 
 /*
  * Function called when we are certain that a particular square has
  * a particular number in it. The y-coordinate passed in here is
  * transformed.
  */
-static void nsolve_place(struct nsolve_usage *usage, int x, int y, int n)
+static void solver_place(struct solver_usage *usage, int x, int y, int n)
 {
-    int c = usage->c, r = usage->r, cr = usage->cr;
-    int i, j, bx, by;
+    int cr = usage->cr;
+    int sqindex = y*cr+x;
+    int i, bi;
 
     assert(cube(x,y,n));
 
@@ -652,40 +795,77 @@ static void nsolve_place(struct nsolve_usage *usage, int x, int y, int n)
     /*
      * Rule out this number in all other positions in the block.
      */
-    bx = (x/r)*r;
-    by = y % r;
-    for (i = 0; i < r; i++)
-       for (j = 0; j < c; j++)
-           if (bx+i != x || by+j*r != y)
-               cube(bx+i,by+j*r,n) = FALSE;
+    bi = usage->blocks->whichblock[sqindex];
+    for (i = 0; i < cr; i++) {
+       int bp = usage->blocks->blocks[bi][i];
+       if (bp != sqindex)
+           cube2(bp,n) = FALSE;
+    }
 
     /*
      * Enter the number in the result grid.
      */
-    usage->grid[YUNTRANS(y)*cr+x] = n;
+    usage->grid[sqindex] = n;
 
     /*
      * Cross out this number from the list of numbers left to place
      * in its row, its column and its block.
      */
     usage->row[y*cr+n-1] = usage->col[x*cr+n-1] =
-       usage->blk[((y/c)*c+(x/r))*cr+n-1] = TRUE;
+       usage->blk[bi*cr+n-1] = TRUE;
+
+    if (usage->diag) {
+       if (ondiag0(sqindex)) {
+           for (i = 0; i < cr; i++)
+               if (diag0(i) != sqindex)
+                   cube2(diag0(i),n) = FALSE;
+           usage->diag[n-1] = TRUE;
+       }
+       if (ondiag1(sqindex)) {
+           for (i = 0; i < cr; i++)
+               if (diag1(i) != sqindex)
+                   cube2(diag1(i),n) = FALSE;
+           usage->diag[cr+n-1] = TRUE;
+       }
+    }
 }
 
-static int nsolve_elim(struct nsolve_usage *usage, int start, int step)
-{
-    int c = usage->c, r = usage->r, cr = c*r;
-    int fpos, m, i;
-
-    /*
+#if defined STANDALONE_SOLVER && defined __GNUC__
+/*
+ * Forward-declare the functions taking printf-like format arguments
+ * with __attribute__((format)) so as to ensure the argument syntax
+ * gets debugged.
+ */
+struct solver_scratch;
+static int solver_elim(struct solver_usage *usage, int *indices,
+                       char *fmt, ...) __attribute__((format(printf,3,4)));
+static int solver_intersect(struct solver_usage *usage,
+                            int *indices1, int *indices2, char *fmt, ...)
+    __attribute__((format(printf,4,5)));
+static int solver_set(struct solver_usage *usage,
+                      struct solver_scratch *scratch,
+                      int *indices, char *fmt, ...)
+    __attribute__((format(printf,4,5)));
+#endif
+
+static int solver_elim(struct solver_usage *usage, int *indices
+#ifdef STANDALONE_SOLVER
+                       , char *fmt, ...
+#endif
+                       )
+{
+    int cr = usage->cr;
+    int fpos, m, i;
+
+    /*
      * Count the number of set bits within this section of the
      * cube.
      */
     m = 0;
     fpos = -1;
     for (i = 0; i < cr; i++)
-       if (usage->cube[start+i*step]) {
-           fpos = start+i*step;
+       if (usage->cube[indices[i]]) {
+           fpos = indices[i];
            m++;
        }
 
@@ -694,126 +874,2135 @@ static int nsolve_elim(struct nsolve_usage *usage, int start, int step)
        assert(fpos >= 0);
 
        n = 1 + fpos % cr;
-       y = fpos / cr;
-       x = y / cr;
-       y %= cr;
+       x = fpos / cr;
+       y = x / cr;
+       x %= cr;
+
+        if (!usage->grid[y*cr+x]) {
+#ifdef STANDALONE_SOLVER
+            if (solver_show_working) {
+                va_list ap;
+               printf("%*s", solver_recurse_depth*4, "");
+                va_start(ap, fmt);
+                vprintf(fmt, ap);
+                va_end(ap);
+                printf(":\n%*s  placing %d at (%d,%d)\n",
+                       solver_recurse_depth*4, "", n, 1+x, 1+y);
+            }
+#endif
+            solver_place(usage, x, y, n);
+            return +1;
+        }
+    } else if (m == 0) {
+#ifdef STANDALONE_SOLVER
+       if (solver_show_working) {
+           va_list ap;
+           printf("%*s", solver_recurse_depth*4, "");
+           va_start(ap, fmt);
+           vprintf(fmt, ap);
+           va_end(ap);
+           printf(":\n%*s  no possibilities available\n",
+                  solver_recurse_depth*4, "");
+       }
+#endif
+        return -1;
+    }
+
+    return 0;
+}
+
+static int solver_intersect(struct solver_usage *usage,
+                            int *indices1, int *indices2
+#ifdef STANDALONE_SOLVER
+                            , char *fmt, ...
+#endif
+                            )
+{
+    int cr = usage->cr;
+    int ret, i, j;
+
+    /*
+     * Loop over the first domain and see if there's any set bit
+     * not also in the second.
+     */
+    for (i = j = 0; i < cr; i++) {
+        int p = indices1[i];
+       while (j < cr && indices2[j] < p)
+           j++;
+        if (usage->cube[p]) {
+           if (j < cr && indices2[j] == p)
+               continue;              /* both domains contain this index */
+           else
+               return 0;              /* there is, so we can't deduce */
+       }
+    }
+
+    /*
+     * We have determined that all set bits in the first domain are
+     * within its overlap with the second. So loop over the second
+     * domain and remove all set bits that aren't also in that
+     * overlap; return +1 iff we actually _did_ anything.
+     */
+    ret = 0;
+    for (i = j = 0; i < cr; i++) {
+        int p = indices2[i];
+       while (j < cr && indices1[j] < p)
+           j++;
+        if (usage->cube[p] && (j >= cr || indices1[j] != p)) {
+#ifdef STANDALONE_SOLVER
+            if (solver_show_working) {
+                int px, py, pn;
+
+                if (!ret) {
+                    va_list ap;
+                   printf("%*s", solver_recurse_depth*4, "");
+                    va_start(ap, fmt);
+                    vprintf(fmt, ap);
+                    va_end(ap);
+                    printf(":\n");
+                }
+
+                pn = 1 + p % cr;
+                px = p / cr;
+                py = px / cr;
+                px %= cr;
+
+                printf("%*s  ruling out %d at (%d,%d)\n",
+                       solver_recurse_depth*4, "", pn, 1+px, 1+py);
+            }
+#endif
+            ret = +1;                 /* we did something */
+            usage->cube[p] = 0;
+        }
+    }
+
+    return ret;
+}
+
+struct solver_scratch {
+    unsigned char *grid, *rowidx, *colidx, *set;
+    int *neighbours, *bfsqueue;
+    int *indexlist, *indexlist2;
+#ifdef STANDALONE_SOLVER
+    int *bfsprev;
+#endif
+};
+
+static int solver_set(struct solver_usage *usage,
+                      struct solver_scratch *scratch,
+                      int *indices
+#ifdef STANDALONE_SOLVER
+                      , char *fmt, ...
+#endif
+                      )
+{
+    int cr = usage->cr;
+    int i, j, n, count;
+    unsigned char *grid = scratch->grid;
+    unsigned char *rowidx = scratch->rowidx;
+    unsigned char *colidx = scratch->colidx;
+    unsigned char *set = scratch->set;
+
+    /*
+     * We are passed a cr-by-cr matrix of booleans. Our first job
+     * is to winnow it by finding any definite placements - i.e.
+     * any row with a solitary 1 - and discarding that row and the
+     * column containing the 1.
+     */
+    memset(rowidx, TRUE, cr);
+    memset(colidx, TRUE, cr);
+    for (i = 0; i < cr; i++) {
+        int count = 0, first = -1;
+        for (j = 0; j < cr; j++)
+            if (usage->cube[indices[i*cr+j]])
+                first = j, count++;
+
+       /*
+        * If count == 0, then there's a row with no 1s at all and
+        * the puzzle is internally inconsistent. However, we ought
+        * to have caught this already during the simpler reasoning
+        * methods, so we can safely fail an assertion if we reach
+        * this point here.
+        */
+       assert(count > 0);
+        if (count == 1)
+            rowidx[i] = colidx[first] = FALSE;
+    }
+
+    /*
+     * Convert each of rowidx/colidx from a list of 0s and 1s to a
+     * list of the indices of the 1s.
+     */
+    for (i = j = 0; i < cr; i++)
+        if (rowidx[i])
+            rowidx[j++] = i;
+    n = j;
+    for (i = j = 0; i < cr; i++)
+        if (colidx[i])
+            colidx[j++] = i;
+    assert(n == j);
+
+    /*
+     * And create the smaller matrix.
+     */
+    for (i = 0; i < n; i++)
+        for (j = 0; j < n; j++)
+            grid[i*cr+j] = usage->cube[indices[rowidx[i]*cr+colidx[j]]];
+
+    /*
+     * Having done that, we now have a matrix in which every row
+     * has at least two 1s in. Now we search to see if we can find
+     * a rectangle of zeroes (in the set-theoretic sense of
+     * `rectangle', i.e. a subset of rows crossed with a subset of
+     * columns) whose width and height add up to n.
+     */
+
+    memset(set, 0, n);
+    count = 0;
+    while (1) {
+        /*
+         * We have a candidate set. If its size is <=1 or >=n-1
+         * then we move on immediately.
+         */
+        if (count > 1 && count < n-1) {
+            /*
+             * The number of rows we need is n-count. See if we can
+             * find that many rows which each have a zero in all
+             * the positions listed in `set'.
+             */
+            int rows = 0;
+            for (i = 0; i < n; i++) {
+                int ok = TRUE;
+                for (j = 0; j < n; j++)
+                    if (set[j] && grid[i*cr+j]) {
+                        ok = FALSE;
+                        break;
+                    }
+                if (ok)
+                    rows++;
+            }
+
+            /*
+             * We expect never to be able to get _more_ than
+             * n-count suitable rows: this would imply that (for
+             * example) there are four numbers which between them
+             * have at most three possible positions, and hence it
+             * indicates a faulty deduction before this point or
+             * even a bogus clue.
+             */
+            if (rows > n - count) {
+#ifdef STANDALONE_SOLVER
+               if (solver_show_working) {
+                   va_list ap;
+                   printf("%*s", solver_recurse_depth*4,
+                          "");
+                   va_start(ap, fmt);
+                   vprintf(fmt, ap);
+                   va_end(ap);
+                   printf(":\n%*s  contradiction reached\n",
+                          solver_recurse_depth*4, "");
+               }
+#endif
+               return -1;
+           }
+
+            if (rows >= n - count) {
+                int progress = FALSE;
+
+                /*
+                 * We've got one! Now, for each row which _doesn't_
+                 * satisfy the criterion, eliminate all its set
+                 * bits in the positions _not_ listed in `set'.
+                 * Return +1 (meaning progress has been made) if we
+                 * successfully eliminated anything at all.
+                 * 
+                 * This involves referring back through
+                 * rowidx/colidx in order to work out which actual
+                 * positions in the cube to meddle with.
+                 */
+                for (i = 0; i < n; i++) {
+                    int ok = TRUE;
+                    for (j = 0; j < n; j++)
+                        if (set[j] && grid[i*cr+j]) {
+                            ok = FALSE;
+                            break;
+                        }
+                    if (!ok) {
+                        for (j = 0; j < n; j++)
+                            if (!set[j] && grid[i*cr+j]) {
+                                int fpos = indices[rowidx[i]*cr+colidx[j]];
+#ifdef STANDALONE_SOLVER
+                                if (solver_show_working) {
+                                    int px, py, pn;
+
+                                    if (!progress) {
+                                        va_list ap;
+                                       printf("%*s", solver_recurse_depth*4,
+                                              "");
+                                        va_start(ap, fmt);
+                                        vprintf(fmt, ap);
+                                        va_end(ap);
+                                        printf(":\n");
+                                    }
+
+                                    pn = 1 + fpos % cr;
+                                    px = fpos / cr;
+                                    py = px / cr;
+                                    px %= cr;
+
+                                    printf("%*s  ruling out %d at (%d,%d)\n",
+                                          solver_recurse_depth*4, "",
+                                           pn, 1+px, 1+py);
+                                }
+#endif
+                                progress = TRUE;
+                                usage->cube[fpos] = FALSE;
+                            }
+                    }
+                }
+
+                if (progress) {
+                    return +1;
+                }
+            }
+        }
+
+        /*
+         * Binary increment: change the rightmost 0 to a 1, and
+         * change all 1s to the right of it to 0s.
+         */
+        i = n;
+        while (i > 0 && set[i-1])
+            set[--i] = 0, count--;
+        if (i > 0)
+            set[--i] = 1, count++;
+        else
+            break;                     /* done */
+    }
+
+    return 0;
+}
+
+/*
+ * Look for forcing chains. A forcing chain is a path of
+ * pairwise-exclusive squares (i.e. each pair of adjacent squares
+ * in the path are in the same row, column or block) with the
+ * following properties:
+ *
+ *  (a) Each square on the path has precisely two possible numbers.
+ *
+ *  (b) Each pair of squares which are adjacent on the path share
+ *     at least one possible number in common.
+ *
+ *  (c) Each square in the middle of the path shares _both_ of its
+ *     numbers with at least one of its neighbours (not the same
+ *     one with both neighbours).
+ *
+ * These together imply that at least one of the possible number
+ * choices at one end of the path forces _all_ the rest of the
+ * numbers along the path. In order to make real use of this, we
+ * need further properties:
+ *
+ *  (c) Ruling out some number N from the square at one end of the
+ *     path forces the square at the other end to take the same
+ *     number N.
+ *
+ *  (d) The two end squares are both in line with some third
+ *     square.
+ *
+ *  (e) That third square currently has N as a possibility.
+ *
+ * If we can find all of that lot, we can deduce that at least one
+ * of the two ends of the forcing chain has number N, and that
+ * therefore the mutually adjacent third square does not.
+ *
+ * To find forcing chains, we're going to start a bfs at each
+ * suitable square, once for each of its two possible numbers.
+ */
+static int solver_forcing(struct solver_usage *usage,
+                          struct solver_scratch *scratch)
+{
+    int cr = usage->cr;
+    int *bfsqueue = scratch->bfsqueue;
+#ifdef STANDALONE_SOLVER
+    int *bfsprev = scratch->bfsprev;
+#endif
+    unsigned char *number = scratch->grid;
+    int *neighbours = scratch->neighbours;
+    int x, y;
+
+    for (y = 0; y < cr; y++)
+        for (x = 0; x < cr; x++) {
+            int count, t, n;
+
+            /*
+             * If this square doesn't have exactly two candidate
+             * numbers, don't try it.
+             * 
+             * In this loop we also sum the candidate numbers,
+             * which is a nasty hack to allow us to quickly find
+             * `the other one' (since we will shortly know there
+             * are exactly two).
+             */
+            for (count = t = 0, n = 1; n <= cr; n++)
+                if (cube(x, y, n))
+                    count++, t += n;
+            if (count != 2)
+                continue;
+
+            /*
+             * Now attempt a bfs for each candidate.
+             */
+            for (n = 1; n <= cr; n++)
+                if (cube(x, y, n)) {
+                    int orign, currn, head, tail;
+
+                    /*
+                     * Begin a bfs.
+                     */
+                    orign = n;
+
+                    memset(number, cr+1, cr*cr);
+                    head = tail = 0;
+                    bfsqueue[tail++] = y*cr+x;
+#ifdef STANDALONE_SOLVER
+                    bfsprev[y*cr+x] = -1;
+#endif
+                    number[y*cr+x] = t - n;
+
+                    while (head < tail) {
+                        int xx, yy, nneighbours, xt, yt, i;
+
+                        xx = bfsqueue[head++];
+                        yy = xx / cr;
+                        xx %= cr;
+
+                        currn = number[yy*cr+xx];
+
+                        /*
+                         * Find neighbours of yy,xx.
+                         */
+                        nneighbours = 0;
+                        for (yt = 0; yt < cr; yt++)
+                            neighbours[nneighbours++] = yt*cr+xx;
+                        for (xt = 0; xt < cr; xt++)
+                            neighbours[nneighbours++] = yy*cr+xt;
+                        xt = usage->blocks->whichblock[yy*cr+xx];
+                        for (yt = 0; yt < cr; yt++)
+                           neighbours[nneighbours++] = usage->blocks->blocks[xt][yt];
+                       if (usage->diag) {
+                           int sqindex = yy*cr+xx;
+                           if (ondiag0(sqindex)) {
+                               for (i = 0; i < cr; i++)
+                                   neighbours[nneighbours++] = diag0(i);
+                           }
+                           if (ondiag1(sqindex)) {
+                               for (i = 0; i < cr; i++)
+                                   neighbours[nneighbours++] = diag1(i);
+                           }
+                       }
+
+                        /*
+                         * Try visiting each of those neighbours.
+                         */
+                        for (i = 0; i < nneighbours; i++) {
+                            int cc, tt, nn;
+
+                            xt = neighbours[i] % cr;
+                            yt = neighbours[i] / cr;
+
+                            /*
+                             * We need this square to not be
+                             * already visited, and to include
+                             * currn as a possible number.
+                             */
+                            if (number[yt*cr+xt] <= cr)
+                                continue;
+                            if (!cube(xt, yt, currn))
+                                continue;
+
+                            /*
+                             * Don't visit _this_ square a second
+                             * time!
+                             */
+                            if (xt == xx && yt == yy)
+                                continue;
+
+                            /*
+                             * To continue with the bfs, we need
+                             * this square to have exactly two
+                             * possible numbers.
+                             */
+                            for (cc = tt = 0, nn = 1; nn <= cr; nn++)
+                                if (cube(xt, yt, nn))
+                                    cc++, tt += nn;
+                            if (cc == 2) {
+                                bfsqueue[tail++] = yt*cr+xt;
+#ifdef STANDALONE_SOLVER
+                                bfsprev[yt*cr+xt] = yy*cr+xx;
+#endif
+                                number[yt*cr+xt] = tt - currn;
+                            }
+
+                            /*
+                             * One other possibility is that this
+                             * might be the square in which we can
+                             * make a real deduction: if it's
+                             * adjacent to x,y, and currn is equal
+                             * to the original number we ruled out.
+                             */
+                            if (currn == orign &&
+                                (xt == x || yt == y ||
+                                 (usage->blocks->whichblock[yt*cr+xt] == usage->blocks->whichblock[y*cr+x]) ||
+                                (usage->diag && ((ondiag0(yt*cr+xt) && ondiag0(y*cr+x)) ||
+                                                 (ondiag1(yt*cr+xt) && ondiag1(y*cr+x)))))) {
+#ifdef STANDALONE_SOLVER
+                                if (solver_show_working) {
+                                    char *sep = "";
+                                    int xl, yl;
+                                    printf("%*sforcing chain, %d at ends of ",
+                                           solver_recurse_depth*4, "", orign);
+                                    xl = xx;
+                                    yl = yy;
+                                    while (1) {
+                                        printf("%s(%d,%d)", sep, 1+xl,
+                                               1+yl);
+                                        xl = bfsprev[yl*cr+xl];
+                                        if (xl < 0)
+                                            break;
+                                        yl = xl / cr;
+                                        xl %= cr;
+                                        sep = "-";
+                                    }
+                                    printf("\n%*s  ruling out %d at (%d,%d)\n",
+                                           solver_recurse_depth*4, "",
+                                           orign, 1+xt, 1+yt);
+                                }
+#endif
+                                cube(xt, yt, orign) = FALSE;
+                                return 1;
+                            }
+                        }
+                    }
+                }
+        }
+
+    return 0;
+}
+
+static int solver_killer_minmax(struct solver_usage *usage,
+                               struct block_structure *cages, digit *clues,
+                               int b
+#ifdef STANDALONE_SOLVER
+                               , const char *extra
+#endif
+                               )
+{
+    int cr = usage->cr;
+    int i;
+    int ret = 0;
+    int nsquares = cages->nr_squares[b];
+
+    if (clues[b] == 0)
+       return 0;
+
+    for (i = 0; i < nsquares; i++) {
+       int n, x = cages->blocks[b][i];
+
+       for (n = 1; n <= cr; n++)
+           if (cube2(x, n)) {
+               int maxval = 0, minval = 0;
+               int j;
+               for (j = 0; j < nsquares; j++) {
+                   int m;
+                   int y = cages->blocks[b][j];
+                   if (i == j)
+                       continue;
+                   for (m = 1; m <= cr; m++)
+                       if (cube2(y, m)) {
+                           minval += m;
+                           break;
+                       }
+                   for (m = cr; m > 0; m--)
+                       if (cube2(y, m)) {
+                           maxval += m;
+                           break;
+                       }
+               }
+               if (maxval + n < clues[b]) {
+                   cube2(x, n) = FALSE;
+                   ret = 1;
+#ifdef STANDALONE_SOLVER
+                   if (solver_show_working)
+                       printf("%*s  ruling out %d at (%d,%d) as too low %s\n",
+                              solver_recurse_depth*4, "killer minmax analysis",
+                              n, 1 + x%cr, 1 + x/cr, extra);
+#endif
+               }
+               if (minval + n > clues[b]) {
+                   cube2(x, n) = FALSE;
+                   ret = 1;
+#ifdef STANDALONE_SOLVER
+                   if (solver_show_working)
+                       printf("%*s  ruling out %d at (%d,%d) as too high %s\n",
+                              solver_recurse_depth*4, "killer minmax analysis",
+                              n, 1 + x%cr, 1 + x/cr, extra);
+#endif
+               }
+           }
+    }
+    return ret;
+}
+
+static int solver_killer_sums(struct solver_usage *usage, int b,
+                             struct block_structure *cages, int clue,
+                             int cage_is_region
+#ifdef STANDALONE_SOLVER
+                             , const char *cage_type
+#endif
+                             )
+{
+    int cr = usage->cr;
+    int i, ret, max_sums;
+    int nsquares = cages->nr_squares[b];
+    unsigned long *sumbits, possible_addends;
+
+    if (clue == 0) {
+       assert(nsquares == 0);
+       return 0;
+    }
+    assert(nsquares > 0);
+
+    if (nsquares < 2 || nsquares > 4)
+       return 0;
+
+    if (!cage_is_region) {
+       int known_row = -1, known_col = -1, known_block = -1;
+       /*
+        * Verify that the cage lies entirely within one region,
+        * so that using the precomputed sums is valid.
+        */
+       for (i = 0; i < nsquares; i++) {
+           int x = cages->blocks[b][i];
+
+           assert(usage->grid[x] == 0);
+
+           if (i == 0) {
+               known_row = x/cr;
+               known_col = x%cr;
+               known_block = usage->blocks->whichblock[x];
+           } else {
+               if (known_row != x/cr)
+                   known_row = -1;
+               if (known_col != x%cr)
+                   known_col = -1;
+               if (known_block != usage->blocks->whichblock[x])
+                   known_block = -1;
+           }
+       }
+       if (known_block == -1 && known_col == -1 && known_row == -1)
+           return 0;
+    }
+    if (nsquares == 2) {
+       if (clue < 3 || clue > 17)
+           return -1;
+
+       sumbits = sum_bits2[clue];
+       max_sums = MAX_2SUMS;
+    } else if (nsquares == 3) {
+       if (clue < 6 || clue > 24)
+           return -1;
+
+       sumbits = sum_bits3[clue];
+       max_sums = MAX_3SUMS;
+    } else {
+       if (clue < 10 || clue > 30)
+           return -1;
+
+       sumbits = sum_bits4[clue];
+       max_sums = MAX_4SUMS;
+    }
+    /*
+     * For every possible way to get the sum, see if there is
+     * one square in the cage that disallows all the required
+     * addends.  If we find one such square, this way to compute
+     * the sum is impossible.
+     */
+    possible_addends = 0;
+    for (i = 0; i < max_sums; i++) {
+       int j;
+       unsigned long bits = sumbits[i];
+
+       if (bits == 0)
+           break;
+
+       for (j = 0; j < nsquares; j++) {
+           int n;
+           unsigned long square_bits = bits;
+           int x = cages->blocks[b][j];
+           for (n = 1; n <= cr; n++)
+               if (!cube2(x, n))
+                   square_bits &= ~(1L << n);
+           if (square_bits == 0) {
+               break;
+           }
+       }
+       if (j == nsquares)
+           possible_addends |= bits;
+    }
+    /*
+     * Now we know which addends can possibly be used to
+     * compute the sum.  Remove all other digits from the
+     * set of possibilities.
+     */
+    if (possible_addends == 0)
+       return -1;
+
+    ret = 0;
+    for (i = 0; i < nsquares; i++) {
+       int n;
+       int x = cages->blocks[b][i];
+       for (n = 1; n <= cr; n++) {
+           if (!cube2(x, n))
+               continue;
+           if ((possible_addends & (1 << n)) == 0) {
+               cube2(x, n) = FALSE;
+               ret = 1;
+#ifdef STANDALONE_SOLVER
+               if (solver_show_working) {
+                   printf("%*s  using %s\n",
+                          solver_recurse_depth*4, "killer sums analysis",
+                          cage_type);
+                   printf("%*s  ruling out %d at (%d,%d) due to impossible %d-sum\n",
+                          solver_recurse_depth*4, "",
+                          n, 1 + x%cr, 1 + x/cr, nsquares);
+               }
+#endif
+           }
+       }
+    }
+    return ret;
+}
+
+static int filter_whole_cages(struct solver_usage *usage, int *squares, int n,
+                             int *filtered_sum)
+{
+    int b, i, j, off;
+    *filtered_sum = 0;
+
+    /* First, filter squares with a clue.  */
+    for (i = j = 0; i < n; i++)
+       if (usage->grid[squares[i]])
+           *filtered_sum += usage->grid[squares[i]];
+       else
+           squares[j++] = squares[i];
+    n = j;
+
+    /*
+     * Filter all cages that are covered entirely by the list of
+     * squares.
+     */
+    off = 0;
+    for (b = 0; b < usage->kblocks->nr_blocks && off < n; b++) {
+       int b_squares = usage->kblocks->nr_squares[b];
+       int matched = 0;
+
+       if (b_squares == 0)
+           continue;
+
+       /*
+        * Find all squares of block b that lie in our list,
+        * and make them contiguous at off, which is the current position
+        * in the output list.
+        */
+       for (i = 0; i < b_squares; i++) {
+           for (j = off; j < n; j++)
+               if (squares[j] == usage->kblocks->blocks[b][i]) {
+                   int t = squares[off + matched];
+                   squares[off + matched] = squares[j];
+                   squares[j] = t;
+                   matched++;
+                   break;
+               }
+       }
+       /* If so, filter out all squares of b from the list.  */
+       if (matched != usage->kblocks->nr_squares[b]) {
+           off += matched;
+           continue;
+       }
+       memmove(squares + off, squares + off + matched,
+               (n - off - matched) * sizeof *squares);
+       n -= matched;
+
+       *filtered_sum += usage->kclues[b];
+    }
+    assert(off == n);
+    return off;
+}
+
+static struct solver_scratch *solver_new_scratch(struct solver_usage *usage)
+{
+    struct solver_scratch *scratch = snew(struct solver_scratch);
+    int cr = usage->cr;
+    scratch->grid = snewn(cr*cr, unsigned char);
+    scratch->rowidx = snewn(cr, unsigned char);
+    scratch->colidx = snewn(cr, unsigned char);
+    scratch->set = snewn(cr, unsigned char);
+    scratch->neighbours = snewn(5*cr, int);
+    scratch->bfsqueue = snewn(cr*cr, int);
+#ifdef STANDALONE_SOLVER
+    scratch->bfsprev = snewn(cr*cr, int);
+#endif
+    scratch->indexlist = snewn(cr*cr, int);   /* used for set elimination */
+    scratch->indexlist2 = snewn(cr, int);   /* only used for intersect() */
+    return scratch;
+}
+
+static void solver_free_scratch(struct solver_scratch *scratch)
+{
+#ifdef STANDALONE_SOLVER
+    sfree(scratch->bfsprev);
+#endif
+    sfree(scratch->bfsqueue);
+    sfree(scratch->neighbours);
+    sfree(scratch->set);
+    sfree(scratch->colidx);
+    sfree(scratch->rowidx);
+    sfree(scratch->grid);
+    sfree(scratch->indexlist);
+    sfree(scratch->indexlist2);
+    sfree(scratch);
+}
+
+/*
+ * Used for passing information about difficulty levels between the solver
+ * and its callers.
+ */
+struct difficulty {
+    /* Maximum levels allowed.  */
+    int maxdiff, maxkdiff;
+    /* Levels reached by the solver.  */
+    int diff, kdiff;
+};
+
+static void solver(int cr, struct block_structure *blocks,
+                 struct block_structure *kblocks, int xtype,
+                 digit *grid, digit *kgrid, struct difficulty *dlev)
+{
+    struct solver_usage *usage;
+    struct solver_scratch *scratch;
+    int x, y, b, i, n, ret;
+    int diff = DIFF_BLOCK;
+    int kdiff = DIFF_KSINGLE;
+
+    /*
+     * Set up a usage structure as a clean slate (everything
+     * possible).
+     */
+    usage = snew(struct solver_usage);
+    usage->cr = cr;
+    usage->blocks = blocks;
+    if (kblocks) {
+       usage->kblocks = dup_block_structure(kblocks);
+       usage->extra_cages = alloc_block_structure (kblocks->c, kblocks->r,
+                                                   cr * cr, cr, cr * cr);
+       usage->extra_clues = snewn(cr*cr, digit);
+    } else {
+       usage->kblocks = usage->extra_cages = NULL;
+       usage->extra_clues = NULL;
+    }
+    usage->cube = snewn(cr*cr*cr, unsigned char);
+    usage->grid = grid;                       /* write straight back to the input */
+    if (kgrid) {
+       int nclues;
+
+        assert(kblocks);
+        nclues = kblocks->nr_blocks;
+       /*
+        * Allow for expansion of the killer regions, the absolute
+        * limit is obviously one region per square.
+        */
+       usage->kclues = snewn(cr*cr, digit);
+       for (i = 0; i < nclues; i++) {
+           for (n = 0; n < kblocks->nr_squares[i]; n++)
+               if (kgrid[kblocks->blocks[i][n]] != 0)
+                   usage->kclues[i] = kgrid[kblocks->blocks[i][n]];
+           assert(usage->kclues[i] > 0);
+       }
+       memset(usage->kclues + nclues, 0, cr*cr - nclues);
+    } else {
+       usage->kclues = NULL;
+    }
+
+    memset(usage->cube, TRUE, cr*cr*cr);
+
+    usage->row = snewn(cr * cr, unsigned char);
+    usage->col = snewn(cr * cr, unsigned char);
+    usage->blk = snewn(cr * cr, unsigned char);
+    memset(usage->row, FALSE, cr * cr);
+    memset(usage->col, FALSE, cr * cr);
+    memset(usage->blk, FALSE, cr * cr);
+
+    if (xtype) {
+       usage->diag = snewn(cr * 2, unsigned char);
+       memset(usage->diag, FALSE, cr * 2);
+    } else
+       usage->diag = NULL; 
+
+    usage->nr_regions = cr * 3 + (xtype ? 2 : 0);
+    usage->regions = snewn(cr * usage->nr_regions, int);
+    usage->sq2region = snewn(cr * cr * 3, int *);
+
+    for (n = 0; n < cr; n++) {
+       for (i = 0; i < cr; i++) {
+           x = n*cr+i;
+           y = i*cr+n;
+           b = usage->blocks->blocks[n][i];
+           usage->regions[cr*n*3 + i] = x;
+           usage->regions[cr*n*3 + cr + i] = y;
+           usage->regions[cr*n*3 + 2*cr + i] = b;
+           usage->sq2region[x*3] = usage->regions + cr*n*3;
+           usage->sq2region[y*3 + 1] = usage->regions + cr*n*3 + cr;
+           usage->sq2region[b*3 + 2] = usage->regions + cr*n*3 + 2*cr;
+       }
+    }
+
+    scratch = solver_new_scratch(usage);
+
+    /*
+     * Place all the clue numbers we are given.
+     */
+    for (x = 0; x < cr; x++)
+       for (y = 0; y < cr; y++) {
+            int n = grid[y*cr+x];
+           if (n) {
+                if (!cube(x,y,n)) {
+                    diff = DIFF_IMPOSSIBLE;
+                    goto got_result;
+                }
+               solver_place(usage, x, y, grid[y*cr+x]);
+            }
+        }
+
+    /*
+     * Now loop over the grid repeatedly trying all permitted modes
+     * of reasoning. The loop terminates if we complete an
+     * iteration without making any progress; we then return
+     * failure or success depending on whether the grid is full or
+     * not.
+     */
+    while (1) {
+        /*
+         * I'd like to write `continue;' inside each of the
+         * following loops, so that the solver returns here after
+         * making some progress. However, I can't specify that I
+         * want to continue an outer loop rather than the innermost
+         * one, so I'm apologetically resorting to a goto.
+         */
+        cont:
+
+       /*
+        * Blockwise positional elimination.
+        */
+       for (b = 0; b < cr; b++)
+           for (n = 1; n <= cr; n++)
+               if (!usage->blk[b*cr+n-1]) {
+                   for (i = 0; i < cr; i++)
+                       scratch->indexlist[i] = cubepos2(usage->blocks->blocks[b][i],n);
+                   ret = solver_elim(usage, scratch->indexlist
+#ifdef STANDALONE_SOLVER
+                                     , "positional elimination,"
+                                     " %d in block %s", n,
+                                     usage->blocks->blocknames[b]
+#endif
+                                     );
+                   if (ret < 0) {
+                       diff = DIFF_IMPOSSIBLE;
+                       goto got_result;
+                   } else if (ret > 0) {
+                       diff = max(diff, DIFF_BLOCK);
+                       goto cont;
+                   }
+               }
+
+       if (usage->kclues != NULL) {
+           int changed = FALSE;
+
+           /*
+            * First, bring the kblocks into a more useful form: remove
+            * all filled-in squares, and reduce the sum by their values.
+            * Walk in reverse order, since otherwise remove_from_block
+            * can move element past our loop counter.
+            */
+           for (b = 0; b < usage->kblocks->nr_blocks; b++)
+               for (i = usage->kblocks->nr_squares[b] -1; i >= 0; i--) {
+                   int x = usage->kblocks->blocks[b][i];
+                   int t = usage->grid[x];
+
+                   if (t == 0)
+                       continue;
+                   remove_from_block(usage->kblocks, b, x);
+                   if (t > usage->kclues[b]) {
+                       diff = DIFF_IMPOSSIBLE;
+                       goto got_result;
+                   }
+                   usage->kclues[b] -= t;
+                   /*
+                    * Since cages are regions, this tells us something
+                    * about the other squares in the cage.
+                    */
+                   for (n = 0; n < usage->kblocks->nr_squares[b]; n++) {
+                       cube2(usage->kblocks->blocks[b][n], t) = FALSE;
+                   }
+               }
+
+           /*
+            * The most trivial kind of solver for killer puzzles: fill
+            * single-square cages.
+            */
+           for (b = 0; b < usage->kblocks->nr_blocks; b++) {
+               int squares = usage->kblocks->nr_squares[b];
+               if (squares == 1) {
+                   int v = usage->kclues[b];
+                   if (v < 1 || v > cr) {
+                       diff = DIFF_IMPOSSIBLE;
+                       goto got_result;
+                   }
+                   x = usage->kblocks->blocks[b][0] % cr;
+                   y = usage->kblocks->blocks[b][0] / cr;
+                   if (!cube(x, y, v)) {
+                       diff = DIFF_IMPOSSIBLE;
+                       goto got_result;
+                   }
+                   solver_place(usage, x, y, v);
+
+#ifdef STANDALONE_SOLVER
+                   if (solver_show_working) {
+                       printf("%*s  placing %d at (%d,%d)\n",
+                              solver_recurse_depth*4, "killer single-square cage",
+                              v, 1 + x%cr, 1 + x/cr);
+                   }
+#endif
+                   changed = TRUE;
+               }
+           }
+
+           if (changed) {
+               kdiff = max(kdiff, DIFF_KSINGLE);
+               goto cont;
+           }
+       }
+       if (dlev->maxkdiff >= DIFF_KINTERSECT && usage->kclues != NULL) {
+           int changed = FALSE;
+           /*
+            * Now, create the extra_cages information.  Every full region
+            * (row, column, or block) has the same sum total (45 for 3x3
+            * puzzles.  After we try to cover these regions with cages that
+            * lie entirely within them, any squares that remain must bring
+            * the total to this known value, and so they form additional
+            * cages which aren't immediately evident in the displayed form
+            * of the puzzle.
+            */
+           usage->extra_cages->nr_blocks = 0;
+           for (i = 0; i < 3; i++) {
+               for (n = 0; n < cr; n++) {
+                   int *region = usage->regions + cr*n*3 + i*cr;
+                   int sum = cr * (cr + 1) / 2;
+                   int nsquares = cr;
+                   int filtered;
+                   int n_extra = usage->extra_cages->nr_blocks;
+                   int *extra_list = usage->extra_cages->blocks[n_extra];
+                   memcpy(extra_list, region, cr * sizeof *extra_list);
+
+                   nsquares = filter_whole_cages(usage, extra_list, nsquares, &filtered);
+                   sum -= filtered;
+                   if (nsquares == cr || nsquares == 0)
+                       continue;
+                   if (dlev->maxdiff >= DIFF_RECURSIVE) {
+                       if (sum <= 0) {
+                           dlev->diff = DIFF_IMPOSSIBLE;
+                           goto got_result;
+                       }
+                   }
+                   assert(sum > 0);
+
+                   if (nsquares == 1) {
+                       if (sum > cr) {
+                           diff = DIFF_IMPOSSIBLE;
+                           goto got_result;
+                       }
+                       x = extra_list[0] % cr;
+                       y = extra_list[0] / cr;
+                       if (!cube(x, y, sum)) {
+                           diff = DIFF_IMPOSSIBLE;
+                           goto got_result;
+                       }
+                       solver_place(usage, x, y, sum);
+                       changed = TRUE;
+#ifdef STANDALONE_SOLVER
+                       if (solver_show_working) {
+                           printf("%*s  placing %d at (%d,%d)\n",
+                                  solver_recurse_depth*4, "killer single-square deduced cage",
+                                  sum, 1 + x, 1 + y);
+                       }
+#endif
+                   }
+
+                   b = usage->kblocks->whichblock[extra_list[0]];
+                   for (x = 1; x < nsquares; x++)
+                       if (usage->kblocks->whichblock[extra_list[x]] != b)
+                           break;
+                   if (x == nsquares) {
+                       assert(usage->kblocks->nr_squares[b] > nsquares);
+                       split_block(usage->kblocks, extra_list, nsquares);
+                       assert(usage->kblocks->nr_squares[usage->kblocks->nr_blocks - 1] == nsquares);
+                       usage->kclues[usage->kblocks->nr_blocks - 1] = sum;
+                       usage->kclues[b] -= sum;
+                   } else {
+                       usage->extra_cages->nr_squares[n_extra] = nsquares;
+                       usage->extra_cages->nr_blocks++;
+                       usage->extra_clues[n_extra] = sum;
+                   }
+               }
+           }
+           if (changed) {
+               kdiff = max(kdiff, DIFF_KINTERSECT);
+               goto cont;
+           }
+       }
+
+       /*
+        * Another simple killer-type elimination.  For every square in a
+        * cage, find the minimum and maximum possible sums of all the
+        * other squares in the same cage, and rule out possibilities
+        * for the given square based on whether they are guaranteed to
+        * cause the sum to be either too high or too low.
+        * This is a special case of trying all possible sums across a
+        * region, which is a recursive algorithm.  We should probably
+        * implement it for a higher difficulty level.
+        */
+       if (dlev->maxkdiff >= DIFF_KMINMAX && usage->kclues != NULL) {
+           int changed = FALSE;
+           for (b = 0; b < usage->kblocks->nr_blocks; b++) {
+               int ret = solver_killer_minmax(usage, usage->kblocks,
+                                              usage->kclues, b
+#ifdef STANDALONE_SOLVER
+                                            , ""
+#endif
+                                              );
+               if (ret < 0) {
+                   diff = DIFF_IMPOSSIBLE;
+                   goto got_result;
+               } else if (ret > 0)
+                   changed = TRUE;
+           }
+           for (b = 0; b < usage->extra_cages->nr_blocks; b++) {
+               int ret = solver_killer_minmax(usage, usage->extra_cages,
+                                              usage->extra_clues, b
+#ifdef STANDALONE_SOLVER
+                                              , "using deduced cages"
+#endif
+                                              );
+               if (ret < 0) {
+                   diff = DIFF_IMPOSSIBLE;
+                   goto got_result;
+               } else if (ret > 0)
+                   changed = TRUE;
+           }
+           if (changed) {
+               kdiff = max(kdiff, DIFF_KMINMAX);
+               goto cont;
+           }
+       }
+
+       /*
+        * Try to use knowledge of which numbers can be used to generate
+        * a given sum.
+        * This can only be used if a cage lies entirely within a region.
+        */
+       if (dlev->maxkdiff >= DIFF_KSUMS && usage->kclues != NULL) {
+           int changed = FALSE;
+
+           for (b = 0; b < usage->kblocks->nr_blocks; b++) {
+               int ret = solver_killer_sums(usage, b, usage->kblocks,
+                                            usage->kclues[b], TRUE
+#ifdef STANDALONE_SOLVER
+                                            , "regular clues"
+#endif
+                                            );
+               if (ret > 0) {
+                   changed = TRUE;
+                   kdiff = max(kdiff, DIFF_KSUMS);
+               } else if (ret < 0) {
+                   diff = DIFF_IMPOSSIBLE;
+                   goto got_result;
+               }
+           }
+
+           for (b = 0; b < usage->extra_cages->nr_blocks; b++) {
+               int ret = solver_killer_sums(usage, b, usage->extra_cages,
+                                            usage->extra_clues[b], FALSE
+#ifdef STANDALONE_SOLVER
+                                            , "deduced clues"
+#endif
+                                            );
+               if (ret > 0) {
+                   changed = TRUE;
+                   kdiff = max(kdiff, DIFF_KSUMS);
+               } else if (ret < 0) {
+                   diff = DIFF_IMPOSSIBLE;
+                   goto got_result;
+               }
+           }
+
+           if (changed)
+               goto cont;
+       }
+
+       if (dlev->maxdiff <= DIFF_BLOCK)
+           break;
+
+       /*
+        * Row-wise positional elimination.
+        */
+       for (y = 0; y < cr; y++)
+           for (n = 1; n <= cr; n++)
+               if (!usage->row[y*cr+n-1]) {
+                   for (x = 0; x < cr; x++)
+                       scratch->indexlist[x] = cubepos(x, y, n);
+                   ret = solver_elim(usage, scratch->indexlist
+#ifdef STANDALONE_SOLVER
+                                     , "positional elimination,"
+                                     " %d in row %d", n, 1+y
+#endif
+                                     );
+                   if (ret < 0) {
+                       diff = DIFF_IMPOSSIBLE;
+                       goto got_result;
+                   } else if (ret > 0) {
+                       diff = max(diff, DIFF_SIMPLE);
+                       goto cont;
+                   }
+                }
+       /*
+        * Column-wise positional elimination.
+        */
+       for (x = 0; x < cr; x++)
+           for (n = 1; n <= cr; n++)
+               if (!usage->col[x*cr+n-1]) {
+                   for (y = 0; y < cr; y++)
+                       scratch->indexlist[y] = cubepos(x, y, n);
+                   ret = solver_elim(usage, scratch->indexlist
+#ifdef STANDALONE_SOLVER
+                                     , "positional elimination,"
+                                     " %d in column %d", n, 1+x
+#endif
+                                     );
+                   if (ret < 0) {
+                       diff = DIFF_IMPOSSIBLE;
+                       goto got_result;
+                   } else if (ret > 0) {
+                       diff = max(diff, DIFF_SIMPLE);
+                       goto cont;
+                   }
+                }
+
+       /*
+        * X-diagonal positional elimination.
+        */
+       if (usage->diag) {
+           for (n = 1; n <= cr; n++)
+               if (!usage->diag[n-1]) {
+                   for (i = 0; i < cr; i++)
+                       scratch->indexlist[i] = cubepos2(diag0(i), n);
+                   ret = solver_elim(usage, scratch->indexlist
+#ifdef STANDALONE_SOLVER
+                                     , "positional elimination,"
+                                     " %d in \\-diagonal", n
+#endif
+                                     );
+                   if (ret < 0) {
+                       diff = DIFF_IMPOSSIBLE;
+                       goto got_result;
+                   } else if (ret > 0) {
+                       diff = max(diff, DIFF_SIMPLE);
+                       goto cont;
+                   }
+                }
+           for (n = 1; n <= cr; n++)
+               if (!usage->diag[cr+n-1]) {
+                   for (i = 0; i < cr; i++)
+                       scratch->indexlist[i] = cubepos2(diag1(i), n);
+                   ret = solver_elim(usage, scratch->indexlist
+#ifdef STANDALONE_SOLVER
+                                     , "positional elimination,"
+                                     " %d in /-diagonal", n
+#endif
+                                     );
+                   if (ret < 0) {
+                       diff = DIFF_IMPOSSIBLE;
+                       goto got_result;
+                   } else if (ret > 0) {
+                       diff = max(diff, DIFF_SIMPLE);
+                       goto cont;
+                   }
+                }
+       }
+
+       /*
+        * Numeric elimination.
+        */
+       for (x = 0; x < cr; x++)
+           for (y = 0; y < cr; y++)
+               if (!usage->grid[y*cr+x]) {
+                   for (n = 1; n <= cr; n++)
+                       scratch->indexlist[n-1] = cubepos(x, y, n);
+                   ret = solver_elim(usage, scratch->indexlist
+#ifdef STANDALONE_SOLVER
+                                     , "numeric elimination at (%d,%d)",
+                                     1+x, 1+y
+#endif
+                                     );
+                   if (ret < 0) {
+                       diff = DIFF_IMPOSSIBLE;
+                       goto got_result;
+                   } else if (ret > 0) {
+                       diff = max(diff, DIFF_SIMPLE);
+                       goto cont;
+                   }
+                }
+
+       if (dlev->maxdiff <= DIFF_SIMPLE)
+           break;
+
+        /*
+         * Intersectional analysis, rows vs blocks.
+         */
+        for (y = 0; y < cr; y++)
+            for (b = 0; b < cr; b++)
+                for (n = 1; n <= cr; n++) {
+                    if (usage->row[y*cr+n-1] ||
+                        usage->blk[b*cr+n-1])
+                       continue;
+                   for (i = 0; i < cr; i++) {
+                       scratch->indexlist[i] = cubepos(i, y, n);
+                       scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n);
+                   }
+                   /*
+                    * solver_intersect() never returns -1.
+                    */
+                   if (solver_intersect(usage, scratch->indexlist,
+                                        scratch->indexlist2
+#ifdef STANDALONE_SOLVER
+                                          , "intersectional analysis,"
+                                          " %d in row %d vs block %s",
+                                          n, 1+y, usage->blocks->blocknames[b]
+#endif
+                                          ) ||
+                         solver_intersect(usage, scratch->indexlist2,
+                                        scratch->indexlist
+#ifdef STANDALONE_SOLVER
+                                          , "intersectional analysis,"
+                                          " %d in block %s vs row %d",
+                                          n, usage->blocks->blocknames[b], 1+y
+#endif
+                                          )) {
+                        diff = max(diff, DIFF_INTERSECT);
+                        goto cont;
+                    }
+               }
+
+        /*
+         * Intersectional analysis, columns vs blocks.
+         */
+        for (x = 0; x < cr; x++)
+            for (b = 0; b < cr; b++)
+                for (n = 1; n <= cr; n++) {
+                    if (usage->col[x*cr+n-1] ||
+                        usage->blk[b*cr+n-1])
+                       continue;
+                   for (i = 0; i < cr; i++) {
+                       scratch->indexlist[i] = cubepos(x, i, n);
+                       scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n);
+                   }
+                   if (solver_intersect(usage, scratch->indexlist,
+                                        scratch->indexlist2
+#ifdef STANDALONE_SOLVER
+                                          , "intersectional analysis,"
+                                          " %d in column %d vs block %s",
+                                          n, 1+x, usage->blocks->blocknames[b]
+#endif
+                                          ) ||
+                         solver_intersect(usage, scratch->indexlist2,
+                                        scratch->indexlist
+#ifdef STANDALONE_SOLVER
+                                          , "intersectional analysis,"
+                                          " %d in block %s vs column %d",
+                                          n, usage->blocks->blocknames[b], 1+x
+#endif
+                                          )) {
+                        diff = max(diff, DIFF_INTERSECT);
+                        goto cont;
+                    }
+               }
+
+       if (usage->diag) {
+           /*
+            * Intersectional analysis, \-diagonal vs blocks.
+            */
+            for (b = 0; b < cr; b++)
+                for (n = 1; n <= cr; n++) {
+                    if (usage->diag[n-1] ||
+                        usage->blk[b*cr+n-1])
+                       continue;
+                   for (i = 0; i < cr; i++) {
+                       scratch->indexlist[i] = cubepos2(diag0(i), n);
+                       scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n);
+                   }
+                   if (solver_intersect(usage, scratch->indexlist,
+                                        scratch->indexlist2
+#ifdef STANDALONE_SOLVER
+                                          , "intersectional analysis,"
+                                          " %d in \\-diagonal vs block %s",
+                                          n, usage->blocks->blocknames[b]
+#endif
+                                          ) ||
+                         solver_intersect(usage, scratch->indexlist2,
+                                        scratch->indexlist
+#ifdef STANDALONE_SOLVER
+                                          , "intersectional analysis,"
+                                          " %d in block %s vs \\-diagonal",
+                                          n, usage->blocks->blocknames[b]
+#endif
+                                          )) {
+                        diff = max(diff, DIFF_INTERSECT);
+                        goto cont;
+                    }
+               }
+
+           /*
+            * Intersectional analysis, /-diagonal vs blocks.
+            */
+            for (b = 0; b < cr; b++)
+                for (n = 1; n <= cr; n++) {
+                    if (usage->diag[cr+n-1] ||
+                        usage->blk[b*cr+n-1])
+                       continue;
+                   for (i = 0; i < cr; i++) {
+                       scratch->indexlist[i] = cubepos2(diag1(i), n);
+                       scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n);
+                   }
+                   if (solver_intersect(usage, scratch->indexlist,
+                                        scratch->indexlist2
+#ifdef STANDALONE_SOLVER
+                                          , "intersectional analysis,"
+                                          " %d in /-diagonal vs block %s",
+                                          n, usage->blocks->blocknames[b]
+#endif
+                                          ) ||
+                         solver_intersect(usage, scratch->indexlist2,
+                                        scratch->indexlist
+#ifdef STANDALONE_SOLVER
+                                          , "intersectional analysis,"
+                                          " %d in block %s vs /-diagonal",
+                                          n, usage->blocks->blocknames[b]
+#endif
+                                          )) {
+                        diff = max(diff, DIFF_INTERSECT);
+                        goto cont;
+                    }
+               }
+       }
+
+       if (dlev->maxdiff <= DIFF_INTERSECT)
+           break;
+
+       /*
+        * Blockwise set elimination.
+        */
+       for (b = 0; b < cr; b++) {
+           for (i = 0; i < cr; i++)
+               for (n = 1; n <= cr; n++)
+                   scratch->indexlist[i*cr+n-1] = cubepos2(usage->blocks->blocks[b][i], n);
+           ret = solver_set(usage, scratch, scratch->indexlist
+#ifdef STANDALONE_SOLVER
+                            , "set elimination, block %s",
+                            usage->blocks->blocknames[b]
+#endif
+                                );
+           if (ret < 0) {
+               diff = DIFF_IMPOSSIBLE;
+               goto got_result;
+           } else if (ret > 0) {
+               diff = max(diff, DIFF_SET);
+               goto cont;
+           }
+       }
+
+       /*
+        * Row-wise set elimination.
+        */
+       for (y = 0; y < cr; y++) {
+           for (x = 0; x < cr; x++)
+               for (n = 1; n <= cr; n++)
+                   scratch->indexlist[x*cr+n-1] = cubepos(x, y, n);
+           ret = solver_set(usage, scratch, scratch->indexlist
+#ifdef STANDALONE_SOLVER
+                            , "set elimination, row %d", 1+y
+#endif
+                            );
+           if (ret < 0) {
+               diff = DIFF_IMPOSSIBLE;
+               goto got_result;
+           } else if (ret > 0) {
+               diff = max(diff, DIFF_SET);
+               goto cont;
+           }
+       }
+
+       /*
+        * Column-wise set elimination.
+        */
+       for (x = 0; x < cr; x++) {
+           for (y = 0; y < cr; y++)
+               for (n = 1; n <= cr; n++)
+                   scratch->indexlist[y*cr+n-1] = cubepos(x, y, n);
+            ret = solver_set(usage, scratch, scratch->indexlist
+#ifdef STANDALONE_SOLVER
+                            , "set elimination, column %d", 1+x
+#endif
+                            );
+           if (ret < 0) {
+               diff = DIFF_IMPOSSIBLE;
+               goto got_result;
+           } else if (ret > 0) {
+               diff = max(diff, DIFF_SET);
+               goto cont;
+           }
+       }
+
+       if (usage->diag) {
+           /*
+            * \-diagonal set elimination.
+            */
+           for (i = 0; i < cr; i++)
+               for (n = 1; n <= cr; n++)
+                   scratch->indexlist[i*cr+n-1] = cubepos2(diag0(i), n);
+            ret = solver_set(usage, scratch, scratch->indexlist
+#ifdef STANDALONE_SOLVER
+                            , "set elimination, \\-diagonal"
+#endif
+                            );
+           if (ret < 0) {
+               diff = DIFF_IMPOSSIBLE;
+               goto got_result;
+           } else if (ret > 0) {
+               diff = max(diff, DIFF_SET);
+               goto cont;
+           }
+
+           /*
+            * /-diagonal set elimination.
+            */
+           for (i = 0; i < cr; i++)
+               for (n = 1; n <= cr; n++)
+                   scratch->indexlist[i*cr+n-1] = cubepos2(diag1(i), n);
+            ret = solver_set(usage, scratch, scratch->indexlist
+#ifdef STANDALONE_SOLVER
+                            , "set elimination, /-diagonal"
+#endif
+                            );
+           if (ret < 0) {
+               diff = DIFF_IMPOSSIBLE;
+               goto got_result;
+           } else if (ret > 0) {
+               diff = max(diff, DIFF_SET);
+               goto cont;
+           }
+       }
+
+       if (dlev->maxdiff <= DIFF_SET)
+           break;
+
+       /*
+        * Row-vs-column set elimination on a single number.
+        */
+       for (n = 1; n <= cr; n++) {
+           for (y = 0; y < cr; y++)
+               for (x = 0; x < cr; x++)
+                   scratch->indexlist[y*cr+x] = cubepos(x, y, n);
+            ret = solver_set(usage, scratch, scratch->indexlist
+#ifdef STANDALONE_SOLVER
+                            , "positional set elimination, number %d", n
+#endif
+                            );
+           if (ret < 0) {
+               diff = DIFF_IMPOSSIBLE;
+               goto got_result;
+           } else if (ret > 0) {
+               diff = max(diff, DIFF_EXTREME);
+               goto cont;
+           }
+       }
+
+        /*
+         * Forcing chains.
+         */
+        if (solver_forcing(usage, scratch)) {
+            diff = max(diff, DIFF_EXTREME);
+            goto cont;
+        }
+
+       /*
+        * If we reach here, we have made no deductions in this
+        * iteration, so the algorithm terminates.
+        */
+       break;
+    }
+
+    /*
+     * Last chance: if we haven't fully solved the puzzle yet, try
+     * recursing based on guesses for a particular square. We pick
+     * one of the most constrained empty squares we can find, which
+     * has the effect of pruning the search tree as much as
+     * possible.
+     */
+    if (dlev->maxdiff >= DIFF_RECURSIVE) {
+       int best, bestcount;
+
+       best = -1;
+       bestcount = cr+1;
+
+       for (y = 0; y < cr; y++)
+           for (x = 0; x < cr; x++)
+               if (!grid[y*cr+x]) {
+                   int count;
+
+                   /*
+                    * An unfilled square. Count the number of
+                    * possible digits in it.
+                    */
+                   count = 0;
+                   for (n = 1; n <= cr; n++)
+                       if (cube(x,y,n))
+                           count++;
+
+                   /*
+                    * We should have found any impossibilities
+                    * already, so this can safely be an assert.
+                    */
+                   assert(count > 1);
+
+                   if (count < bestcount) {
+                       bestcount = count;
+                       best = y*cr+x;
+                   }
+               }
+
+       if (best != -1) {
+           int i, j;
+           digit *list, *ingrid, *outgrid;
+
+           diff = DIFF_IMPOSSIBLE;    /* no solution found yet */
+
+           /*
+            * Attempt recursion.
+            */
+           y = best / cr;
+           x = best % cr;
+
+           list = snewn(cr, digit);
+           ingrid = snewn(cr * cr, digit);
+           outgrid = snewn(cr * cr, digit);
+           memcpy(ingrid, grid, cr * cr);
+
+           /* Make a list of the possible digits. */
+           for (j = 0, n = 1; n <= cr; n++)
+               if (cube(x,y,n))
+                   list[j++] = n;
+
+#ifdef STANDALONE_SOLVER
+           if (solver_show_working) {
+               char *sep = "";
+               printf("%*srecursing on (%d,%d) [",
+                      solver_recurse_depth*4, "", x + 1, y + 1);
+               for (i = 0; i < j; i++) {
+                   printf("%s%d", sep, list[i]);
+                   sep = " or ";
+               }
+               printf("]\n");
+           }
+#endif
+
+           /*
+            * And step along the list, recursing back into the
+            * main solver at every stage.
+            */
+           for (i = 0; i < j; i++) {
+               memcpy(outgrid, ingrid, cr * cr);
+               outgrid[y*cr+x] = list[i];
+
+#ifdef STANDALONE_SOLVER
+               if (solver_show_working)
+                   printf("%*sguessing %d at (%d,%d)\n",
+                          solver_recurse_depth*4, "", list[i], x + 1, y + 1);
+               solver_recurse_depth++;
+#endif
+
+               solver(cr, blocks, kblocks, xtype, outgrid, kgrid, dlev);
+
+#ifdef STANDALONE_SOLVER
+               solver_recurse_depth--;
+               if (solver_show_working) {
+                   printf("%*sretracting %d at (%d,%d)\n",
+                          solver_recurse_depth*4, "", list[i], x + 1, y + 1);
+               }
+#endif
+
+               /*
+                * If we have our first solution, copy it into the
+                * grid we will return.
+                */
+               if (diff == DIFF_IMPOSSIBLE && dlev->diff != DIFF_IMPOSSIBLE)
+                   memcpy(grid, outgrid, cr*cr);
+
+               if (dlev->diff == DIFF_AMBIGUOUS)
+                   diff = DIFF_AMBIGUOUS;
+               else if (dlev->diff == DIFF_IMPOSSIBLE)
+                   /* do not change our return value */;
+               else {
+                   /* the recursion turned up exactly one solution */
+                   if (diff == DIFF_IMPOSSIBLE)
+                       diff = DIFF_RECURSIVE;
+                   else
+                       diff = DIFF_AMBIGUOUS;
+               }
+
+               /*
+                * As soon as we've found more than one solution,
+                * give up immediately.
+                */
+               if (diff == DIFF_AMBIGUOUS)
+                   break;
+           }
+
+           sfree(outgrid);
+           sfree(ingrid);
+           sfree(list);
+       }
+
+    } else {
+        /*
+         * We're forbidden to use recursion, so we just see whether
+         * our grid is fully solved, and return DIFF_IMPOSSIBLE
+         * otherwise.
+         */
+       for (y = 0; y < cr; y++)
+           for (x = 0; x < cr; x++)
+               if (!grid[y*cr+x])
+                    diff = DIFF_IMPOSSIBLE;
+    }
+
+    got_result:
+    dlev->diff = diff;
+    dlev->kdiff = kdiff;
+
+#ifdef STANDALONE_SOLVER
+    if (solver_show_working)
+       printf("%*s%s found\n",
+              solver_recurse_depth*4, "",
+              diff == DIFF_IMPOSSIBLE ? "no solution" :
+              diff == DIFF_AMBIGUOUS ? "multiple solutions" :
+              "one solution");
+#endif
+
+    sfree(usage->sq2region);
+    sfree(usage->regions);
+    sfree(usage->cube);
+    sfree(usage->row);
+    sfree(usage->col);
+    sfree(usage->blk);
+    if (usage->kblocks) {
+       free_block_structure(usage->kblocks);
+       free_block_structure(usage->extra_cages);
+       sfree(usage->extra_clues);
+    }
+    if (usage->kclues) sfree(usage->kclues);
+    sfree(usage);
+
+    solver_free_scratch(scratch);
+}
+
+/* ----------------------------------------------------------------------
+ * End of solver code.
+ */
+
+/* ----------------------------------------------------------------------
+ * Killer set generator.
+ */
+
+/* ----------------------------------------------------------------------
+ * Solo filled-grid generator.
+ *
+ * This grid generator works by essentially trying to solve a grid
+ * starting from no clues, and not worrying that there's more than
+ * one possible solution. Unfortunately, it isn't computationally
+ * feasible to do this by calling the above solver with an empty
+ * grid, because that one needs to allocate a lot of scratch space
+ * at every recursion level. Instead, I have a much simpler
+ * algorithm which I shamelessly copied from a Python solver
+ * written by Andrew Wilkinson (which is GPLed, but I've reused
+ * only ideas and no code). It mostly just does the obvious
+ * recursive thing: pick an empty square, put one of the possible
+ * digits in it, recurse until all squares are filled, backtrack
+ * and change some choices if necessary.
+ *
+ * The clever bit is that every time it chooses which square to
+ * fill in next, it does so by counting the number of _possible_
+ * numbers that can go in each square, and it prioritises so that
+ * it picks a square with the _lowest_ number of possibilities. The
+ * idea is that filling in lots of the obvious bits (particularly
+ * any squares with only one possibility) will cut down on the list
+ * of possibilities for other squares and hence reduce the enormous
+ * search space as much as possible as early as possible.
+ *
+ * The use of bit sets implies that we support puzzles up to a size of
+ * 32x32 (less if anyone finds a 16-bit machine to compile this on).
+ */
+
+/*
+ * Internal data structure used in gridgen to keep track of
+ * progress.
+ */
+struct gridgen_coord { int x, y, r; };
+struct gridgen_usage {
+    int cr;
+    struct block_structure *blocks, *kblocks;
+    /* grid is a copy of the input grid, modified as we go along */
+    digit *grid;
+    /*
+     * Bitsets.  In each of them, bit n is set if digit n has been placed
+     * in the corresponding region.  row, col and blk are used for all
+     * puzzles.  cge is used only for killer puzzles, and diag is used
+     * only for x-type puzzles.
+     * All of these have cr entries, except diag which only has 2,
+     * and cge, which has as many entries as kblocks.
+     */
+    unsigned int *row, *col, *blk, *cge, *diag;
+    /* This lists all the empty spaces remaining in the grid. */
+    struct gridgen_coord *spaces;
+    int nspaces;
+    /* If we need randomisation in the solve, this is our random state. */
+    random_state *rs;
+};
+
+static void gridgen_place(struct gridgen_usage *usage, int x, int y, digit n)
+{
+    unsigned int bit = 1 << n;
+    int cr = usage->cr;
+    usage->row[y] |= bit;
+    usage->col[x] |= bit;
+    usage->blk[usage->blocks->whichblock[y*cr+x]] |= bit;
+    if (usage->cge)
+       usage->cge[usage->kblocks->whichblock[y*cr+x]] |= bit;
+    if (usage->diag) {
+       if (ondiag0(y*cr+x))
+           usage->diag[0] |= bit;
+       if (ondiag1(y*cr+x))
+           usage->diag[1] |= bit;
+    }
+    usage->grid[y*cr+x] = n;
+}
+
+static void gridgen_remove(struct gridgen_usage *usage, int x, int y, digit n)
+{
+    unsigned int mask = ~(1 << n);
+    int cr = usage->cr;
+    usage->row[y] &= mask;
+    usage->col[x] &= mask;
+    usage->blk[usage->blocks->whichblock[y*cr+x]] &= mask;
+    if (usage->cge)
+       usage->cge[usage->kblocks->whichblock[y*cr+x]] &= mask;
+    if (usage->diag) {
+       if (ondiag0(y*cr+x))
+           usage->diag[0] &= mask;
+       if (ondiag1(y*cr+x))
+           usage->diag[1] &= mask;
+    }
+    usage->grid[y*cr+x] = 0;
+}
+
+#define N_SINGLE 32
+
+/*
+ * The real recursive step in the generating function.
+ *
+ * Return values: 1 means solution found, 0 means no solution
+ * found on this branch.
+ */
+static int gridgen_real(struct gridgen_usage *usage, digit *grid, int *steps)
+{
+    int cr = usage->cr;
+    int i, j, n, sx, sy, bestm, bestr, ret;
+    int *digits;
+    unsigned int used;
+
+    /*
+     * Firstly, check for completion! If there are no spaces left
+     * in the grid, we have a solution.
+     */
+    if (usage->nspaces == 0)
+       return TRUE;
+
+    /*
+     * Next, abandon generation if we went over our steps limit.
+     */
+    if (*steps <= 0)
+       return FALSE;
+    (*steps)--;
+
+    /*
+     * Otherwise, there must be at least one space. Find the most
+     * constrained space, using the `r' field as a tie-breaker.
+     */
+    bestm = cr+1;                     /* so that any space will beat it */
+    bestr = 0;
+    used = ~0;
+    i = sx = sy = -1;
+    for (j = 0; j < usage->nspaces; j++) {
+       int x = usage->spaces[j].x, y = usage->spaces[j].y;
+       unsigned int used_xy;
+       int m;
+
+       m = usage->blocks->whichblock[y*cr+x];
+       used_xy = usage->row[y] | usage->col[x] | usage->blk[m];
+       if (usage->cge != NULL)
+           used_xy |= usage->cge[usage->kblocks->whichblock[y*cr+x]];
+       if (usage->cge != NULL)
+           used_xy |= usage->cge[usage->kblocks->whichblock[y*cr+x]];
+       if (usage->diag != NULL) {
+           if (ondiag0(y*cr+x))
+               used_xy |= usage->diag[0];
+           if (ondiag1(y*cr+x))
+               used_xy |= usage->diag[1];
+       }
+
+       /*
+        * Find the number of digits that could go in this space.
+        */
+       m = 0;
+       for (n = 1; n <= cr; n++) {
+           unsigned int bit = 1 << n;
+           if ((used_xy & bit) == 0)
+               m++;
+       }
+       if (m < bestm || (m == bestm && usage->spaces[j].r < bestr)) {
+           bestm = m;
+           bestr = usage->spaces[j].r;
+           sx = x;
+           sy = y;
+           i = j;
+           used = used_xy;
+       }
+    }
+
+    /*
+     * Swap that square into the final place in the spaces array,
+     * so that decrementing nspaces will remove it from the list.
+     */
+    if (i != usage->nspaces-1) {
+       struct gridgen_coord t;
+       t = usage->spaces[usage->nspaces-1];
+       usage->spaces[usage->nspaces-1] = usage->spaces[i];
+       usage->spaces[i] = t;
+    }
+
+    /*
+     * Now we've decided which square to start our recursion at,
+     * simply go through all possible values, shuffling them
+     * randomly first if necessary.
+     */
+    digits = snewn(bestm, int);
+
+    j = 0;
+    for (n = 1; n <= cr; n++) {
+       unsigned int bit = 1 << n;
+
+       if ((used & bit) == 0)
+           digits[j++] = n;
+    }
+
+    if (usage->rs)
+       shuffle(digits, j, sizeof(*digits), usage->rs);
+
+    /* And finally, go through the digit list and actually recurse. */
+    ret = FALSE;
+    for (i = 0; i < j; i++) {
+       n = digits[i];
+
+       /* Update the usage structure to reflect the placing of this digit. */
+       gridgen_place(usage, sx, sy, n);
+       usage->nspaces--;
+
+       /* Call the solver recursively. Stop when we find a solution. */
+       if (gridgen_real(usage, grid, steps)) {
+            ret = TRUE;
+           break;
+       }
 
-       nsolve_place(usage, x, y, n);
-       return TRUE;
+       /* Revert the usage structure. */
+       gridgen_remove(usage, sx, sy, n);
+       usage->nspaces++;
     }
 
-    return FALSE;
+    sfree(digits);
+    return ret;
 }
 
-static int nsolve(int c, int r, digit *grid)
+/*
+ * Entry point to generator. You give it parameters and a starting
+ * grid, which is simply an array of cr*cr digits.
+ */
+static int gridgen(int cr, struct block_structure *blocks,
+                  struct block_structure *kblocks, int xtype,
+                  digit *grid, random_state *rs, int maxsteps)
 {
-    struct nsolve_usage *usage;
-    int cr = c*r;
-    int x, y, n;
+    struct gridgen_usage *usage;
+    int x, y, ret;
 
     /*
-     * Set up a usage structure as a clean slate (everything
-     * possible).
+     * Clear the grid to start with.
      */
-    usage = snew(struct nsolve_usage);
-    usage->c = c;
-    usage->r = r;
-    usage->cr = cr;
-    usage->cube = snewn(cr*cr*cr, unsigned char);
-    usage->grid = grid;                       /* write straight back to the input */
-    memset(usage->cube, TRUE, cr*cr*cr);
-
-    usage->row = snewn(cr * cr, unsigned char);
-    usage->col = snewn(cr * cr, unsigned char);
-    usage->blk = snewn(cr * cr, unsigned char);
-    memset(usage->row, FALSE, cr * cr);
-    memset(usage->col, FALSE, cr * cr);
-    memset(usage->blk, FALSE, cr * cr);
+    memset(grid, 0, cr*cr);
 
     /*
-     * Place all the clue numbers we are given.
+     * Create a gridgen_usage structure.
      */
-    for (x = 0; x < cr; x++)
-       for (y = 0; y < cr; y++)
-           if (grid[y*cr+x])
-               nsolve_place(usage, x, YTRANS(y), grid[y*cr+x]);
+    usage = snew(struct gridgen_usage);
+
+    usage->cr = cr;
+    usage->blocks = blocks;
+
+    usage->grid = grid;
+
+    usage->row = snewn(cr, unsigned int);
+    usage->col = snewn(cr, unsigned int);
+    usage->blk = snewn(cr, unsigned int);
+    if (kblocks != NULL) {
+       usage->kblocks = kblocks;
+       usage->cge = snewn(usage->kblocks->nr_blocks, unsigned int);
+       memset(usage->cge, FALSE, kblocks->nr_blocks * sizeof *usage->cge);
+    } else {
+       usage->cge = NULL;
+    }
+
+    memset(usage->row, 0, cr * sizeof *usage->row);
+    memset(usage->col, 0, cr * sizeof *usage->col);
+    memset(usage->blk, 0, cr * sizeof *usage->blk);
+
+    if (xtype) {
+       usage->diag = snewn(2, unsigned int);
+       memset(usage->diag, 0, 2 * sizeof *usage->diag);
+    } else {
+       usage->diag = NULL;
+    }
 
     /*
-     * Now loop over the grid repeatedly trying all permitted modes
-     * of reasoning. The loop terminates if we complete an
-     * iteration without making any progress; we then return
-     * failure or success depending on whether the grid is full or
-     * not.
+     * Begin by filling in the whole top row with randomly chosen
+     * numbers. This cannot introduce any bias or restriction on
+     * the available grids, since we already know those numbers
+     * are all distinct so all we're doing is choosing their
+     * labels.
      */
-    while (1) {
-       /*
-        * Blockwise positional elimination.
-        */
-       for (x = 0; x < cr; x += r)
-           for (y = 0; y < r; y++)
-               for (n = 1; n <= cr; n++)
-                   if (!usage->blk[(y*c+(x/r))*cr+n-1] &&
-                       nsolve_elim(usage, cubepos(x,y,n), r*cr))
-                       continue;
+    for (x = 0; x < cr; x++)
+       grid[x] = x+1;
+    shuffle(grid, cr, sizeof(*grid), rs);
+    for (x = 0; x < cr; x++)
+       gridgen_place(usage, x, 0, grid[x]);
 
-       /*
-        * Row-wise positional elimination.
-        */
-       for (y = 0; y < cr; y++)
-           for (n = 1; n <= cr; n++)
-               if (!usage->row[y*cr+n-1] &&
-                   nsolve_elim(usage, cubepos(0,y,n), cr*cr))
-                   continue;
-       /*
-        * Column-wise positional elimination.
-        */
-       for (x = 0; x < cr; x++)
-           for (n = 1; n <= cr; n++)
-               if (!usage->col[x*cr+n-1] &&
-                   nsolve_elim(usage, cubepos(x,0,n), cr))
-                   continue;
+    usage->spaces = snewn(cr * cr, struct gridgen_coord);
+    usage->nspaces = 0;
 
-       /*
-        * Numeric elimination.
-        */
-       for (x = 0; x < cr; x++)
-           for (y = 0; y < cr; y++)
-               if (!usage->grid[YUNTRANS(y)*cr+x] &&
-                   nsolve_elim(usage, cubepos(x,y,1), 1))
-                   continue;
+    usage->rs = rs;
 
-       /*
-        * If we reach here, we have made no deductions in this
-        * iteration, so the algorithm terminates.
-        */
-       break;
+    /*
+     * Initialise the list of grid spaces, taking care to leave
+     * out the row I've already filled in above.
+     */
+    for (y = 1; y < cr; y++) {
+       for (x = 0; x < cr; x++) {
+            usage->spaces[usage->nspaces].x = x;
+            usage->spaces[usage->nspaces].y = y;
+            usage->spaces[usage->nspaces].r = random_bits(rs, 31);
+            usage->nspaces++;
+       }
     }
 
-    sfree(usage->cube);
-    sfree(usage->row);
-    sfree(usage->col);
+    /*
+     * Run the real generator function.
+     */
+    ret = gridgen_real(usage, grid, &maxsteps);
+
+    /*
+     * Clean up the usage structure now we have our answer.
+     */
+    sfree(usage->spaces);
+    sfree(usage->cge);
     sfree(usage->blk);
+    sfree(usage->col);
+    sfree(usage->row);
     sfree(usage);
 
-    for (x = 0; x < cr; x++)
-       for (y = 0; y < cr; y++)
-           if (!grid[y*cr+x])
-               return FALSE;
-    return TRUE;
+    return ret;
 }
 
 /* ----------------------------------------------------------------------
- * End of non-recursive solver code.
+ * End of grid generator code.
  */
 
+static int check_killer_cage_sum(struct block_structure *kblocks,
+                                 digit *kgrid, digit *grid, int blk)
+{
+    /*
+     * Returns: -1 if the cage has any empty square; 0 if all squares
+     * are full but the sum is wrong; +1 if all squares are full and
+     * they have the right sum.
+     *
+     * Does not check uniqueness of numbers within the cage; that's
+     * done elsewhere (because in error highlighting it needs to be
+     * detected separately so as to flag the error in a visually
+     * different way).
+     */
+    int n_squares = kblocks->nr_squares[blk];
+    int sum = 0, clue = 0;
+    int i;
+
+    for (i = 0; i < n_squares; i++) {
+        int xy = kblocks->blocks[blk][i];
+
+        if (grid[xy] == 0)
+            return -1;
+        sum += grid[xy];
+
+        if (kgrid[xy]) {
+            assert(clue == 0);
+            clue = kgrid[xy];
+        }
+    }
+
+    assert(clue != 0);
+    return sum == clue;
+}
+
 /*
  * Check whether a grid contains a valid complete puzzle.
  */
-static int check_valid(int c, int r, digit *grid)
+static int check_valid(int cr, struct block_structure *blocks,
+                      struct block_structure *kblocks,
+                       digit *kgrid, int xtype, digit *grid)
 {
-    int cr = c*r;
     unsigned char *used;
-    int x, y, n;
+    int x, y, i, j, n;
 
     used = snewn(cr, unsigned char);
 
@@ -850,298 +3039,915 @@ static int check_valid(int c, int r, digit *grid)
     /*
      * Check that each block contains precisely one of everything.
      */
-    for (x = 0; x < cr; x += r) {
-       for (y = 0; y < cr; y += c) {
-           int xx, yy;
+    for (i = 0; i < cr; i++) {
+       memset(used, FALSE, cr);
+       for (j = 0; j < cr; j++)
+           if (grid[blocks->blocks[i][j]] > 0 &&
+               grid[blocks->blocks[i][j]] <= cr)
+               used[grid[blocks->blocks[i][j]]-1] = TRUE;
+       for (n = 0; n < cr; n++)
+           if (!used[n]) {
+               sfree(used);
+               return FALSE;
+           }
+    }
+
+    /*
+     * Check that each Killer cage, if any, contains at most one of
+     * everything. If we also know the clues for those cages (which we
+     * might not, when this function is called early in puzzle
+     * generation), we also check that they all have the right sum.
+     */
+    if (kblocks) {
+       for (i = 0; i < kblocks->nr_blocks; i++) {
            memset(used, FALSE, cr);
-           for (xx = x; xx < x+r; xx++)
-               for (yy = 0; yy < y+c; yy++)
-                   if (grid[yy*cr+xx] > 0 && grid[yy*cr+xx] <= cr)
-                       used[grid[yy*cr+xx]-1] = TRUE;
-           for (n = 0; n < cr; n++)
-               if (!used[n]) {
-                   sfree(used);
-                   return FALSE;
+           for (j = 0; j < kblocks->nr_squares[i]; j++)
+               if (grid[kblocks->blocks[i][j]] > 0 &&
+                   grid[kblocks->blocks[i][j]] <= cr) {
+                   if (used[grid[kblocks->blocks[i][j]]-1]) {
+                       sfree(used);
+                       return FALSE;
+                   }
+                   used[grid[kblocks->blocks[i][j]]-1] = TRUE;
                }
+
+            if (kgrid && check_killer_cage_sum(kblocks, kgrid, grid, i) != 1) {
+                sfree(used);
+                return FALSE;
+            }
        }
     }
 
+    /*
+     * Check that each diagonal contains precisely one of everything.
+     */
+    if (xtype) {
+       memset(used, FALSE, cr);
+       for (i = 0; i < cr; i++)
+           if (grid[diag0(i)] > 0 && grid[diag0(i)] <= cr)
+               used[grid[diag0(i)]-1] = TRUE;
+       for (n = 0; n < cr; n++)
+           if (!used[n]) {
+               sfree(used);
+               return FALSE;
+           }
+       for (i = 0; i < cr; i++)
+           if (grid[diag1(i)] > 0 && grid[diag1(i)] <= cr)
+               used[grid[diag1(i)]-1] = TRUE;
+       for (n = 0; n < cr; n++)
+           if (!used[n]) {
+               sfree(used);
+               return FALSE;
+           }
+    }
+
     sfree(used);
     return TRUE;
 }
 
-static void symmetry_limit(game_params *params, int *xlim, int *ylim, int s)
+static int symmetries(const game_params *params, int x, int y,
+                      int *output, int s)
 {
     int c = params->c, r = params->r, cr = c*r;
+    int i = 0;
+
+#define ADD(x,y) (*output++ = (x), *output++ = (y), i++)
+
+    ADD(x, y);
 
     switch (s) {
       case SYMM_NONE:
-       *xlim = *ylim = cr;
-       break;
+       break;                         /* just x,y is all we need */
       case SYMM_ROT2:
-       *xlim = (cr+1) / 2;
-       *ylim = cr;
-       break;
-      case SYMM_REF4:
+        ADD(cr - 1 - x, cr - 1 - y);
+        break;
       case SYMM_ROT4:
-       *xlim = *ylim = (cr+1) / 2;
-       break;
+        ADD(cr - 1 - y, x);
+        ADD(y, cr - 1 - x);
+        ADD(cr - 1 - x, cr - 1 - y);
+        break;
+      case SYMM_REF2:
+        ADD(cr - 1 - x, y);
+        break;
+      case SYMM_REF2D:
+        ADD(y, x);
+        break;
+      case SYMM_REF4:
+        ADD(cr - 1 - x, y);
+        ADD(x, cr - 1 - y);
+        ADD(cr - 1 - x, cr - 1 - y);
+        break;
+      case SYMM_REF4D:
+        ADD(y, x);
+        ADD(cr - 1 - x, cr - 1 - y);
+        ADD(cr - 1 - y, cr - 1 - x);
+        break;
+      case SYMM_REF8:
+        ADD(cr - 1 - x, y);
+        ADD(x, cr - 1 - y);
+        ADD(cr - 1 - x, cr - 1 - y);
+        ADD(y, x);
+        ADD(y, cr - 1 - x);
+        ADD(cr - 1 - y, x);
+        ADD(cr - 1 - y, cr - 1 - x);
+        break;
+    }
+
+#undef ADD
+
+    return i;
+}
+
+static char *encode_solve_move(int cr, digit *grid)
+{
+    int i, len;
+    char *ret, *p, *sep;
+
+    /*
+     * It's surprisingly easy to work out _exactly_ how long this
+     * string needs to be. To decimal-encode all the numbers from 1
+     * to n:
+     * 
+     *  - every number has a units digit; total is n.
+     *  - all numbers above 9 have a tens digit; total is max(n-9,0).
+     *  - all numbers above 99 have a hundreds digit; total is max(n-99,0).
+     *  - and so on.
+     */
+    len = 0;
+    for (i = 1; i <= cr; i *= 10)
+       len += max(cr - i + 1, 0);
+    len += cr;                /* don't forget the commas */
+    len *= cr;                /* there are cr rows of these */
+
+    /*
+     * Now len is one bigger than the total size of the
+     * comma-separated numbers (because we counted an
+     * additional leading comma). We need to have a leading S
+     * and a trailing NUL, so we're off by one in total.
+     */
+    len++;
+
+    ret = snewn(len, char);
+    p = ret;
+    *p++ = 'S';
+    sep = "";
+    for (i = 0; i < cr*cr; i++) {
+       p += sprintf(p, "%s%d", sep, grid[i]);
+       sep = ",";
+    }
+    *p++ = '\0';
+    assert(p - ret == len);
+
+    return ret;
+}
+
+static void dsf_to_blocks(int *dsf, struct block_structure *blocks,
+                         int min_expected, int max_expected)
+{
+    int cr = blocks->c * blocks->r, area = cr * cr;
+    int i, nb = 0;
+
+    for (i = 0; i < area; i++)
+       blocks->whichblock[i] = -1;
+    for (i = 0; i < area; i++) {
+       int j = dsf_canonify(dsf, i);
+       if (blocks->whichblock[j] < 0)
+           blocks->whichblock[j] = nb++;
+       blocks->whichblock[i] = blocks->whichblock[j];
+    }
+    assert(nb >= min_expected && nb <= max_expected);
+    blocks->nr_blocks = nb;
+}
+
+static void make_blocks_from_whichblock(struct block_structure *blocks)
+{
+    int i;
+
+    for (i = 0; i < blocks->nr_blocks; i++) {
+       blocks->blocks[i][blocks->max_nr_squares-1] = 0;
+       blocks->nr_squares[i] = 0;
+    }
+    for (i = 0; i < blocks->area; i++) {
+       int b = blocks->whichblock[i];
+       int j = blocks->blocks[b][blocks->max_nr_squares-1]++;
+       assert(j < blocks->max_nr_squares);
+       blocks->blocks[b][j] = i;
+       blocks->nr_squares[b]++;
+    }
+}
+
+static char *encode_block_structure_desc(char *p, struct block_structure *blocks)
+{
+    int i, currrun = 0;
+    int c = blocks->c, r = blocks->r, cr = c * r;
+
+    /*
+     * Encode the block structure. We do this by encoding
+     * the pattern of dividing lines: first we iterate
+     * over the cr*(cr-1) internal vertical grid lines in
+     * ordinary reading order, then over the cr*(cr-1)
+     * internal horizontal ones in transposed reading
+     * order.
+     * 
+     * We encode the number of non-lines between the
+     * lines; _ means zero (two adjacent divisions), a
+     * means 1, ..., y means 25, and z means 25 non-lines
+     * _and no following line_ (so that za means 26, zb 27
+     * etc).
+     */
+    for (i = 0; i <= 2*cr*(cr-1); i++) {
+       int x, y, p0, p1, edge;
+
+       if (i == 2*cr*(cr-1)) {
+           edge = TRUE;       /* terminating virtual edge */
+       } else {
+           if (i < cr*(cr-1)) {
+               y = i/(cr-1);
+               x = i%(cr-1);
+               p0 = y*cr+x;
+               p1 = y*cr+x+1;
+           } else {
+               x = i/(cr-1) - cr;
+               y = i%(cr-1);
+               p0 = y*cr+x;
+               p1 = (y+1)*cr+x;
+           }
+           edge = (blocks->whichblock[p0] != blocks->whichblock[p1]);
+       }
+
+       if (edge) {
+           while (currrun > 25)
+               *p++ = 'z', currrun -= 25;
+           if (currrun)
+               *p++ = 'a'-1 + currrun;
+           else
+               *p++ = '_';
+           currrun = 0;
+       } else
+           currrun++;
+    }
+    return p;
+}
+
+static char *encode_grid(char *desc, digit *grid, int area)
+{
+    int run, i;
+    char *p = desc;
+
+    run = 0;
+    for (i = 0; i <= area; i++) {
+       int n = (i < area ? grid[i] : -1);
+
+       if (!n)
+           run++;
+       else {
+           if (run) {
+               while (run > 0) {
+                   int c = 'a' - 1 + run;
+                   if (run > 26)
+                       c = 'z';
+                   *p++ = c;
+                   run -= c - ('a' - 1);
+               }
+           } else {
+               /*
+                * If there's a number in the very top left or
+                * bottom right, there's no point putting an
+                * unnecessary _ before or after it.
+                */
+               if (p > desc && n > 0)
+                   *p++ = '_';
+           }
+           if (n > 0)
+               p += sprintf(p, "%d", n);
+           run = 0;
+       }
     }
+    return p;
+}
+
+/*
+ * Conservatively stimate the number of characters required for
+ * encoding a grid of a certain area.
+ */
+static int grid_encode_space (int area)
+{
+    int t, count;
+    for (count = 1, t = area; t > 26; t -= 26)
+       count++;
+    return count * area;
+}
+
+/*
+ * Conservatively stimate the number of characters required for
+ * encoding a given blocks structure.
+ */
+static int blocks_encode_space(struct block_structure *blocks)
+{
+    int cr = blocks->c * blocks->r, area = cr * cr;
+    return grid_encode_space(area);
 }
 
-static int symmetries(game_params *params, int x, int y, int *output, int s)
+static char *encode_puzzle_desc(const game_params *params, digit *grid,
+                               struct block_structure *blocks,
+                               digit *kgrid,
+                               struct block_structure *kblocks)
 {
     int c = params->c, r = params->r, cr = c*r;
-    int i = 0;
+    int area = cr*cr;
+    char *p, *desc;
+    int space;
+
+    space = grid_encode_space(area) + 1;
+    if (r == 1)
+       space += blocks_encode_space(blocks) + 1;
+    if (params->killer) {
+       space += blocks_encode_space(kblocks) + 1;
+       space += grid_encode_space(area) + 1;
+    }
+    desc = snewn(space, char);
+    p = encode_grid(desc, grid, area);
 
-    *output++ = x;
-    *output++ = y;
-    i++;
+    if (r == 1) {
+       *p++ = ',';
+       p = encode_block_structure_desc(p, blocks);
+    }
+    if (params->killer) {
+       *p++ = ',';
+       p = encode_block_structure_desc(p, kblocks);
+       *p++ = ',';
+       p = encode_grid(p, kgrid, area);
+    }
+    assert(p - desc < space);
+    *p++ = '\0';
+    desc = sresize(desc, p - desc, char);
 
-    switch (s) {
-      case SYMM_NONE:
-       break;                         /* just x,y is all we need */
-      case SYMM_REF4:
-      case SYMM_ROT4:
-       switch (s) {
-         case SYMM_REF4:
-           *output++ = cr - 1 - x;
-           *output++ = y;
-           i++;
-
-           *output++ = x;
-           *output++ = cr - 1 - y;
-           i++;
-           break;
-         case SYMM_ROT4:
-           *output++ = cr - 1 - y;
-           *output++ = x;
-           i++;
-
-           *output++ = y;
-           *output++ = cr - 1 - x;
-           i++;
-           break;
+    return desc;
+}
+
+static void merge_blocks(struct block_structure *b, int n1, int n2)
+{
+    int i;
+    /* Move data towards the lower block number.  */
+    if (n2 < n1) {
+       int t = n2;
+       n2 = n1;
+       n1 = t;
+    }
+
+    /* Merge n2 into n1, and move the last block into n2's position.  */
+    for (i = 0; i < b->nr_squares[n2]; i++)
+       b->whichblock[b->blocks[n2][i]] = n1;
+    memcpy(b->blocks[n1] + b->nr_squares[n1], b->blocks[n2],
+          b->nr_squares[n2] * sizeof **b->blocks);
+    b->nr_squares[n1] += b->nr_squares[n2];
+
+    n1 = b->nr_blocks - 1;
+    if (n2 != n1) {
+       memcpy(b->blocks[n2], b->blocks[n1],
+              b->nr_squares[n1] * sizeof **b->blocks);
+       for (i = 0; i < b->nr_squares[n1]; i++)
+           b->whichblock[b->blocks[n1][i]] = n2;
+       b->nr_squares[n2] = b->nr_squares[n1];
+    }
+    b->nr_blocks = n1;
+}
+
+static int merge_some_cages(struct block_structure *b, int cr, int area,
+                            digit *grid, random_state *rs)
+{
+    /*
+     * Make a list of all the pairs of adjacent blocks.
+     */
+    int i, j, k;
+    struct pair {
+       int b1, b2;
+    } *pairs;
+    int npairs;
+
+    pairs = snewn(b->nr_blocks * b->nr_blocks, struct pair);
+    npairs = 0;
+
+    for (i = 0; i < b->nr_blocks; i++) {
+       for (j = i+1; j < b->nr_blocks; j++) {
+
+           /*
+            * Rule the merger out of consideration if it's
+            * obviously not viable.
+            */
+           if (b->nr_squares[i] + b->nr_squares[j] > b->max_nr_squares)
+               continue;              /* we couldn't merge these anyway */
+
+           /*
+            * See if these two blocks have a pair of squares
+            * adjacent to each other.
+            */
+           for (k = 0; k < b->nr_squares[i]; k++) {
+               int xy = b->blocks[i][k];
+               int y = xy / cr, x = xy % cr;
+               if ((y   > 0  && b->whichblock[xy - cr] == j) ||
+                   (y+1 < cr && b->whichblock[xy + cr] == j) ||
+                   (x   > 0  && b->whichblock[xy -  1] == j) ||
+                   (x+1 < cr && b->whichblock[xy +  1] == j)) {
+                   /*
+                    * Yes! Add this pair to our list.
+                    */
+                   pairs[npairs].b1 = i;
+                   pairs[npairs].b2 = j;
+                   break;
+               }
+           }
+       }
+    }
+
+    /*
+     * Now go through that list in random order until we find a pair
+     * of blocks we can merge.
+     */
+    while (npairs > 0) {
+       int n1, n2;
+       unsigned int digits_found;
+
+       /*
+        * Pick a random pair, and remove it from the list.
+        */
+       i = random_upto(rs, npairs);
+       n1 = pairs[i].b1;
+       n2 = pairs[i].b2;
+       if (i != npairs-1)
+           pairs[i] = pairs[npairs-1];
+       npairs--;
+
+       /* Guarantee that the merged cage would still be a region.  */
+       digits_found = 0;
+       for (i = 0; i < b->nr_squares[n1]; i++)
+           digits_found |= 1 << grid[b->blocks[n1][i]];
+       for (i = 0; i < b->nr_squares[n2]; i++)
+           if (digits_found & (1 << grid[b->blocks[n2][i]]))
+               break;
+       if (i != b->nr_squares[n2])
+           continue;
+
+       /*
+        * Got one! Do the merge.
+        */
+       merge_blocks(b, n1, n2);
+       sfree(pairs);
+       return TRUE;
+    }
+
+    sfree(pairs);
+    return FALSE;
+}
+
+static void compute_kclues(struct block_structure *cages, digit *kclues,
+                          digit *grid, int area)
+{
+    int i;
+    memset(kclues, 0, area * sizeof *kclues);
+    for (i = 0; i < cages->nr_blocks; i++) {
+       int j, sum = 0;
+       for (j = 0; j < area; j++)
+           if (cages->whichblock[j] == i)
+               sum += grid[j];
+       for (j = 0; j < area; j++)
+           if (cages->whichblock[j] == i)
+               break;
+       assert (j != area);
+       kclues[j] = sum;
+    }
+}
+
+static struct block_structure *gen_killer_cages(int cr, random_state *rs,
+                                               int remove_singletons)
+{
+    int nr;
+    int x, y, area = cr * cr;
+    int n_singletons = 0;
+    struct block_structure *b = alloc_block_structure (1, cr, area, cr, area);
+
+    for (x = 0; x < area; x++)
+       b->whichblock[x] = -1;
+    nr = 0;
+    for (y = 0; y < cr; y++)
+       for (x = 0; x < cr; x++) {
+           int rnd;
+           int xy = y*cr+x;
+           if (b->whichblock[xy] != -1)
+               continue;
+           b->whichblock[xy] = nr;
+
+           rnd = random_bits(rs, 4);
+           if (xy + 1 < area && (rnd >= 4 || (!remove_singletons && rnd >= 1))) {
+               int xy2 = xy + 1;
+               if (x + 1 == cr || b->whichblock[xy2] != -1 ||
+                   (xy + cr < area && random_bits(rs, 1) == 0))
+                   xy2 = xy + cr;
+               if (xy2 >= area)
+                   n_singletons++;
+               else
+                   b->whichblock[xy2] = nr;
+           } else
+               n_singletons++;
+           nr++;
        }
-       /* fall through */
-      case SYMM_ROT2:
-       *output++ = cr - 1 - x;
-       *output++ = cr - 1 - y;
-       i++;
-       break;
-    }
 
-    return i;
+    b->nr_blocks = nr;
+    make_blocks_from_whichblock(b);
+
+    for (x = y = 0; x < b->nr_blocks; x++)
+       if (b->nr_squares[x] == 1)
+           y++;
+    assert(y == n_singletons);
+
+    if (n_singletons > 0 && remove_singletons) {
+       int n;
+       for (n = 0; n < b->nr_blocks;) {
+           int xy, x, y, xy2, other;
+           if (b->nr_squares[n] > 1) {
+               n++;
+               continue;
+           }
+           xy = b->blocks[n][0];
+           x = xy % cr;
+           y = xy / cr;
+           if (xy + 1 == area)
+               xy2 = xy - 1;
+           else if (x + 1 < cr && (y + 1 == cr || random_bits(rs, 1) == 0))
+               xy2 = xy + 1;
+           else
+               xy2 = xy + cr;
+           other = b->whichblock[xy2];
+
+           if (b->nr_squares[other] == 1)
+               n_singletons--;
+           n_singletons--;
+           merge_blocks(b, n, other);
+           if (n < other)
+               n++;
+       }
+       assert(n_singletons == 0);
+    }
+    return b;
 }
 
-static char *new_game_seed(game_params *params, random_state *rs)
+static char *new_game_desc(const game_params *params, random_state *rs,
+                          char **aux, int interactive)
 {
     int c = params->c, r = params->r, cr = c*r;
     int area = cr*cr;
-    digit *grid, *grid2;
+    struct block_structure *blocks, *kblocks;
+    digit *grid, *grid2, *kgrid;
     struct xy { int x, y; } *locs;
     int nlocs;
-    int ret;
-    char *seed;
+    char *desc;
     int coords[16], ncoords;
-    int xlim, ylim;
+    int x, y, i, j;
+    struct difficulty dlev;
+
+    precompute_sum_bits();
 
     /*
-     * Start the recursive solver with an empty grid to generate a
-     * random solved state.
+     * Adjust the maximum difficulty level to be consistent with
+     * the puzzle size: all 2x2 puzzles appear to be Trivial
+     * (DIFF_BLOCK) so we cannot hold out for even a Basic
+     * (DIFF_SIMPLE) one.
      */
+    dlev.maxdiff = params->diff;
+    dlev.maxkdiff = params->kdiff;
+    if (c == 2 && r == 2)
+        dlev.maxdiff = DIFF_BLOCK;
+
     grid = snewn(area, digit);
-    memset(grid, 0, area);
-    ret = rsolve(c, r, grid, rs, 1);
-    assert(ret == 1);
-    assert(check_valid(c, r, grid));
-
-#ifdef DEBUG
-    memcpy(grid,
-           "\x0\x1\x0\x0\x6\x0\x0\x0\x0"
-           "\x5\x0\x0\x7\x0\x4\x0\x2\x0"
-           "\x0\x0\x6\x1\x0\x0\x0\x0\x0"
-           "\x8\x9\x7\x0\x0\x0\x0\x0\x0"
-           "\x0\x0\x3\x0\x4\x0\x9\x0\x0"
-           "\x0\x0\x0\x0\x0\x0\x8\x7\x6"
-           "\x0\x0\x0\x0\x0\x9\x1\x0\x0"
-           "\x0\x3\x0\x6\x0\x5\x0\x0\x7"
-           "\x0\x0\x0\x0\x8\x0\x0\x5\x0"
-          , area);
+    locs = snewn(area, struct xy);
+    grid2 = snewn(area, digit);
 
-    {
-       int y, x;
-       for (y = 0; y < cr; y++) {
-           for (x = 0; x < cr; x++) {
-               printf("%2.0d", grid[y*cr+x]);
-           }
-           printf("\n");
-       }
-       printf("\n");
-    }
+    blocks = alloc_block_structure (c, r, area, cr, cr);
 
-    nsolve(c, r, grid);
+    kblocks = NULL;
+    kgrid = (params->killer) ? snewn(area, digit) : NULL;
 
-    {
-       int y, x;
-       for (y = 0; y < cr; y++) {
-           for (x = 0; x < cr; x++) {
-               printf("%2.0d", grid[y*cr+x]);
-           }
-           printf("\n");
-       }
-       printf("\n");
-    }
+#ifdef STANDALONE_SOLVER
+    assert(!"This should never happen, so we don't need to create blocknames");
 #endif
 
     /*
-     * Now we have a solved grid, start removing things from it
-     * while preserving solubility.
+     * Loop until we get a grid of the required difficulty. This is
+     * nasty, but it seems to be unpleasantly hard to generate
+     * difficult grids otherwise.
      */
-    locs = snewn(area, struct xy);
-    grid2 = snewn(area, digit);
-    symmetry_limit(params, &xlim, &ylim, params->symm);
     while (1) {
-       int x, y, i, j;
+        /*
+         * Generate a random solved state, starting by
+         * constructing the block structure.
+         */
+       if (r == 1) {                  /* jigsaw mode */
+           int *dsf = divvy_rectangle(cr, cr, cr, rs);
 
-       /*
-        * Iterate over the grid and enumerate all the filled
-        * squares we could empty.
-        */
-       nlocs = 0;
-
-       for (x = 0; x < xlim; x++)
-           for (y = 0; y < ylim; y++)
-               if (grid[y*cr+x]) {
-                   locs[nlocs].x = x;
-                   locs[nlocs].y = y;
-                   nlocs++;
-               }
+           dsf_to_blocks (dsf, blocks, cr, cr);
+
+           sfree(dsf);
+       } else {                       /* basic Sudoku mode */
+           for (y = 0; y < cr; y++)
+               for (x = 0; x < cr; x++)
+                   blocks->whichblock[y*cr+x] = (y/c) * c + (x/r);
+       }
+       make_blocks_from_whichblock(blocks);
+
+       if (params->killer) {
+            if (kblocks) free_block_structure(kblocks);
+           kblocks = gen_killer_cages(cr, rs, params->kdiff > DIFF_KSINGLE);
+       }
+
+        if (!gridgen(cr, blocks, kblocks, params->xtype, grid, rs, area*area))
+           continue;
+        assert(check_valid(cr, blocks, kblocks, NULL, params->xtype, grid));
 
        /*
-        * Now shuffle that list.
+        * Save the solved grid in aux.
         */
-       for (i = nlocs; i > 1; i--) {
-           int p = random_upto(rs, i);
-           if (p != i-1) {
-               struct xy t = locs[p];
-               locs[p] = locs[i-1];
-               locs[i-1] = t;
-           }
+       {
+           /*
+            * We might already have written *aux the last time we
+            * went round this loop, in which case we should free
+            * the old aux before overwriting it with the new one.
+            */
+            if (*aux) {
+               sfree(*aux);
+            }
+
+            *aux = encode_solve_move(cr, grid);
        }
 
        /*
-        * Now loop over the shuffled list and, for each element,
-        * see whether removing that element (and its reflections)
-        * from the grid will still leave the grid soluble by
-        * nsolve.
+        * Now we have a solved grid. For normal puzzles, we start removing
+        * things from it while preserving solubility.  Killer puzzles are
+        * different: we just pass the empty grid to the solver, and use
+        * the puzzle if it comes back solved.
         */
-       for (i = 0; i < nlocs; i++) {
-           x = locs[i].x;
-           y = locs[i].y;
-
-           memcpy(grid2, grid, area);
-           ncoords = symmetries(params, x, y, coords, params->symm);
-           for (j = 0; j < ncoords; j++)
-               grid2[coords[2*j+1]*cr+coords[2*j]] = 0;
-
-           if (nsolve(c, r, grid2)) {
-               for (j = 0; j < ncoords; j++)
-                   grid[coords[2*j+1]*cr+coords[2*j]] = 0;
+
+       if (params->killer) {
+           struct block_structure *good_cages = NULL;
+           struct block_structure *last_cages = NULL;
+           int ntries = 0;
+
+            memcpy(grid2, grid, area);
+
+           for (;;) {
+               compute_kclues(kblocks, kgrid, grid2, area);
+
+               memset(grid, 0, area * sizeof *grid);
+               solver(cr, blocks, kblocks, params->xtype, grid, kgrid, &dlev);
+               if (dlev.diff == dlev.maxdiff && dlev.kdiff == dlev.maxkdiff) {
+                   /*
+                    * We have one that matches our difficulty.  Store it for
+                    * later, but keep going.
+                    */
+                   if (good_cages)
+                       free_block_structure(good_cages);
+                   ntries = 0;
+                   good_cages = dup_block_structure(kblocks);
+                   if (!merge_some_cages(kblocks, cr, area, grid2, rs))
+                       break;
+               } else if (dlev.diff > dlev.maxdiff || dlev.kdiff > dlev.maxkdiff) {
+                   /*
+                    * Give up after too many tries and either use the good one we
+                    * found, or generate a new grid.
+                    */
+                   if (++ntries > 50)
+                       break;
+                   /*
+                    * The difficulty level got too high.  If we have a good
+                    * one, use it, otherwise go back to the last one that
+                    * was at a lower difficulty and restart the process from
+                    * there.
+                    */
+                   if (good_cages != NULL) {
+                       free_block_structure(kblocks);
+                       kblocks = dup_block_structure(good_cages);
+                       if (!merge_some_cages(kblocks, cr, area, grid2, rs))
+                           break;
+                   } else {
+                       if (last_cages == NULL)
+                           break;
+                       free_block_structure(kblocks);
+                       kblocks = last_cages;
+                       last_cages = NULL;
+                   }
+               } else {
+                   if (last_cages)
+                       free_block_structure(last_cages);
+                   last_cages = dup_block_structure(kblocks);
+                   if (!merge_some_cages(kblocks, cr, area, grid2, rs))
+                       break;
+               }
+           }
+           if (last_cages)
+               free_block_structure(last_cages);
+           if (good_cages != NULL) {
+               free_block_structure(kblocks);
+               kblocks = good_cages;
+               compute_kclues(kblocks, kgrid, grid2, area);
+               memset(grid, 0, area * sizeof *grid);
                break;
            }
+           continue;
        }
 
-       if (i == nlocs) {
-           /*
-            * There was nothing we could remove without destroying
-            * solvability.
-            */
-           break;
-       }
+        /*
+         * Find the set of equivalence classes of squares permitted
+         * by the selected symmetry. We do this by enumerating all
+         * the grid squares which have no symmetric companion
+         * sorting lower than themselves.
+         */
+        nlocs = 0;
+        for (y = 0; y < cr; y++)
+            for (x = 0; x < cr; x++) {
+                int i = y*cr+x;
+                int j;
+
+                ncoords = symmetries(params, x, y, coords, params->symm);
+                for (j = 0; j < ncoords; j++)
+                    if (coords[2*j+1]*cr+coords[2*j] < i)
+                        break;
+                if (j == ncoords) {
+                    locs[nlocs].x = x;
+                    locs[nlocs].y = y;
+                    nlocs++;
+                }
+            }
+
+        /*
+         * Now shuffle that list.
+         */
+        shuffle(locs, nlocs, sizeof(*locs), rs);
+
+        /*
+         * Now loop over the shuffled list and, for each element,
+         * see whether removing that element (and its reflections)
+         * from the grid will still leave the grid soluble.
+         */
+        for (i = 0; i < nlocs; i++) {
+            x = locs[i].x;
+            y = locs[i].y;
+
+            memcpy(grid2, grid, area);
+            ncoords = symmetries(params, x, y, coords, params->symm);
+            for (j = 0; j < ncoords; j++)
+                grid2[coords[2*j+1]*cr+coords[2*j]] = 0;
+
+            solver(cr, blocks, kblocks, params->xtype, grid2, kgrid, &dlev);
+            if (dlev.diff <= dlev.maxdiff &&
+               (!params->killer || dlev.kdiff <= dlev.maxkdiff)) {
+                for (j = 0; j < ncoords; j++)
+                    grid[coords[2*j+1]*cr+coords[2*j]] = 0;
+            }
+        }
+
+        memcpy(grid2, grid, area);
+
+       solver(cr, blocks, kblocks, params->xtype, grid2, kgrid, &dlev);
+       if (dlev.diff == dlev.maxdiff &&
+           (!params->killer || dlev.kdiff == dlev.maxkdiff))
+           break;                     /* found one! */
     }
+
     sfree(grid2);
     sfree(locs);
 
-#ifdef DEBUG
-    {
-       int y, x;
-       for (y = 0; y < cr; y++) {
-           for (x = 0; x < cr; x++) {
-               printf("%2.0d", grid[y*cr+x]);
-           }
-           printf("\n");
-       }
-       printf("\n");
-    }
-#endif
-
     /*
      * Now we have the grid as it will be presented to the user.
-     * Encode it in a game seed.
+     * Encode it in a game desc.
      */
-    {
-       char *p;
-       int run, i;
-
-       seed = snewn(5 * area, char);
-       p = seed;
-       run = 0;
-       for (i = 0; i <= area; i++) {
-           int n = (i < area ? grid[i] : -1);
-
-           if (!n)
-               run++;
-           else {
-               if (run) {
-                   while (run > 0) {
-                       int c = 'a' - 1 + run;
-                       if (run > 26)
-                           c = 'z';
-                       *p++ = c;
-                       run -= c - ('a' - 1);
-                   }
-               } else {
-                   /*
-                    * If there's a number in the very top left or
-                    * bottom right, there's no point putting an
-                    * unnecessary _ before or after it.
-                    */
-                   if (p > seed && n > 0)
-                       *p++ = '_';
-               }
-               if (n > 0)
-                   p += sprintf(p, "%d", n);
-               run = 0;
+    desc = encode_puzzle_desc(params, grid, blocks, kgrid, kblocks);
+
+    sfree(grid);
+    free_block_structure(blocks);
+    if (params->killer) {
+        free_block_structure(kblocks);
+        sfree(kgrid);
+    }
+
+    return desc;
+}
+
+static const char *spec_to_grid(const char *desc, digit *grid, int area)
+{
+    int i = 0;
+    while (*desc && *desc != ',') {
+        int n = *desc++;
+        if (n >= 'a' && n <= 'z') {
+            int run = n - 'a' + 1;
+            assert(i + run <= area);
+            while (run-- > 0)
+                grid[i++] = 0;
+        } else if (n == '_') {
+            /* do nothing */;
+        } else if (n > '0' && n <= '9') {
+            assert(i < area);
+            grid[i++] = atoi(desc-1);
+            while (*desc >= '0' && *desc <= '9')
+                desc++;
+        } else {
+            assert(!"We can't get here");
+        }
+    }
+    assert(i == area);
+    return desc;
+}
+
+/*
+ * Create a DSF from a spec found in *pdesc. Update this to point past the
+ * end of the block spec, and return an error string or NULL if everything
+ * is OK. The DSF is stored in *PDSF.
+ */
+static char *spec_to_dsf(const char **pdesc, int **pdsf, int cr, int area)
+{
+    const char *desc = *pdesc;
+    int pos = 0;
+    int *dsf;
+
+    *pdsf = dsf = snew_dsf(area);
+
+    while (*desc && *desc != ',') {
+       int c, adv;
+
+       if (*desc == '_')
+           c = 0;
+       else if (*desc >= 'a' && *desc <= 'z')
+           c = *desc - 'a' + 1;
+       else {
+           sfree(dsf);
+           return "Invalid character in game description";
+       }
+       desc++;
+
+       adv = (c != 26);               /* 'z' is a special case */
+
+       while (c-- > 0) {
+           int p0, p1;
+
+           /*
+            * Non-edge; merge the two dsf classes on either
+            * side of it.
+            */
+           if (pos >= 2*cr*(cr-1)) {
+                sfree(dsf);
+                return "Too much data in block structure specification";
+            }
+
+           if (pos < cr*(cr-1)) {
+               int y = pos/(cr-1);
+               int x = pos%(cr-1);
+               p0 = y*cr+x;
+               p1 = y*cr+x+1;
+           } else {
+               int x = pos/(cr-1) - cr;
+               int y = pos%(cr-1);
+               p0 = y*cr+x;
+               p1 = (y+1)*cr+x;
            }
+           dsf_merge(dsf, p0, p1);
+
+           pos++;
        }
-       assert(p - seed < 5 * area);
-       *p++ = '\0';
-       seed = sresize(seed, p - seed, char);
+       if (adv)
+           pos++;
     }
+    *pdesc = desc;
 
-    sfree(grid);
+    /*
+     * When desc is exhausted, we expect to have gone exactly
+     * one space _past_ the end of the grid, due to the dummy
+     * edge at the end.
+     */
+    if (pos != 2*cr*(cr-1)+1) {
+       sfree(dsf);
+       return "Not enough data in block structure specification";
+    }
 
-    return seed;
+    return NULL;
 }
 
-static char *validate_seed(game_params *params, char *seed)
+static char *validate_grid_desc(const char **pdesc, int range, int area)
 {
-    int area = params->r * params->r * params->c * params->c;
+    const char *desc = *pdesc;
     int squares = 0;
-
-    while (*seed) {
-        int n = *seed++;
+    while (*desc && *desc != ',') {
+        int n = *desc++;
         if (n >= 'a' && n <= 'z') {
             squares += n - 'a' + 1;
         } else if (n == '_') {
             /* do nothing */;
         } else if (n > '0' && n <= '9') {
+            int val = atoi(desc-1);
+            if (val < 1 || val > range)
+                return "Out-of-range number in game description";
             squares++;
-            while (*seed >= '0' && *seed <= '9')
-                seed++;
+            while (*desc >= '0' && *desc <= '9')
+                desc++;
         } else
-            return "Invalid character in game specification";
+            return "Invalid character in game description";
     }
 
     if (squares < area)
@@ -1149,91 +3955,565 @@ static char *validate_seed(game_params *params, char *seed)
 
     if (squares > area)
         return "Too much data to fit in grid";
+    *pdesc = desc;
+    return NULL;
+}
+
+static char *validate_block_desc(const char **pdesc, int cr, int area,
+                                int min_nr_blocks, int max_nr_blocks,
+                                int min_nr_squares, int max_nr_squares)
+{
+    char *err;
+    int *dsf;
+
+    err = spec_to_dsf(pdesc, &dsf, cr, area);
+    if (err) {
+       return err;
+    }
+
+    if (min_nr_squares == max_nr_squares) {
+       assert(min_nr_blocks == max_nr_blocks);
+       assert(min_nr_blocks * min_nr_squares == area);
+    }
+    /*
+     * Now we've got our dsf. Verify that it matches
+     * expectations.
+     */
+    {
+       int *canons, *counts;
+       int i, j, c, ncanons = 0;
+
+       canons = snewn(max_nr_blocks, int);
+       counts = snewn(max_nr_blocks, int);
+
+       for (i = 0; i < area; i++) {
+           j = dsf_canonify(dsf, i);
+
+           for (c = 0; c < ncanons; c++)
+               if (canons[c] == j) {
+                   counts[c]++;
+                   if (counts[c] > max_nr_squares) {
+                       sfree(dsf);
+                       sfree(canons);
+                       sfree(counts);
+                       return "A jigsaw block is too big";
+                   }
+                   break;
+               }
+
+           if (c == ncanons) {
+               if (ncanons >= max_nr_blocks) {
+                   sfree(dsf);
+                   sfree(canons);
+                   sfree(counts);
+                   return "Too many distinct jigsaw blocks";
+               }
+               canons[ncanons] = j;
+               counts[ncanons] = 1;
+               ncanons++;
+           }
+       }
+
+       if (ncanons < min_nr_blocks) {
+           sfree(dsf);
+           sfree(canons);
+           sfree(counts);
+           return "Not enough distinct jigsaw blocks";
+       }
+       for (c = 0; c < ncanons; c++) {
+           if (counts[c] < min_nr_squares) {
+               sfree(dsf);
+               sfree(canons);
+               sfree(counts);
+               return "A jigsaw block is too small";
+           }
+       }
+       sfree(canons);
+       sfree(counts);
+    }
+
+    sfree(dsf);
+    return NULL;
+}
+
+static char *validate_desc(const game_params *params, const char *desc)
+{
+    int cr = params->c * params->r, area = cr*cr;
+    char *err;
+
+    err = validate_grid_desc(&desc, cr, area);
+    if (err)
+       return err;
+
+    if (params->r == 1) {
+       /*
+        * Now we expect a suffix giving the jigsaw block
+        * structure. Parse it and validate that it divides the
+        * grid into the right number of regions which are the
+        * right size.
+        */
+       if (*desc != ',')
+           return "Expected jigsaw block structure in game description";
+       desc++;
+       err = validate_block_desc(&desc, cr, area, cr, cr, cr, cr);
+       if (err)
+           return err;
+
+    }
+    if (params->killer) {
+       if (*desc != ',')
+           return "Expected killer block structure in game description";
+       desc++;
+       err = validate_block_desc(&desc, cr, area, cr, area, 2, cr);
+       if (err)
+           return err;
+       if (*desc != ',')
+           return "Expected killer clue grid in game description";
+       desc++;
+       err = validate_grid_desc(&desc, cr * area, area);
+       if (err)
+           return err;
+    }
+    if (*desc)
+       return "Unexpected data at end of game description";
 
     return NULL;
 }
 
-static game_state *new_game(game_params *params, char *seed)
+static game_state *new_game(midend *me, const game_params *params,
+                            const char *desc)
 {
     game_state *state = snew(game_state);
     int c = params->c, r = params->r, cr = c*r, area = cr * cr;
     int i;
 
-    state->c = params->c;
-    state->r = params->r;
+    precompute_sum_bits();
+
+    state->cr = cr;
+    state->xtype = params->xtype;
+    state->killer = params->killer;
 
     state->grid = snewn(area, digit);
+    state->pencil = snewn(area * cr, unsigned char);
+    memset(state->pencil, 0, area * cr);
     state->immutable = snewn(area, unsigned char);
     memset(state->immutable, FALSE, area);
 
-    state->completed = FALSE;
+    state->blocks = alloc_block_structure (c, r, area, cr, cr);
 
-    i = 0;
-    while (*seed) {
-        int n = *seed++;
-        if (n >= 'a' && n <= 'z') {
-            int run = n - 'a' + 1;
-            assert(i + run <= area);
-            while (run-- > 0)
-                state->grid[i++] = 0;
-        } else if (n == '_') {
-            /* do nothing */;
-        } else if (n > '0' && n <= '9') {
-            assert(i < area);
+    if (params->killer) {
+       state->kblocks = alloc_block_structure (c, r, area, cr, area);
+       state->kgrid = snewn(area, digit);
+    } else {
+       state->kblocks = NULL;
+       state->kgrid = NULL;
+    }
+    state->completed = state->cheated = FALSE;
+
+    desc = spec_to_grid(desc, state->grid, area);
+    for (i = 0; i < area; i++)
+       if (state->grid[i] != 0)
            state->immutable[i] = TRUE;
-            state->grid[i++] = atoi(seed-1);
-            while (*seed >= '0' && *seed <= '9')
-                seed++;
-        } else {
-            assert(!"We can't get here");
-        }
+
+    if (r == 1) {
+       char *err;
+       int *dsf;
+       assert(*desc == ',');
+       desc++;
+       err = spec_to_dsf(&desc, &dsf, cr, area);
+       assert(err == NULL);
+       dsf_to_blocks(dsf, state->blocks, cr, cr);
+       sfree(dsf);
+    } else {
+       int x, y;
+
+       for (y = 0; y < cr; y++)
+           for (x = 0; x < cr; x++)
+               state->blocks->whichblock[y*cr+x] = (y/c) * c + (x/r);
     }
-    assert(i == area);
+    make_blocks_from_whichblock(state->blocks);
+
+    if (params->killer) {
+       char *err;
+       int *dsf;
+       assert(*desc == ',');
+       desc++;
+       err = spec_to_dsf(&desc, &dsf, cr, area);
+       assert(err == NULL);
+       dsf_to_blocks(dsf, state->kblocks, cr, area);
+       sfree(dsf);
+       make_blocks_from_whichblock(state->kblocks);
+
+       assert(*desc == ',');
+       desc++;
+       desc = spec_to_grid(desc, state->kgrid, area);
+    }
+    assert(!*desc);
+
+#ifdef STANDALONE_SOLVER
+    /*
+     * Set up the block names for solver diagnostic output.
+     */
+    {
+       char *p = (char *)(state->blocks->blocknames + cr);
+
+       if (r == 1) {
+           for (i = 0; i < area; i++) {
+               int j = state->blocks->whichblock[i];
+               if (!state->blocks->blocknames[j]) {
+                   state->blocks->blocknames[j] = p;
+                   p += 1 + sprintf(p, "starting at (%d,%d)",
+                                    1 + i%cr, 1 + i/cr);
+               }
+           }
+       } else {
+           int bx, by;
+           for (by = 0; by < r; by++)
+               for (bx = 0; bx < c; bx++) {
+                   state->blocks->blocknames[by*c+bx] = p;
+                   p += 1 + sprintf(p, "(%d,%d)", bx+1, by+1);
+               }
+       }
+       assert(p - (char *)state->blocks->blocknames < (int)(cr*(sizeof(char *)+80)));
+       for (i = 0; i < cr; i++)
+           assert(state->blocks->blocknames[i]);
+    }
+#endif
 
     return state;
 }
 
-static game_state *dup_game(game_state *state)
+static game_state *dup_game(const game_state *state)
 {
     game_state *ret = snew(game_state);
-    int c = state->c, r = state->r, cr = c*r, area = cr * cr;
+    int cr = state->cr, area = cr * cr;
+
+    ret->cr = state->cr;
+    ret->xtype = state->xtype;
+    ret->killer = state->killer;
 
-    ret->c = state->c;
-    ret->r = state->r;
+    ret->blocks = state->blocks;
+    ret->blocks->refcount++;
+
+    ret->kblocks = state->kblocks;
+    if (ret->kblocks)
+       ret->kblocks->refcount++;
 
     ret->grid = snewn(area, digit);
     memcpy(ret->grid, state->grid, area);
 
-    ret->immutable = snewn(area, unsigned char);
-    memcpy(ret->immutable, state->immutable, area);
+    if (state->killer) {
+       ret->kgrid = snewn(area, digit);
+       memcpy(ret->kgrid, state->kgrid, area);
+    } else
+       ret->kgrid = NULL;
+
+    ret->pencil = snewn(area * cr, unsigned char);
+    memcpy(ret->pencil, state->pencil, area * cr);
+
+    ret->immutable = snewn(area, unsigned char);
+    memcpy(ret->immutable, state->immutable, area);
+
+    ret->completed = state->completed;
+    ret->cheated = state->cheated;
+
+    return ret;
+}
+
+static void free_game(game_state *state)
+{
+    free_block_structure(state->blocks);
+    if (state->kblocks)
+       free_block_structure(state->kblocks);
+
+    sfree(state->immutable);
+    sfree(state->pencil);
+    sfree(state->grid);
+    if (state->kgrid) sfree(state->kgrid);
+    sfree(state);
+}
+
+static char *solve_game(const game_state *state, const game_state *currstate,
+                        const char *ai, char **error)
+{
+    int cr = state->cr;
+    char *ret;
+    digit *grid;
+    struct difficulty dlev;
+
+    /*
+     * If we already have the solution in ai, save ourselves some
+     * time.
+     */
+    if (ai)
+        return dupstr(ai);
+
+    grid = snewn(cr*cr, digit);
+    memcpy(grid, state->grid, cr*cr);
+    dlev.maxdiff = DIFF_RECURSIVE;
+    dlev.maxkdiff = DIFF_KINTERSECT;
+    solver(cr, state->blocks, state->kblocks, state->xtype, grid,
+          state->kgrid, &dlev);
+
+    *error = NULL;
+
+    if (dlev.diff == DIFF_IMPOSSIBLE)
+       *error = "No solution exists for this puzzle";
+    else if (dlev.diff == DIFF_AMBIGUOUS)
+       *error = "Multiple solutions exist for this puzzle";
+
+    if (*error) {
+        sfree(grid);
+        return NULL;
+    }
+
+    ret = encode_solve_move(cr, grid);
+
+    sfree(grid);
+
+    return ret;
+}
+
+static char *grid_text_format(int cr, struct block_structure *blocks,
+                             int xtype, digit *grid)
+{
+    int vmod, hmod;
+    int x, y;
+    int totallen, linelen, nlines;
+    char *ret, *p, ch;
+
+    /*
+     * For non-jigsaw Sudoku, we format in the way we always have,
+     * by having the digits unevenly spaced so that the dividing
+     * lines can fit in:
+     *
+     * . . | . .
+     * . . | . .
+     * ----+----
+     * . . | . .
+     * . . | . .
+     *
+     * For jigsaw puzzles, however, we must leave space between
+     * _all_ pairs of digits for an optional dividing line, so we
+     * have to move to the rather ugly
+     * 
+     * .   .   .   .
+     * ------+------
+     * .   . | .   .
+     *       +---+  
+     * .   . | . | .
+     * ------+   |  
+     * .   .   . | .
+     * 
+     * We deal with both cases using the same formatting code; we
+     * simply invent a vmod value such that there's a vertical
+     * dividing line before column i iff i is divisible by vmod
+     * (so it's r in the first case and 1 in the second), and hmod
+     * likewise for horizontal dividing lines.
+     */
+
+    if (blocks->r != 1) {
+       vmod = blocks->r;
+       hmod = blocks->c;
+    } else {
+       vmod = hmod = 1;
+    }
+
+    /*
+     * Line length: we have cr digits, each with a space after it,
+     * and (cr-1)/vmod dividing lines, each with a space after it.
+     * The final space is replaced by a newline, but that doesn't
+     * affect the length.
+     */
+    linelen = 2*(cr + (cr-1)/vmod);
+
+    /*
+     * Number of lines: we have cr rows of digits, and (cr-1)/hmod
+     * dividing rows.
+     */
+    nlines = cr + (cr-1)/hmod;
+
+    /*
+     * Allocate the space.
+     */
+    totallen = linelen * nlines;
+    ret = snewn(totallen+1, char);     /* leave room for terminating NUL */
+
+    /*
+     * Write the text.
+     */
+    p = ret;
+    for (y = 0; y < cr; y++) {
+       /*
+        * Row of digits.
+        */
+       for (x = 0; x < cr; x++) {
+           /*
+            * Digit.
+            */
+           digit d = grid[y*cr+x];
+
+            if (d == 0) {
+               /*
+                * Empty space: we usually write a dot, but we'll
+                * highlight spaces on the X-diagonals (in X mode)
+                * by using underscores instead.
+                */
+               if (xtype && (ondiag0(y*cr+x) || ondiag1(y*cr+x)))
+                   ch = '_';
+               else
+                   ch = '.';
+           } else if (d <= 9) {
+                ch = '0' + d;
+           } else {
+                ch = 'a' + d-10;
+           }
+
+           *p++ = ch;
+           if (x == cr-1) {
+               *p++ = '\n';
+               continue;
+           }
+           *p++ = ' ';
+
+           if ((x+1) % vmod)
+               continue;
+
+           /*
+            * Optional dividing line.
+            */
+           if (blocks->whichblock[y*cr+x] != blocks->whichblock[y*cr+x+1])
+               ch = '|';
+           else
+               ch = ' ';
+           *p++ = ch;
+           *p++ = ' ';
+       }
+       if (y == cr-1 || (y+1) % hmod)
+           continue;
+
+       /*
+        * Dividing row.
+        */
+       for (x = 0; x < cr; x++) {
+           int dwid;
+           int tl, tr, bl, br;
+
+           /*
+            * Division between two squares. This varies
+            * complicatedly in length.
+            */
+           dwid = 2;                  /* digit and its following space */
+           if (x == cr-1)
+               dwid--;                /* no following space at end of line */
+           if (x > 0 && x % vmod == 0)
+               dwid++;                /* preceding space after a divider */
+
+           if (blocks->whichblock[y*cr+x] != blocks->whichblock[(y+1)*cr+x])
+               ch = '-';
+           else
+               ch = ' ';
+
+           while (dwid-- > 0)
+               *p++ = ch;
+
+           if (x == cr-1) {
+               *p++ = '\n';
+               break;
+           }
+
+           if ((x+1) % vmod)
+               continue;
 
-    ret->completed = state->completed;
+           /*
+            * Corner square. This is:
+            *  - a space if all four surrounding squares are in
+            *    the same block
+            *  - a vertical line if the two left ones are in one
+            *    block and the two right in another
+            *  - a horizontal line if the two top ones are in one
+            *    block and the two bottom in another
+            *  - a plus sign in all other cases. (If we had a
+            *    richer character set available we could break
+            *    this case up further by doing fun things with
+            *    line-drawing T-pieces.)
+            */
+           tl = blocks->whichblock[y*cr+x];
+           tr = blocks->whichblock[y*cr+x+1];
+           bl = blocks->whichblock[(y+1)*cr+x];
+           br = blocks->whichblock[(y+1)*cr+x+1];
+
+           if (tl == tr && tr == bl && bl == br)
+               ch = ' ';
+           else if (tl == bl && tr == br)
+               ch = '|';
+           else if (tl == tr && bl == br)
+               ch = '-';
+           else
+               ch = '+';
+
+           *p++ = ch;
+       }
+    }
 
+    assert(p - ret == totallen);
+    *p = '\0';
     return ret;
 }
 
-static void free_game(game_state *state)
+static int game_can_format_as_text_now(const game_params *params)
 {
-    sfree(state->immutable);
-    sfree(state->grid);
-    sfree(state);
+    /*
+     * Formatting Killer puzzles as text is currently unsupported. I
+     * can't think of any sensible way of doing it which doesn't
+     * involve expanding the puzzle to such a large scale as to make
+     * it unusable.
+     */
+    if (params->killer)
+        return FALSE;
+    return TRUE;
+}
+
+static char *game_text_format(const game_state *state)
+{
+    assert(!state->kblocks);
+    return grid_text_format(state->cr, state->blocks, state->xtype,
+                           state->grid);
 }
 
 struct game_ui {
     /*
      * These are the coordinates of the currently highlighted
-     * square on the grid, or -1,-1 if there isn't one. When there
-     * is, pressing a valid number or letter key or Space will
-     * enter that number or letter in the grid.
+     * square on the grid, if hshow = 1.
      */
     int hx, hy;
+    /*
+     * This indicates whether the current highlight is a
+     * pencil-mark one or a real one.
+     */
+    int hpencil;
+    /*
+     * This indicates whether or not we're showing the highlight
+     * (used to be hx = hy = -1); important so that when we're
+     * using the cursor keys it doesn't keep coming back at a
+     * fixed position. When hshow = 1, pressing a valid number
+     * or letter key or Space will enter that number or letter in the grid.
+     */
+    int hshow;
+    /*
+     * This indicates whether we're using the highlight as a cursor;
+     * it means that it doesn't vanish on a keypress, and that it is
+     * allowed on immutable squares.
+     */
+    int hcursor;
 };
 
-static game_ui *new_ui(game_state *state)
+static game_ui *new_ui(const game_state *state)
 {
     game_ui *ui = snew(game_ui);
 
-    ui->hx = ui->hy = -1;
+    ui->hx = ui->hy = 0;
+    ui->hpencil = ui->hshow = ui->hcursor = 0;
 
     return ui;
 }
@@ -1243,88 +4523,247 @@ static void free_ui(game_ui *ui)
     sfree(ui);
 }
 
-static game_state *make_move(game_state *from, game_ui *ui, int x, int y,
-                            int button)
+static char *encode_ui(const game_ui *ui)
 {
-    int c = from->c, r = from->r, cr = c*r;
-    int tx, ty;
-    game_state *ret;
+    return NULL;
+}
 
-    tx = (x - BORDER) / TILE_SIZE;
-    ty = (y - BORDER) / TILE_SIZE;
+static void decode_ui(game_ui *ui, const char *encoding)
+{
+}
 
-    if (tx >= 0 && tx < cr && ty >= 0 && ty < cr && button == LEFT_BUTTON) {
-       if (tx == ui->hx && ty == ui->hy) {
-           ui->hx = ui->hy = -1;
-       } else {
-           ui->hx = tx;
-           ui->hy = ty;
-       }
-       return from;                   /* UI activity occurred */
+static void game_changed_state(game_ui *ui, const game_state *oldstate,
+                               const game_state *newstate)
+{
+    int cr = newstate->cr;
+    /*
+     * We prevent pencil-mode highlighting of a filled square, unless
+     * we're using the cursor keys. So if the user has just filled in
+     * a square which we had a pencil-mode highlight in (by Undo, or
+     * by Redo, or by Solve), then we cancel the highlight.
+     */
+    if (ui->hshow && ui->hpencil && !ui->hcursor &&
+        newstate->grid[ui->hy * cr + ui->hx] != 0) {
+        ui->hshow = 0;
+    }
+}
+
+struct game_drawstate {
+    int started;
+    int cr, xtype;
+    int tilesize;
+    digit *grid;
+    unsigned char *pencil;
+    unsigned char *hl;
+    /* This is scratch space used within a single call to game_redraw. */
+    int nregions, *entered_items;
+};
+
+static char *interpret_move(const game_state *state, game_ui *ui,
+                            const game_drawstate *ds,
+                            int x, int y, int button)
+{
+    int cr = state->cr;
+    int tx, ty;
+    char buf[80];
+
+    button &= ~MOD_MASK;
+
+    tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1;
+    ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1;
+
+    if (tx >= 0 && tx < cr && ty >= 0 && ty < cr) {
+        if (button == LEFT_BUTTON) {
+            if (state->immutable[ty*cr+tx]) {
+                ui->hshow = 0;
+            } else if (tx == ui->hx && ty == ui->hy &&
+                       ui->hshow && ui->hpencil == 0) {
+                ui->hshow = 0;
+            } else {
+                ui->hx = tx;
+                ui->hy = ty;
+                ui->hshow = 1;
+                ui->hpencil = 0;
+            }
+            ui->hcursor = 0;
+            return "";                /* UI activity occurred */
+        }
+        if (button == RIGHT_BUTTON) {
+            /*
+             * Pencil-mode highlighting for non filled squares.
+             */
+            if (state->grid[ty*cr+tx] == 0) {
+                if (tx == ui->hx && ty == ui->hy &&
+                    ui->hshow && ui->hpencil) {
+                    ui->hshow = 0;
+                } else {
+                    ui->hpencil = 1;
+                    ui->hx = tx;
+                    ui->hy = ty;
+                    ui->hshow = 1;
+                }
+            } else {
+                ui->hshow = 0;
+            }
+            ui->hcursor = 0;
+            return "";                /* UI activity occurred */
+        }
+    }
+    if (IS_CURSOR_MOVE(button)) {
+        move_cursor(button, &ui->hx, &ui->hy, cr, cr, 0);
+        ui->hshow = ui->hcursor = 1;
+        return "";
+    }
+    if (ui->hshow &&
+        (button == CURSOR_SELECT)) {
+        ui->hpencil = 1 - ui->hpencil;
+        ui->hcursor = 1;
+        return "";
     }
 
-    if (ui->hx != -1 && ui->hy != -1 &&
-       ((button >= '1' && button <= '9' && button - '0' <= cr) ||
+    if (ui->hshow &&
+       ((button >= '0' && button <= '9' && button - '0' <= cr) ||
         (button >= 'a' && button <= 'z' && button - 'a' + 10 <= cr) ||
         (button >= 'A' && button <= 'Z' && button - 'A' + 10 <= cr) ||
-        button == ')) {
+        button == CURSOR_SELECT2 || button == '\b')) {
        int n = button - '0';
        if (button >= 'A' && button <= 'Z')
            n = button - 'A' + 10;
        if (button >= 'a' && button <= 'z')
            n = button - 'a' + 10;
-       if (button == ')
+       if (button == CURSOR_SELECT2 || button == '\b')
            n = 0;
 
-       if (from->immutable[ui->hy*cr+ui->hx])
-           return NULL;               /* can't overwrite this square */
+        /*
+         * Can't overwrite this square. This can only happen here
+         * if we're using the cursor keys.
+         */
+       if (state->immutable[ui->hy*cr+ui->hx])
+           return NULL;
 
-       ret = dup_game(from);
-       ret->grid[ui->hy*cr+ui->hx] = n;
-       ui->hx = ui->hy = -1;
+        /*
+         * Can't make pencil marks in a filled square. Again, this
+         * can only become highlighted if we're using cursor keys.
+         */
+        if (ui->hpencil && state->grid[ui->hy*cr+ui->hx])
+            return NULL;
 
-       /*
-        * We've made a real change to the grid. Check to see
-        * if the game has been completed.
-        */
-       if (!ret->completed && check_valid(c, r, ret->grid)) {
-           ret->completed = TRUE;
-       }
+       sprintf(buf, "%c%d,%d,%d",
+               (char)(ui->hpencil && n > 0 ? 'P' : 'R'), ui->hx, ui->hy, n);
 
-       return ret;                    /* made a valid move */
+        if (!ui->hcursor) ui->hshow = 0;
+
+       return dupstr(buf);
     }
 
+    if (button == 'M' || button == 'm')
+        return dupstr("M");
+
     return NULL;
 }
 
+static game_state *execute_move(const game_state *from, const char *move)
+{
+    int cr = from->cr;
+    game_state *ret;
+    int x, y, n;
+
+    if (move[0] == 'S') {
+       const char *p;
+
+       ret = dup_game(from);
+       ret->completed = ret->cheated = TRUE;
+
+       p = move+1;
+       for (n = 0; n < cr*cr; n++) {
+           ret->grid[n] = atoi(p);
+
+           if (!*p || ret->grid[n] < 1 || ret->grid[n] > cr) {
+               free_game(ret);
+               return NULL;
+           }
+
+           while (*p && isdigit((unsigned char)*p)) p++;
+           if (*p == ',') p++;
+       }
+
+       return ret;
+    } else if ((move[0] == 'P' || move[0] == 'R') &&
+       sscanf(move+1, "%d,%d,%d", &x, &y, &n) == 3 &&
+       x >= 0 && x < cr && y >= 0 && y < cr && n >= 0 && n <= cr) {
+
+       ret = dup_game(from);
+        if (move[0] == 'P' && n > 0) {
+            int index = (y*cr+x) * cr + (n-1);
+            ret->pencil[index] = !ret->pencil[index];
+        } else {
+            ret->grid[y*cr+x] = n;
+            memset(ret->pencil + (y*cr+x)*cr, 0, cr);
+
+            /*
+             * We've made a real change to the grid. Check to see
+             * if the game has been completed.
+             */
+            if (!ret->completed && check_valid(
+                    cr, ret->blocks, ret->kblocks, ret->kgrid,
+                    ret->xtype, ret->grid)) {
+                ret->completed = TRUE;
+            }
+        }
+       return ret;
+    } else if (move[0] == 'M') {
+       /*
+        * Fill in absolutely all pencil marks in unfilled squares,
+        * for those who like to play by the rigorous approach of
+        * starting off in that state and eliminating things.
+        */
+       ret = dup_game(from);
+        for (y = 0; y < cr; y++) {
+            for (x = 0; x < cr; x++) {
+                if (!ret->grid[y*cr+x]) {
+                    memset(ret->pencil + (y*cr+x)*cr, 1, cr);
+                }
+            }
+        }
+       return ret;
+    } else
+       return NULL;                   /* couldn't parse move string */
+}
+
 /* ----------------------------------------------------------------------
  * Drawing routines.
  */
 
-struct game_drawstate {
-    int started;
-    int c, r, cr;
-    digit *grid;
-    unsigned char *hl;
-};
-
-#define XSIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
-#define YSIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
+#define SIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
+#define GETTILESIZE(cr, w) ( (double)(w-1) / (double)(cr+1) )
 
-static void game_size(game_params *params, int *x, int *y)
+static void game_compute_size(const game_params *params, int tilesize,
+                              int *x, int *y)
 {
-    int c = params->c, r = params->r, cr = c*r;
+    /* Ick: fake up `ds->tilesize' for macro expansion purposes */
+    struct { int tilesize; } ads, *ds = &ads;
+    ads.tilesize = tilesize;
+
+    *x = SIZE(params->c * params->r);
+    *y = SIZE(params->c * params->r);
+}
 
-    *x = XSIZE(cr);
-    *y = YSIZE(cr);
+static void game_set_size(drawing *dr, game_drawstate *ds,
+                          const game_params *params, int tilesize)
+{
+    ds->tilesize = tilesize;
 }
 
-static float *game_colours(frontend *fe, game_state *state, int *ncolours)
+static float *game_colours(frontend *fe, int *ncolours)
 {
     float *ret = snewn(3 * NCOLOURS, float);
 
     frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
 
+    ret[COL_XDIAGONALS * 3 + 0] = 0.9F * ret[COL_BACKGROUND * 3 + 0];
+    ret[COL_XDIAGONALS * 3 + 1] = 0.9F * ret[COL_BACKGROUND * 3 + 1];
+    ret[COL_XDIAGONALS * 3 + 2] = 0.9F * ret[COL_BACKGROUND * 3 + 2];
+
     ret[COL_GRID * 3 + 0] = 0.0F;
     ret[COL_GRID * 3 + 1] = 0.0F;
     ret[COL_GRID * 3 + 2] = 0.0F;
@@ -1337,71 +4776,215 @@ static float *game_colours(frontend *fe, game_state *state, int *ncolours)
     ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
     ret[COL_USER * 3 + 2] = 0.0F;
 
-    ret[COL_HIGHLIGHT * 3 + 0] = 0.85F * ret[COL_BACKGROUND * 3 + 0];
-    ret[COL_HIGHLIGHT * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
-    ret[COL_HIGHLIGHT * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
+    ret[COL_HIGHLIGHT * 3 + 0] = 0.78F * ret[COL_BACKGROUND * 3 + 0];
+    ret[COL_HIGHLIGHT * 3 + 1] = 0.78F * ret[COL_BACKGROUND * 3 + 1];
+    ret[COL_HIGHLIGHT * 3 + 2] = 0.78F * ret[COL_BACKGROUND * 3 + 2];
+
+    ret[COL_ERROR * 3 + 0] = 1.0F;
+    ret[COL_ERROR * 3 + 1] = 0.0F;
+    ret[COL_ERROR * 3 + 2] = 0.0F;
+
+    ret[COL_PENCIL * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
+    ret[COL_PENCIL * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
+    ret[COL_PENCIL * 3 + 2] = ret[COL_BACKGROUND * 3 + 2];
+
+    ret[COL_KILLER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
+    ret[COL_KILLER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
+    ret[COL_KILLER * 3 + 2] = 0.1F * ret[COL_BACKGROUND * 3 + 2];
 
     *ncolours = NCOLOURS;
     return ret;
 }
 
-static game_drawstate *game_new_drawstate(game_state *state)
+static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
 {
     struct game_drawstate *ds = snew(struct game_drawstate);
-    int c = state->c, r = state->r, cr = c*r;
+    int cr = state->cr;
 
     ds->started = FALSE;
-    ds->c = c;
-    ds->r = r;
     ds->cr = cr;
+    ds->xtype = state->xtype;
     ds->grid = snewn(cr*cr, digit);
-    memset(ds->grid, 0, cr*cr);
+    memset(ds->grid, cr+2, cr*cr);
+    ds->pencil = snewn(cr*cr*cr, digit);
+    memset(ds->pencil, 0, cr*cr*cr);
     ds->hl = snewn(cr*cr, unsigned char);
     memset(ds->hl, 0, cr*cr);
-
+    /*
+     * ds->entered_items needs one row of cr entries per entity in
+     * which digits may not be duplicated. That's one for each row,
+     * each column, each block, each diagonal, and each Killer cage.
+     */
+    ds->nregions = cr*3 + 2;
+    if (state->kblocks)
+       ds->nregions += state->kblocks->nr_blocks;
+    ds->entered_items = snewn(cr * ds->nregions, int);
+    ds->tilesize = 0;                  /* not decided yet */
     return ds;
 }
 
-static void game_free_drawstate(game_drawstate *ds)
+static void game_free_drawstate(drawing *dr, game_drawstate *ds)
 {
     sfree(ds->hl);
+    sfree(ds->pencil);
     sfree(ds->grid);
+    sfree(ds->entered_items);
     sfree(ds);
 }
 
-static void draw_number(frontend *fe, game_drawstate *ds, game_state *state,
-                       int x, int y, int hl)
+static void draw_number(drawing *dr, game_drawstate *ds,
+                        const game_state *state, int x, int y, int hl)
 {
-    int c = state->c, r = state->r, cr = c*r;
-    int tx, ty;
+    int cr = state->cr;
+    int tx, ty, tw, th;
     int cx, cy, cw, ch;
-    char str[2];
+    int col_killer = (hl & 32 ? COL_ERROR : COL_KILLER);
+    char str[20];
 
-    if (ds->grid[y*cr+x] == state->grid[y*cr+x] && ds->hl[y*cr+x] == hl)
+    if (ds->grid[y*cr+x] == state->grid[y*cr+x] &&
+        ds->hl[y*cr+x] == hl &&
+        !memcmp(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr))
        return;                        /* no change required */
 
-    tx = BORDER + x * TILE_SIZE + 2;
-    ty = BORDER + y * TILE_SIZE + 2;
+    tx = BORDER + x * TILE_SIZE + 1 + GRIDEXTRA;
+    ty = BORDER + y * TILE_SIZE + 1 + GRIDEXTRA;
 
     cx = tx;
     cy = ty;
-    cw = TILE_SIZE-3;
-    ch = TILE_SIZE-3;
+    cw = tw = TILE_SIZE-1-2*GRIDEXTRA;
+    ch = th = TILE_SIZE-1-2*GRIDEXTRA;
+
+    if (x > 0 && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[y*cr+x-1])
+       cx -= GRIDEXTRA, cw += GRIDEXTRA;
+    if (x+1 < cr && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[y*cr+x+1])
+       cw += GRIDEXTRA;
+    if (y > 0 && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[(y-1)*cr+x])
+       cy -= GRIDEXTRA, ch += GRIDEXTRA;
+    if (y+1 < cr && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[(y+1)*cr+x])
+       ch += GRIDEXTRA;
+
+    clip(dr, cx, cy, cw, ch);
+
+    /* background needs erasing */
+    draw_rect(dr, cx, cy, cw, ch,
+             ((hl & 15) == 1 ? COL_HIGHLIGHT :
+              (ds->xtype && (ondiag0(y*cr+x) || ondiag1(y*cr+x))) ? COL_XDIAGONALS :
+              COL_BACKGROUND));
+
+    /*
+     * Draw the corners of thick lines in corner-adjacent squares,
+     * which jut into this square by one pixel.
+     */
+    if (x > 0 && y > 0 && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y-1)*cr+x-1])
+       draw_rect(dr, tx-GRIDEXTRA, ty-GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
+    if (x+1 < cr && y > 0 && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y-1)*cr+x+1])
+       draw_rect(dr, tx+TILE_SIZE-1-2*GRIDEXTRA, ty-GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
+    if (x > 0 && y+1 < cr && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y+1)*cr+x-1])
+       draw_rect(dr, tx-GRIDEXTRA, ty+TILE_SIZE-1-2*GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
+    if (x+1 < cr && y+1 < cr && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y+1)*cr+x+1])
+       draw_rect(dr, tx+TILE_SIZE-1-2*GRIDEXTRA, ty+TILE_SIZE-1-2*GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
+
+    /* pencil-mode highlight */
+    if ((hl & 15) == 2) {
+        int coords[6];
+        coords[0] = cx;
+        coords[1] = cy;
+        coords[2] = cx+cw/2;
+        coords[3] = cy;
+        coords[4] = cx;
+        coords[5] = cy+ch/2;
+        draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
+    }
+
+    if (state->kblocks) {
+       int t = GRIDEXTRA * 3;
+       int kcx, kcy, kcw, kch;
+       int kl, kt, kr, kb;
+       int has_left = 0, has_right = 0, has_top = 0, has_bottom = 0;
+
+       /*
+        * In non-jigsaw mode, the Killer cages are placed at a
+        * fixed offset from the outer edge of the cell dividing
+        * lines, so that they look right whether those lines are
+        * thick or thin. In jigsaw mode, however, doing this will
+        * sometimes cause the cage outlines in adjacent squares to
+        * fail to match up with each other, so we must offset a
+        * fixed amount from the _centre_ of the cell dividing
+        * lines.
+        */
+       if (state->blocks->r == 1) {
+           kcx = tx;
+           kcy = ty;
+           kcw = tw;
+           kch = th;
+       } else {
+           kcx = cx;
+           kcy = cy;
+           kcw = cw;
+           kch = ch;
+       }
+       kl = kcx - 1;
+       kt = kcy - 1;
+       kr = kcx + kcw;
+       kb = kcy + kch;
 
-    if (x % r)
-       cx--, cw++;
-    if ((x+1) % r)
-       cw++;
-    if (y % c)
-       cy--, ch++;
-    if ((y+1) % c)
-       ch++;
+       /*
+        * First, draw the lines dividing this area from neighbouring
+        * different areas.
+        */
+       if (x == 0 || state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[y*cr+x-1])
+           has_left = 1, kl += t;
+       if (x+1 >= cr || state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[y*cr+x+1])
+           has_right = 1, kr -= t;
+       if (y == 0 || state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y-1)*cr+x])
+           has_top = 1, kt += t;
+       if (y+1 >= cr || state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y+1)*cr+x])
+           has_bottom = 1, kb -= t;
+       if (has_top)
+           draw_line(dr, kl, kt, kr, kt, col_killer);
+       if (has_bottom)
+           draw_line(dr, kl, kb, kr, kb, col_killer);
+       if (has_left)
+           draw_line(dr, kl, kt, kl, kb, col_killer);
+       if (has_right)
+           draw_line(dr, kr, kt, kr, kb, col_killer);
+       /*
+        * Now, take care of the corners (just as for the normal borders).
+        * We only need a corner if there wasn't a full edge.
+        */
+       if (x > 0 && y > 0 && !has_left && !has_top
+           && state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y-1)*cr+x-1])
+       {
+           draw_line(dr, kl, kt + t, kl + t, kt + t, col_killer);
+           draw_line(dr, kl + t, kt, kl + t, kt + t, col_killer);
+       }
+       if (x+1 < cr && y > 0 && !has_right && !has_top
+           && state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y-1)*cr+x+1])
+       {
+           draw_line(dr, kcx + kcw - t, kt + t, kcx + kcw, kt + t, col_killer);
+           draw_line(dr, kcx + kcw - t, kt, kcx + kcw - t, kt + t, col_killer);
+       }
+       if (x > 0 && y+1 < cr && !has_left && !has_bottom
+           && state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y+1)*cr+x-1])
+       {
+           draw_line(dr, kl, kcy + kch - t, kl + t, kcy + kch - t, col_killer);
+           draw_line(dr, kl + t, kcy + kch - t, kl + t, kcy + kch, col_killer);
+       }
+       if (x+1 < cr && y+1 < cr && !has_right && !has_bottom
+           && state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y+1)*cr+x+1])
+       {
+           draw_line(dr, kcx + kcw - t, kcy + kch - t, kcx + kcw - t, kcy + kch, col_killer);
+           draw_line(dr, kcx + kcw - t, kcy + kch - t, kcx + kcw, kcy + kch - t, col_killer);
+       }
 
-    clip(fe, cx, cy, cw, ch);
+    }
 
-    /* background needs erasing? */
-    if (ds->grid[y*cr+x] || ds->hl[y*cr+x] != hl)
-       draw_rect(fe, cx, cy, cw, ch, hl ? COL_HIGHLIGHT : COL_BACKGROUND);
+    if (state->killer && state->kgrid[y*cr+x]) {
+       sprintf (str, "%d", state->kgrid[y*cr+x]);
+       draw_text(dr, tx + GRIDEXTRA * 4, ty + GRIDEXTRA * 4 + TILE_SIZE/4,
+                 FONT_VARIABLE, TILE_SIZE/4, ALIGN_VNORMAL | ALIGN_HLEFT,
+                 col_killer, str);
+    }
 
     /* new number needs drawing? */
     if (state->grid[y*cr+x]) {
@@ -1409,24 +4992,135 @@ static void draw_number(frontend *fe, game_drawstate *ds, game_state *state,
        str[0] = state->grid[y*cr+x] + '0';
        if (str[0] > '9')
            str[0] += 'a' - ('9'+1);
-       draw_text(fe, tx + TILE_SIZE/2, ty + TILE_SIZE/2,
+       draw_text(dr, tx + TILE_SIZE/2, ty + TILE_SIZE/2,
                  FONT_VARIABLE, TILE_SIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE,
-                 state->immutable[y*cr+x] ? COL_CLUE : COL_USER, str);
+                 state->immutable[y*cr+x] ? COL_CLUE : (hl & 16) ? COL_ERROR : COL_USER, str);
+    } else {
+        int i, j, npencil;
+       int pl, pr, pt, pb;
+       float bestsize;
+       int pw, ph, minph, pbest, fontsize;
+
+        /* Count the pencil marks required. */
+        for (i = npencil = 0; i < cr; i++)
+            if (state->pencil[(y*cr+x)*cr+i])
+               npencil++;
+       if (npencil) {
+
+           minph = 2;
+
+           /*
+            * Determine the bounding rectangle within which we're going
+            * to put the pencil marks.
+            */
+           /* Start with the whole square */
+           pl = tx + GRIDEXTRA;
+           pr = pl + TILE_SIZE - GRIDEXTRA;
+           pt = ty + GRIDEXTRA;
+           pb = pt + TILE_SIZE - GRIDEXTRA;
+           if (state->killer) {
+               /*
+                * Make space for the Killer cages. We do this
+                * unconditionally, for uniformity between squares,
+                * rather than making it depend on whether a Killer
+                * cage edge is actually present on any given side.
+                */
+               pl += GRIDEXTRA * 3;
+               pr -= GRIDEXTRA * 3;
+               pt += GRIDEXTRA * 3;
+               pb -= GRIDEXTRA * 3;
+               if (state->kgrid[y*cr+x] != 0) {
+                   /* Make further space for the Killer number. */
+                   pt += TILE_SIZE/4;
+                   /* minph--; */
+               }
+           }
+
+           /*
+            * We arrange our pencil marks in a grid layout, with
+            * the number of rows and columns adjusted to allow the
+            * maximum font size.
+            *
+            * So now we work out what the grid size ought to be.
+            */
+           bestsize = 0.0;
+           pbest = 0;
+           /* Minimum */
+           for (pw = 3; pw < max(npencil,4); pw++) {
+               float fw, fh, fs;
+
+               ph = (npencil + pw - 1) / pw;
+               ph = max(ph, minph);
+               fw = (pr - pl) / (float)pw;
+               fh = (pb - pt) / (float)ph;
+               fs = min(fw, fh);
+               if (fs > bestsize) {
+                   bestsize = fs;
+                   pbest = pw;
+               }
+           }
+           assert(pbest > 0);
+           pw = pbest;
+           ph = (npencil + pw - 1) / pw;
+           ph = max(ph, minph);
+
+           /*
+            * Now we've got our grid dimensions, work out the pixel
+            * size of a grid element, and round it to the nearest
+            * pixel. (We don't want rounding errors to make the
+            * grid look uneven at low pixel sizes.)
+            */
+           fontsize = min((pr - pl) / pw, (pb - pt) / ph);
+
+           /*
+            * Centre the resulting figure in the square.
+            */
+           pl = tx + (TILE_SIZE - fontsize * pw) / 2;
+           pt = ty + (TILE_SIZE - fontsize * ph) / 2;
+
+           /*
+            * And move it down a bit if it's collided with the
+            * Killer cage number.
+            */
+           if (state->killer && state->kgrid[y*cr+x] != 0) {
+               pt = max(pt, ty + GRIDEXTRA * 3 + TILE_SIZE/4);
+           }
+
+           /*
+            * Now actually draw the pencil marks.
+            */
+           for (i = j = 0; i < cr; i++)
+               if (state->pencil[(y*cr+x)*cr+i]) {
+                   int dx = j % pw, dy = j / pw;
+
+                   str[1] = '\0';
+                   str[0] = i + '1';
+                   if (str[0] > '9')
+                       str[0] += 'a' - ('9'+1);
+                   draw_text(dr, pl + fontsize * (2*dx+1) / 2,
+                             pt + fontsize * (2*dy+1) / 2,
+                             FONT_VARIABLE, fontsize,
+                             ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str);
+                   j++;
+               }
+       }
     }
 
-    unclip(fe);
+    unclip(dr);
 
-    draw_update(fe, cx, cy, cw, ch);
+    draw_update(dr, cx, cy, cw, ch);
 
     ds->grid[y*cr+x] = state->grid[y*cr+x];
+    memcpy(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr);
     ds->hl[y*cr+x] = hl;
 }
 
-static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
-                       game_state *state, int dir, game_ui *ui,
-                       float animtime, float flashtime)
+static void game_redraw(drawing *dr, game_drawstate *ds,
+                        const game_state *oldstate, const game_state *state,
+                        int dir, const game_ui *ui,
+                        float animtime, float flashtime)
 {
-    int c = state->c, r = state->r, cr = c*r;
+    int cr = state->cr;
     int x, y;
 
     if (!ds->started) {
@@ -1436,33 +5130,96 @@ static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
         * all games should start by drawing a big
         * background-colour rectangle covering the whole window.
         */
-       draw_rect(fe, 0, 0, XSIZE(cr), YSIZE(cr), COL_BACKGROUND);
+       draw_rect(dr, 0, 0, SIZE(cr), SIZE(cr), COL_BACKGROUND);
 
        /*
-        * Draw the grid.
+        * Draw the grid. We draw it as a big thick rectangle of
+        * COL_GRID initially; individual calls to draw_number()
+        * will poke the right-shaped holes in it.
         */
-       for (x = 0; x <= cr; x++) {
-           int thick = (x % r ? 0 : 1);
-           draw_rect(fe, BORDER + x*TILE_SIZE - thick, BORDER-1,
-                     1+2*thick, cr*TILE_SIZE+3, COL_GRID);
-       }
-       for (y = 0; y <= cr; y++) {
-           int thick = (y % c ? 0 : 1);
-           draw_rect(fe, BORDER-1, BORDER + y*TILE_SIZE - thick,
-                     cr*TILE_SIZE+3, 1+2*thick, COL_GRID);
-       }
+       draw_rect(dr, BORDER-GRIDEXTRA, BORDER-GRIDEXTRA,
+                 cr*TILE_SIZE+1+2*GRIDEXTRA, cr*TILE_SIZE+1+2*GRIDEXTRA,
+                 COL_GRID);
     }
 
+    /*
+     * This array is used to keep track of rows, columns and boxes
+     * which contain a number more than once.
+     */
+    for (x = 0; x < cr * ds->nregions; x++)
+       ds->entered_items[x] = 0;
+    for (x = 0; x < cr; x++)
+       for (y = 0; y < cr; y++) {
+           digit d = state->grid[y*cr+x];
+           if (d) {
+               int box, kbox;
+
+               /* Rows */
+               ds->entered_items[x*cr+d-1]++;
+
+               /* Columns */
+               ds->entered_items[(y+cr)*cr+d-1]++;
+
+               /* Blocks */
+               box = state->blocks->whichblock[y*cr+x];
+               ds->entered_items[(box+2*cr)*cr+d-1]++;
+
+               /* Diagonals */
+               if (ds->xtype) {
+                   if (ondiag0(y*cr+x))
+                       ds->entered_items[(3*cr)*cr+d-1]++;
+                   if (ondiag1(y*cr+x))
+                       ds->entered_items[(3*cr+1)*cr+d-1]++;
+               }
+
+               /* Killer cages */
+               if (state->kblocks) {
+                   kbox = state->kblocks->whichblock[y*cr+x];
+                   ds->entered_items[(kbox+3*cr+2)*cr+d-1]++;
+               }
+           }
+       }
+
     /*
      * Draw any numbers which need redrawing.
      */
     for (x = 0; x < cr; x++) {
        for (y = 0; y < cr; y++) {
-           draw_number(fe, ds, state, x, y,
-                       (x == ui->hx && y == ui->hy) ||
-                       (flashtime > 0 &&
-                        (flashtime <= FLASH_TIME/3 ||
-                         flashtime >= FLASH_TIME*2/3)));
+            int highlight = 0;
+            digit d = state->grid[y*cr+x];
+
+            if (flashtime > 0 &&
+                (flashtime <= FLASH_TIME/3 ||
+                 flashtime >= FLASH_TIME*2/3))
+                highlight = 1;
+
+            /* Highlight active input areas. */
+            if (x == ui->hx && y == ui->hy && ui->hshow)
+                highlight = ui->hpencil ? 2 : 1;
+
+           /* Mark obvious errors (ie, numbers which occur more than once
+            * in a single row, column, or box). */
+           if (d && (ds->entered_items[x*cr+d-1] > 1 ||
+                     ds->entered_items[(y+cr)*cr+d-1] > 1 ||
+                     ds->entered_items[(state->blocks->whichblock[y*cr+x]
+                                        +2*cr)*cr+d-1] > 1 ||
+                     (ds->xtype && ((ondiag0(y*cr+x) &&
+                                     ds->entered_items[(3*cr)*cr+d-1] > 1) ||
+                                    (ondiag1(y*cr+x) &&
+                                     ds->entered_items[(3*cr+1)*cr+d-1]>1)))||
+                     (state->kblocks &&
+                      ds->entered_items[(state->kblocks->whichblock[y*cr+x]
+                                         +3*cr+2)*cr+d-1] > 1)))
+               highlight |= 16;
+
+           if (d && state->kblocks) {
+                if (check_killer_cage_sum(
+                        state->kblocks, state->kgrid, state->grid,
+                        state->kblocks->whichblock[y*cr+x]) == 0)
+                    highlight |= 32;
+           }
+
+           draw_number(dr, ds, state, x, y, highlight);
        }
     }
 
@@ -1470,28 +5227,313 @@ static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
      * Update the _entire_ grid if necessary.
      */
     if (!ds->started) {
-       draw_update(fe, 0, 0, XSIZE(cr), YSIZE(cr));
+       draw_update(dr, 0, 0, SIZE(cr), SIZE(cr));
        ds->started = TRUE;
     }
 }
 
-static float game_anim_length(game_state *oldstate, game_state *newstate,
-                             int dir)
+static float game_anim_length(const game_state *oldstate,
+                              const game_state *newstate, int dir, game_ui *ui)
 {
     return 0.0F;
 }
 
-static float game_flash_length(game_state *oldstate, game_state *newstate,
-                              int dir)
+static float game_flash_length(const game_state *oldstate,
+                               const game_state *newstate, int dir, game_ui *ui)
 {
-    if (!oldstate->completed && newstate->completed)
+    if (!oldstate->completed && newstate->completed &&
+       !oldstate->cheated && !newstate->cheated)
         return FLASH_TIME;
     return 0.0F;
 }
 
-static int game_wants_statusbar(void)
+static int game_status(const game_state *state)
 {
-    return FALSE;
+    return state->completed ? +1 : 0;
+}
+
+static int game_timing_state(const game_state *state, game_ui *ui)
+{
+    if (state->completed)
+       return FALSE;
+    return TRUE;
+}
+
+static void game_print_size(const game_params *params, float *x, float *y)
+{
+    int pw, ph;
+
+    /*
+     * I'll use 9mm squares by default. They should be quite big
+     * for this game, because players will want to jot down no end
+     * of pencil marks in the squares.
+     */
+    game_compute_size(params, 900, &pw, &ph);
+    *x = pw / 100.0F;
+    *y = ph / 100.0F;
+}
+
+/*
+ * Subfunction to draw the thick lines between cells. In order to do
+ * this using the line-drawing rather than rectangle-drawing API (so
+ * as to get line thicknesses to scale correctly) and yet have
+ * correctly mitred joins between lines, we must do this by tracing
+ * the boundary of each sub-block and drawing it in one go as a
+ * single polygon.
+ *
+ * This subfunction is also reused with thinner dotted lines to
+ * outline the Killer cages, this time offsetting the outline toward
+ * the interior of the affected squares.
+ */
+static void outline_block_structure(drawing *dr, game_drawstate *ds,
+                                   const game_state *state,
+                                   struct block_structure *blocks,
+                                   int ink, int inset)
+{
+    int cr = state->cr;
+    int *coords;
+    int bi, i, n;
+    int x, y, dx, dy, sx, sy, sdx, sdy;
+
+    /*
+     * Maximum perimeter of a k-omino is 2k+2. (Proof: start
+     * with k unconnected squares, with total perimeter 4k.
+     * Now repeatedly join two disconnected components
+     * together into a larger one; every time you do so you
+     * remove at least two unit edges, and you require k-1 of
+     * these operations to create a single connected piece, so
+     * you must have at most 4k-2(k-1) = 2k+2 unit edges left
+     * afterwards.)
+     */
+    coords = snewn(4*cr+4, int);   /* 2k+2 points, 2 coords per point */
+
+    /*
+     * Iterate over all the blocks.
+     */
+    for (bi = 0; bi < blocks->nr_blocks; bi++) {
+       if (blocks->nr_squares[bi] == 0)
+           continue;
+
+       /*
+        * For each block, find a starting square within it
+        * which has a boundary at the left.
+        */
+       for (i = 0; i < cr; i++) {
+           int j = blocks->blocks[bi][i];
+           if (j % cr == 0 || blocks->whichblock[j-1] != bi)
+               break;
+       }
+       assert(i < cr); /* every block must have _some_ leftmost square */
+       x = blocks->blocks[bi][i] % cr;
+       y = blocks->blocks[bi][i] / cr;
+       dx = -1;
+       dy = 0;
+
+       /*
+        * Now begin tracing round the perimeter. At all
+        * times, (x,y) describes some square within the
+        * block, and (x+dx,y+dy) is some adjacent square
+        * outside it; so the edge between those two squares
+        * is always an edge of the block.
+        */
+       sx = x, sy = y, sdx = dx, sdy = dy;   /* save starting position */
+       n = 0;
+       do {
+           int cx, cy, tx, ty, nin;
+
+           /*
+            * Advance to the next edge, by looking at the two
+            * squares beyond it. If they're both outside the block,
+            * we turn right (by leaving x,y the same and rotating
+            * dx,dy clockwise); if they're both inside, we turn
+            * left (by rotating dx,dy anticlockwise and contriving
+            * to leave x+dx,y+dy unchanged); if one of each, we go
+            * straight on (and may enforce by assertion that
+            * they're one of each the _right_ way round).
+            */
+           nin = 0;
+           tx = x - dy + dx;
+           ty = y + dx + dy;
+           nin += (tx >= 0 && tx < cr && ty >= 0 && ty < cr &&
+                   blocks->whichblock[ty*cr+tx] == bi);
+           tx = x - dy;
+           ty = y + dx;
+           nin += (tx >= 0 && tx < cr && ty >= 0 && ty < cr &&
+                   blocks->whichblock[ty*cr+tx] == bi);
+           if (nin == 0) {
+               /*
+                * Turn right.
+                */
+               int tmp;
+               tmp = dx;
+               dx = -dy;
+               dy = tmp;
+           } else if (nin == 2) {
+               /*
+                * Turn left.
+                */
+               int tmp;
+
+               x += dx;
+               y += dy;
+
+               tmp = dx;
+               dx = dy;
+               dy = -tmp;
+
+               x -= dx;
+               y -= dy;
+           } else {
+               /*
+                * Go straight on.
+                */
+               x -= dy;
+               y += dx;
+           }
+
+           /*
+            * Now enforce by assertion that we ended up
+            * somewhere sensible.
+            */
+           assert(x >= 0 && x < cr && y >= 0 && y < cr &&
+                  blocks->whichblock[y*cr+x] == bi);
+           assert(x+dx < 0 || x+dx >= cr || y+dy < 0 || y+dy >= cr ||
+                  blocks->whichblock[(y+dy)*cr+(x+dx)] != bi);
+
+           /*
+            * Record the point we just went past at one end of the
+            * edge. To do this, we translate (x,y) down and right
+            * by half a unit (so they're describing a point in the
+            * _centre_ of the square) and then translate back again
+            * in a manner rotated by dy and dx.
+            */
+           assert(n < 2*cr+2);
+           cx = ((2*x+1) + dy + dx) / 2;
+           cy = ((2*y+1) - dx + dy) / 2;
+           coords[2*n+0] = BORDER + cx * TILE_SIZE;
+           coords[2*n+1] = BORDER + cy * TILE_SIZE;
+           coords[2*n+0] -= dx * inset;
+           coords[2*n+1] -= dy * inset;
+           if (nin == 0) {
+               /*
+                * We turned right, so inset this corner back along
+                * the edge towards the centre of the square.
+                */
+               coords[2*n+0] -= dy * inset;
+               coords[2*n+1] += dx * inset;
+           } else if (nin == 2) {
+               /*
+                * We turned left, so inset this corner further
+                * _out_ along the edge into the next square.
+                */
+               coords[2*n+0] += dy * inset;
+               coords[2*n+1] -= dx * inset;
+           }
+           n++;
+
+       } while (x != sx || y != sy || dx != sdx || dy != sdy);
+
+       /*
+        * That's our polygon; now draw it.
+        */
+       draw_polygon(dr, coords, n, -1, ink);
+    }
+
+    sfree(coords);
+}
+
+static void game_print(drawing *dr, const game_state *state, int tilesize)
+{
+    int cr = state->cr;
+    int ink = print_mono_colour(dr, 0);
+    int x, y;
+
+    /* Ick: fake up `ds->tilesize' for macro expansion purposes */
+    game_drawstate ads, *ds = &ads;
+    game_set_size(dr, ds, NULL, tilesize);
+
+    /*
+     * Border.
+     */
+    print_line_width(dr, 3 * TILE_SIZE / 40);
+    draw_rect_outline(dr, BORDER, BORDER, cr*TILE_SIZE, cr*TILE_SIZE, ink);
+
+    /*
+     * Highlight X-diagonal squares.
+     */
+    if (state->xtype) {
+       int i;
+       int xhighlight = print_grey_colour(dr, 0.90F);
+
+       for (i = 0; i < cr; i++)
+           draw_rect(dr, BORDER + i*TILE_SIZE, BORDER + i*TILE_SIZE,
+                     TILE_SIZE, TILE_SIZE, xhighlight);
+       for (i = 0; i < cr; i++)
+           if (i*2 != cr-1)  /* avoid redoing centre square, just for fun */
+               draw_rect(dr, BORDER + i*TILE_SIZE,
+                         BORDER + (cr-1-i)*TILE_SIZE,
+                         TILE_SIZE, TILE_SIZE, xhighlight);
+    }
+
+    /*
+     * Main grid.
+     */
+    for (x = 1; x < cr; x++) {
+       print_line_width(dr, TILE_SIZE / 40);
+       draw_line(dr, BORDER+x*TILE_SIZE, BORDER,
+                 BORDER+x*TILE_SIZE, BORDER+cr*TILE_SIZE, ink);
+    }
+    for (y = 1; y < cr; y++) {
+       print_line_width(dr, TILE_SIZE / 40);
+       draw_line(dr, BORDER, BORDER+y*TILE_SIZE,
+                 BORDER+cr*TILE_SIZE, BORDER+y*TILE_SIZE, ink);
+    }
+
+    /*
+     * Thick lines between cells.
+     */
+    print_line_width(dr, 3 * TILE_SIZE / 40);
+    outline_block_structure(dr, ds, state, state->blocks, ink, 0);
+
+    /*
+     * Killer cages and their totals.
+     */
+    if (state->kblocks) {
+       print_line_width(dr, TILE_SIZE / 40);
+       print_line_dotted(dr, TRUE);
+       outline_block_structure(dr, ds, state, state->kblocks, ink,
+                               5 * TILE_SIZE / 40);
+       print_line_dotted(dr, FALSE);
+       for (y = 0; y < cr; y++)
+           for (x = 0; x < cr; x++)
+               if (state->kgrid[y*cr+x]) {
+                   char str[20];
+                   sprintf(str, "%d", state->kgrid[y*cr+x]);
+                   draw_text(dr,
+                             BORDER+x*TILE_SIZE + 7*TILE_SIZE/40,
+                             BORDER+y*TILE_SIZE + 16*TILE_SIZE/40,
+                             FONT_VARIABLE, TILE_SIZE/4,
+                             ALIGN_VNORMAL | ALIGN_HLEFT,
+                             ink, str);
+               }
+    }
+
+    /*
+     * Standard (non-Killer) clue numbers.
+     */
+    for (y = 0; y < cr; y++)
+       for (x = 0; x < cr; x++)
+           if (state->grid[y*cr+x]) {
+               char str[2];
+               str[1] = '\0';
+               str[0] = state->grid[y*cr+x] + '0';
+               if (str[0] > '9')
+                   str[0] += 'a' - ('9'+1);
+               draw_text(dr, BORDER + x*TILE_SIZE + TILE_SIZE/2,
+                         BORDER + y*TILE_SIZE + TILE_SIZE/2,
+                         FONT_VARIABLE, TILE_SIZE/2,
+                         ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str);
+           }
 }
 
 #ifdef COMBINED
@@ -1499,30 +5541,116 @@ static int game_wants_statusbar(void)
 #endif
 
 const struct game thegame = {
-    "Solo", "games.solo", TRUE,
+    "Solo", "games.solo", "solo",
     default_params,
     game_fetch_preset,
     decode_params,
     encode_params,
     free_params,
     dup_params,
-    game_configure,
-    custom_params,
+    TRUE, game_configure, custom_params,
     validate_params,
-    new_game_seed,
-    validate_seed,
+    new_game_desc,
+    validate_desc,
     new_game,
     dup_game,
     free_game,
+    TRUE, solve_game,
+    TRUE, game_can_format_as_text_now, game_text_format,
     new_ui,
     free_ui,
-    make_move,
-    game_size,
+    encode_ui,
+    decode_ui,
+    game_changed_state,
+    interpret_move,
+    execute_move,
+    PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
     game_colours,
     game_new_drawstate,
     game_free_drawstate,
     game_redraw,
     game_anim_length,
     game_flash_length,
-    game_wants_statusbar,
+    game_status,
+    TRUE, FALSE, game_print_size, game_print,
+    FALSE,                            /* wants_statusbar */
+    FALSE, game_timing_state,
+    REQUIRE_RBUTTON | REQUIRE_NUMPAD,  /* flags */
 };
+
+#ifdef STANDALONE_SOLVER
+
+int main(int argc, char **argv)
+{
+    game_params *p;
+    game_state *s;
+    char *id = NULL, *desc, *err;
+    int grade = FALSE;
+    struct difficulty dlev;
+
+    while (--argc > 0) {
+        char *p = *++argv;
+        if (!strcmp(p, "-v")) {
+            solver_show_working = TRUE;
+        } else if (!strcmp(p, "-g")) {
+            grade = TRUE;
+        } else if (*p == '-') {
+            fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
+            return 1;
+        } else {
+            id = p;
+        }
+    }
+
+    if (!id) {
+        fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
+        return 1;
+    }
+
+    desc = strchr(id, ':');
+    if (!desc) {
+        fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
+        return 1;
+    }
+    *desc++ = '\0';
+
+    p = default_params();
+    decode_params(p, id);
+    err = validate_desc(p, desc);
+    if (err) {
+        fprintf(stderr, "%s: %s\n", argv[0], err);
+        return 1;
+    }
+    s = new_game(NULL, p, desc);
+
+    dlev.maxdiff = DIFF_RECURSIVE;
+    dlev.maxkdiff = DIFF_KINTERSECT;
+    solver(s->cr, s->blocks, s->kblocks, s->xtype, s->grid, s->kgrid, &dlev);
+    if (grade) {
+       printf("Difficulty rating: %s\n",
+              dlev.diff==DIFF_BLOCK ? "Trivial (blockwise positional elimination only)":
+              dlev.diff==DIFF_SIMPLE ? "Basic (row/column/number elimination required)":
+              dlev.diff==DIFF_INTERSECT ? "Intermediate (intersectional analysis required)":
+              dlev.diff==DIFF_SET ? "Advanced (set elimination required)":
+              dlev.diff==DIFF_EXTREME ? "Extreme (complex non-recursive techniques required)":
+              dlev.diff==DIFF_RECURSIVE ? "Unreasonable (guesswork and backtracking required)":
+              dlev.diff==DIFF_AMBIGUOUS ? "Ambiguous (multiple solutions exist)":
+              dlev.diff==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)":
+              "INTERNAL ERROR: unrecognised difficulty code");
+       if (p->killer)
+           printf("Killer difficulty: %s\n",
+                  dlev.kdiff==DIFF_KSINGLE ? "Trivial (single square cages only)":
+                  dlev.kdiff==DIFF_KMINMAX ? "Simple (maximum sum analysis required)":
+                  dlev.kdiff==DIFF_KSUMS ? "Intermediate (sum possibilities)":
+                  dlev.kdiff==DIFF_KINTERSECT ? "Advanced (sum region intersections)":
+                  "INTERNAL ERROR: unrecognised difficulty code");
+    } else {
+        printf("%s\n", grid_text_format(s->cr, s->blocks, s->xtype, s->grid));
+    }
+
+    return 0;
+}
+
+#endif
+
+/* vim: set shiftwidth=4 tabstop=8: */