chiark / gitweb /
Tents: mark squares as non-tents with {Shift,Control}-cursor keys.
[sgt-puzzles.git] / map.c
diff --git a/map.c b/map.c
index 2e1e097fa8387bf8789828801ea53e085bfef2aa..f3c4430391e1a59d7ee678a841918fdee01d577f 100644 (file)
--- a/map.c
+++ b/map.c
@@ -5,11 +5,8 @@
 /*
  * TODO:
  * 
- *  - error highlighting
  *  - clue marking
- *  - more solver brains?
  *  - better four-colouring algorithm?
- *  - pencil marks?
  */
 
 #include <stdio.h>
 
 #include "puzzles.h"
 
+/*
+ * In standalone solver mode, `verbose' is a variable which can be
+ * set by command-line option; in debugging mode it's simply always
+ * true.
+ */
+#if defined STANDALONE_SOLVER
+#define SOLVER_DIAGNOSTICS
+int verbose = FALSE;
+#elif defined SOLVER_DIAGNOSTICS
+#define verbose TRUE
+#endif
+
 /*
  * I don't seriously anticipate wanting to change the number of
  * colours used in this game, but it doesn't cost much to use a
@@ -43,7 +52,9 @@ static float flash_length;
  */
 #define DIFFLIST(A) \
     A(EASY,Easy,e) \
-    A(NORMAL,Normal,n)
+    A(NORMAL,Normal,n) \
+    A(HARD,Hard,h) \
+    A(RECURSE,Unreasonable,u)
 #define ENUM(upper,title,lower) DIFF_ ## upper,
 #define TITLE(upper,title,lower) #title,
 #define ENCODE(upper,title,lower) #lower
@@ -59,6 +70,7 @@ enum {
     COL_BACKGROUND,
     COL_GRID,
     COL_0, COL_1, COL_2, COL_3,
+    COL_ERROR, COL_ERRTEXT,
     NCOLOURS
 };
 
@@ -73,12 +85,14 @@ struct map {
     int n;
     int ngraph;
     int *immutable;
+    int *edgex, *edgey;                       /* position of a point on each edge */
+    int *regionx, *regiony;            /* position of a point in each region */
 };
 
 struct game_state {
     game_params p;
     struct map *map;
-    int *colouring;
+    int *colouring, *pencil;
     int completed, cheated;
 };
 
@@ -86,8 +100,13 @@ static game_params *default_params(void)
 {
     game_params *ret = snew(game_params);
 
+#ifdef PORTRAIT_SCREEN
+    ret->w = 16;
+    ret->h = 18;
+#else
     ret->w = 20;
     ret->h = 15;
+#endif
     ret->n = 30;
     ret->diff = DIFF_NORMAL;
 
@@ -95,9 +114,21 @@ static game_params *default_params(void)
 }
 
 static const struct game_params map_presets[] = {
+#ifdef PORTRAIT_SCREEN
+    {16, 18, 30, DIFF_EASY},
+    {16, 18, 30, DIFF_NORMAL},
+    {16, 18, 30, DIFF_HARD},
+    {16, 18, 30, DIFF_RECURSE},
+    {25, 30, 75, DIFF_NORMAL},
+    {25, 30, 75, DIFF_HARD},
+#else
     {20, 15, 30, DIFF_EASY},
     {20, 15, 30, DIFF_NORMAL},
+    {20, 15, 30, DIFF_HARD},
+    {20, 15, 30, DIFF_RECURSE},
     {30, 25, 75, DIFF_NORMAL},
+    {30, 25, 75, DIFF_HARD},
+#endif
 };
 
 static int game_fetch_preset(int i, char **name, game_params **params)
@@ -124,7 +155,7 @@ static void free_params(game_params *params)
     sfree(params);
 }
 
-static game_params *dup_params(game_params *params)
+static game_params *dup_params(const game_params *params)
 {
     game_params *ret = snew(game_params);
     *ret = *params;                   /* structure copy */
@@ -161,7 +192,7 @@ static void decode_params(game_params *params, char const *string)
     }
 }
 
-static char *encode_params(game_params *params, int full)
+static char *encode_params(const game_params *params, int full)
 {
     char ret[400];
 
@@ -172,7 +203,7 @@ static char *encode_params(game_params *params, int full)
     return dupstr(ret);
 }
 
-static config_item *game_configure(game_params *params)
+static config_item *game_configure(const game_params *params)
 {
     config_item *ret;
     char buf[80];
@@ -210,7 +241,7 @@ static config_item *game_configure(game_params *params)
     return ret;
 }
 
-static game_params *custom_params(config_item *cfg)
+static game_params *custom_params(const config_item *cfg)
 {
     game_params *ret = snew(game_params);
 
@@ -222,7 +253,7 @@ static game_params *custom_params(config_item *cfg)
     return ret;
 }
 
-static char *validate_params(game_params *params, int full)
+static char *validate_params(const game_params *params, int full)
 {
     if (params->w < 2 || params->h < 2)
        return "Width and height must be at least two";
@@ -607,7 +638,7 @@ static int gengraph(int w, int h, int n, int *map, int *graph)
     return j;
 }
 
-static int graph_adjacent(int *graph, int n, int ngraph, int i, int j)
+static int graph_edge_index(int *graph, int n, int ngraph, int i, int j)
 {
     int v = i*n+j;
     int top, bot, mid;
@@ -617,15 +648,18 @@ static int graph_adjacent(int *graph, int n, int ngraph, int i, int j)
     while (top - bot > 1) {
        mid = (top + bot) / 2;
        if (graph[mid] == v)
-           return TRUE;
+           return mid;
        else if (graph[mid] < v)
            bot = mid;
        else
            top = mid;
     }
-    return FALSE;
+    return -1;
 }
 
+#define graph_adjacent(graph, n, ngraph, i, j) \
+    (graph_edge_index((graph), (n), (ngraph), (i), (j)) >= 0)
+
 static int graph_vertex_start(int *graph, int n, int ngraph, int i)
 {
     int v = i*n;
@@ -782,9 +816,18 @@ static void fourcolour(int *graph, int n, int ngraph, int *colouring,
 
 struct solver_scratch {
     unsigned char *possible;          /* bitmap of colours for each region */
+
     int *graph;
     int n;
     int ngraph;
+
+    int *bfsqueue;
+    int *bfscolour;
+#ifdef SOLVER_DIAGNOSTICS
+    int *bfsprev;
+#endif
+
+    int depth;
 };
 
 static struct solver_scratch *new_scratch(int *graph, int n, int ngraph)
@@ -796,6 +839,12 @@ static struct solver_scratch *new_scratch(int *graph, int n, int ngraph)
     sc->n = n;
     sc->ngraph = ngraph;
     sc->possible = snewn(n, unsigned char);
+    sc->depth = 0;
+    sc->bfsqueue = snewn(n, int);
+    sc->bfscolour = snewn(n, int);
+#ifdef SOLVER_DIAGNOSTICS
+    sc->bfsprev = snewn(n, int);
+#endif
 
     return sc;
 }
@@ -803,33 +852,91 @@ static struct solver_scratch *new_scratch(int *graph, int n, int ngraph)
 static void free_scratch(struct solver_scratch *sc)
 {
     sfree(sc->possible);
+    sfree(sc->bfsqueue);
+    sfree(sc->bfscolour);
+#ifdef SOLVER_DIAGNOSTICS
+    sfree(sc->bfsprev);
+#endif
     sfree(sc);
 }
 
+/*
+ * Count the bits in a word. Only needs to cope with FOUR bits.
+ */
+static int bitcount(int word)
+{
+    assert(FOUR <= 4);                 /* or this needs changing */
+    word = ((word & 0xA) >> 1) + (word & 0x5);
+    word = ((word & 0xC) >> 2) + (word & 0x3);
+    return word;
+}
+
+#ifdef SOLVER_DIAGNOSTICS
+static const char colnames[FOUR] = { 'R', 'Y', 'G', 'B' };
+#endif
+
 static int place_colour(struct solver_scratch *sc,
-                       int *colouring, int index, int colour)
+                       int *colouring, int index, int colour
+#ifdef SOLVER_DIAGNOSTICS
+                        , char *verb
+#endif
+                        )
 {
     int *graph = sc->graph, n = sc->n, ngraph = sc->ngraph;
     int j, k;
 
-    if (!(sc->possible[index] & (1 << colour)))
+    if (!(sc->possible[index] & (1 << colour))) {
+#ifdef SOLVER_DIAGNOSTICS
+        if (verbose)
+            printf("%*scannot place %c in region %d\n", 2*sc->depth, "",
+                   colnames[colour], index);
+#endif
        return FALSE;                  /* can't do it */
+    }
 
     sc->possible[index] = 1 << colour;
     colouring[index] = colour;
 
+#ifdef SOLVER_DIAGNOSTICS
+    if (verbose)
+       printf("%*s%s %c in region %d\n", 2*sc->depth, "",
+               verb, colnames[colour], index);
+#endif
+
     /*
      * Rule out this colour from all the region's neighbours.
      */
     for (j = graph_vertex_start(graph, n, ngraph, index);
         j < ngraph && graph[j] < n*(index+1); j++) {
        k = graph[j] - index*n;
+#ifdef SOLVER_DIAGNOSTICS
+        if (verbose && (sc->possible[k] & (1 << colour)))
+            printf("%*s  ruling out %c in region %d\n", 2*sc->depth, "",
+                   colnames[colour], k);
+#endif
        sc->possible[k] &= ~(1 << colour);
     }
 
     return TRUE;
 }
 
+#ifdef SOLVER_DIAGNOSTICS
+static char *colourset(char *buf, int set)
+{
+    int i;
+    char *p = buf;
+    char *sep = "";
+
+    for (i = 0; i < FOUR; i++)
+        if (set & (1 << i)) {
+            p += sprintf(p, "%s%c", sep, colnames[i]);
+            sep = ",";
+        }
+
+    return buf;
+}
+#endif
+
 /*
  * Returns 0 for impossible, 1 for success, 2 for failure to
  * converge (i.e. puzzle is either ambiguous or just too
@@ -841,20 +948,32 @@ static int map_solver(struct solver_scratch *sc,
 {
     int i;
 
-    /*
-     * Initialise scratch space.
-     */
-    for (i = 0; i < n; i++)
-       sc->possible[i] = (1 << FOUR) - 1;
+    if (sc->depth == 0) {
+        /*
+         * Initialise scratch space.
+         */
+        for (i = 0; i < n; i++)
+            sc->possible[i] = (1 << FOUR) - 1;
 
-    /*
-     * Place clues.
-     */
-    for (i = 0; i < n; i++)
-       if (colouring[i] >= 0) {
-           if (!place_colour(sc, colouring, i, colouring[i]))
-               return 0;              /* the clues aren't even consistent! */
-       }
+        /*
+         * Place clues.
+         */
+        for (i = 0; i < n; i++)
+            if (colouring[i] >= 0) {
+                if (!place_colour(sc, colouring, i, colouring[i]
+#ifdef SOLVER_DIAGNOSTICS
+                                  , "initial clue:"
+#endif
+                                  )) {
+#ifdef SOLVER_DIAGNOSTICS
+                    if (verbose)
+                        printf("%*sinitial clue set is inconsistent\n",
+                               2*sc->depth, "");
+#endif
+                    return 0;         /* the clues aren't even consistent! */
+                }
+            }
+    }
 
     /*
      * Now repeatedly loop until we find nothing further to do.
@@ -872,17 +991,35 @@ static int map_solver(struct solver_scratch *sc,
        for (i = 0; i < n; i++) if (colouring[i] < 0) {
            int p = sc->possible[i];
 
-           if (p == 0)
+           if (p == 0) {
+#ifdef SOLVER_DIAGNOSTICS
+                if (verbose)
+                    printf("%*sregion %d has no possible colours left\n",
+                           2*sc->depth, "", i);
+#endif
                return 0;              /* puzzle is inconsistent */
+            }
 
            if ((p & (p-1)) == 0) {    /* p is a power of two */
-               int c;
+               int c, ret;
                for (c = 0; c < FOUR; c++)
                    if (p == (1 << c))
                        break;
                assert(c < FOUR);
-               if (!place_colour(sc, colouring, i, c))
-                   return 0;          /* found puzzle to be inconsistent */
+               ret = place_colour(sc, colouring, i, c
+#ifdef SOLVER_DIAGNOSTICS
+                                   , "placing"
+#endif
+                                   );
+                /*
+                 * place_colour() can only fail if colour c was not
+                 * even a _possibility_ for region i, and we're
+                 * pretty sure it was because we checked before
+                 * calling place_colour(). So we can safely assert
+                 * here rather than having to return a nice
+                 * friendly error code.
+                 */
+                assert(ret);
                done_something = TRUE;
            }
        }
@@ -907,6 +1044,9 @@ static int map_solver(struct solver_scratch *sc,
         for (i = 0; i < ngraph; i++) {
             int j1 = graph[i] / n, j2 = graph[i] % n;
             int j, k, v, v2;
+#ifdef SOLVER_DIAGNOSTICS
+            int started = FALSE;
+#endif
 
             if (j1 > j2)
                 continue;              /* done it already, other way round */
@@ -942,31 +1082,318 @@ static int map_solver(struct solver_scratch *sc,
                 k = graph[j] - j1*n;
                 if (graph_adjacent(graph, n, ngraph, k, j2) &&
                     (sc->possible[k] & v)) {
+#ifdef SOLVER_DIAGNOSTICS
+                    if (verbose) {
+                        char buf[80];
+                        if (!started)
+                            printf("%*sadjacent regions %d,%d share colours"
+                                   " %s\n", 2*sc->depth, "", j1, j2,
+                                   colourset(buf, v));
+                        started = TRUE;
+                        printf("%*s  ruling out %s in region %d\n",2*sc->depth,
+                               "", colourset(buf, sc->possible[k] & v), k);
+                    }
+#endif
                     sc->possible[k] &= ~v;
                     done_something = TRUE;
                 }
             }
         }
 
+        if (done_something)
+            continue;
+
+        if (difficulty < DIFF_HARD)
+            break;                     /* can't do anything harder */
+
+        /*
+         * Right; now we get creative. Now we're going to look for
+         * `forcing chains'. A forcing chain is a path through the
+         * graph with the following properties:
+         * 
+         *  (a) Each vertex on the path has precisely two possible
+         *      colours.
+         * 
+         *  (b) Each pair of vertices which are adjacent on the
+         *      path share at least one possible colour in common.
+         * 
+         *  (c) Each vertex in the middle of the path shares _both_
+         *      of its colours with at least one of its neighbours
+         *      (not the same one with both neighbours).
+         * 
+         * These together imply that at least one of the possible
+         * colour choices at one end of the path forces _all_ the
+         * rest of the colours along the path. In order to make
+         * real use of this, we need further properties:
+         * 
+         *  (c) Ruling out some colour C from the vertex at one end
+         *      of the path forces the vertex at the other end to
+         *      take colour C.
+         * 
+         *  (d) The two end vertices are mutually adjacent to some
+         *      third vertex.
+         * 
+         *  (e) That third vertex currently has C as a possibility.
+         * 
+         * If we can find all of that lot, we can deduce that at
+         * least one of the two ends of the forcing chain has
+         * colour C, and that therefore the mutually adjacent third
+         * vertex does not.
+         * 
+         * To find forcing chains, we're going to start a bfs at
+         * each suitable vertex of the graph, once for each of its
+         * two possible colours.
+         */
+        for (i = 0; i < n; i++) {
+            int c;
+
+            if (colouring[i] >= 0 || bitcount(sc->possible[i]) != 2)
+                continue;
+
+            for (c = 0; c < FOUR; c++)
+                if (sc->possible[i] & (1 << c)) {
+                    int j, k, gi, origc, currc, head, tail;
+                    /*
+                     * Try a bfs from this vertex, ruling out
+                     * colour c.
+                     * 
+                     * Within this loop, we work in colour bitmaps
+                     * rather than actual colours, because
+                     * converting back and forth is a needless
+                     * computational expense.
+                     */
+
+                    origc = 1 << c;
+
+                    for (j = 0; j < n; j++) {
+                        sc->bfscolour[j] = -1;
+#ifdef SOLVER_DIAGNOSTICS
+                        sc->bfsprev[j] = -1;
+#endif
+                    }
+                    head = tail = 0;
+                    sc->bfsqueue[tail++] = i;
+                    sc->bfscolour[i] = sc->possible[i] &~ origc;
+
+                    while (head < tail) {
+                        j = sc->bfsqueue[head++];
+                        currc = sc->bfscolour[j];
+
+                        /*
+                         * Try neighbours of j.
+                         */
+                        for (gi = graph_vertex_start(graph, n, ngraph, j);
+                             gi < ngraph && graph[gi] < n*(j+1); gi++) {
+                            k = graph[gi] - j*n;
+
+                            /*
+                             * To continue with the bfs in vertex
+                             * k, we need k to be
+                             *  (a) not already visited
+                             *  (b) have two possible colours
+                             *  (c) those colours include currc.
+                             */
+
+                            if (sc->bfscolour[k] < 0 &&
+                                colouring[k] < 0 &&
+                                bitcount(sc->possible[k]) == 2 &&
+                                (sc->possible[k] & currc)) {
+                                sc->bfsqueue[tail++] = k;
+                                sc->bfscolour[k] =
+                                    sc->possible[k] &~ currc;
+#ifdef SOLVER_DIAGNOSTICS
+                                sc->bfsprev[k] = j;
+#endif
+                            }
+
+                            /*
+                             * One other possibility is that k
+                             * might be the region in which we can
+                             * make a real deduction: if it's
+                             * adjacent to i, contains currc as a
+                             * possibility, and currc is equal to
+                             * the original colour we ruled out.
+                             */
+                            if (currc == origc &&
+                                graph_adjacent(graph, n, ngraph, k, i) &&
+                                (sc->possible[k] & currc)) {
+#ifdef SOLVER_DIAGNOSTICS
+                                if (verbose) {
+                                    char buf[80], *sep = "";
+                                    int r;
+
+                                    printf("%*sforcing chain, colour %s, ",
+                                           2*sc->depth, "",
+                                           colourset(buf, origc));
+                                    for (r = j; r != -1; r = sc->bfsprev[r]) {
+                                        printf("%s%d", sep, r);
+                                        sep = "-";
+                                    }
+                                    printf("\n%*s  ruling out %s in region"
+                                           " %d\n", 2*sc->depth, "",
+                                           colourset(buf, origc), k);
+                                }
+#endif
+                                sc->possible[k] &= ~origc;
+                                done_something = TRUE;
+                            }
+                        }
+                    }
+
+                    assert(tail <= n);
+                }
+        }
+
        if (!done_something)
            break;
     }
 
     /*
-     * We've run out of things to deduce. See if we've got the lot.
+     * See if we've got a complete solution, and return if so.
      */
     for (i = 0; i < n; i++)
        if (colouring[i] < 0)
-           return 2;
+            break;
+    if (i == n) {
+#ifdef SOLVER_DIAGNOSTICS
+        if (verbose)
+            printf("%*sone solution found\n", 2*sc->depth, "");
+#endif
+        return 1;                      /* success! */
+    }
+
+    /*
+     * If recursion is not permissible, we now give up.
+     */
+    if (difficulty < DIFF_RECURSE) {
+#ifdef SOLVER_DIAGNOSTICS
+        if (verbose)
+            printf("%*sunable to proceed further without recursion\n",
+                   2*sc->depth, "");
+#endif
+        return 2;                      /* unable to complete */
+    }
+
+    /*
+     * Now we've got to do something recursive. So first hunt for a
+     * currently-most-constrained region.
+     */
+    {
+        int best, bestc;
+        struct solver_scratch *rsc;
+        int *subcolouring, *origcolouring;
+        int ret, subret;
+        int we_already_got_one;
+
+        best = -1;
+        bestc = FIVE;
+
+        for (i = 0; i < n; i++) if (colouring[i] < 0) {
+            int p = sc->possible[i];
+            enum { compile_time_assertion = 1 / (FOUR <= 4) };
+            int c;
+
+            /* Count the set bits. */
+            c = (p & 5) + ((p >> 1) & 5);
+            c = (c & 3) + ((c >> 2) & 3);
+            assert(c > 1);             /* or colouring[i] would be >= 0 */
+
+            if (c < bestc) {
+                best = i;
+                bestc = c;
+            }
+        }
+
+        assert(best >= 0);             /* or we'd be solved already */
+
+#ifdef SOLVER_DIAGNOSTICS
+        if (verbose)
+            printf("%*srecursing on region %d\n", 2*sc->depth, "", best);
+#endif
+
+        /*
+         * Now iterate over the possible colours for this region.
+         */
+        rsc = new_scratch(graph, n, ngraph);
+        rsc->depth = sc->depth + 1;
+        origcolouring = snewn(n, int);
+        memcpy(origcolouring, colouring, n * sizeof(int));
+        subcolouring = snewn(n, int);
+        we_already_got_one = FALSE;
+        ret = 0;
+
+        for (i = 0; i < FOUR; i++) {
+            if (!(sc->possible[best] & (1 << i)))
+                continue;
+
+            memcpy(rsc->possible, sc->possible, n);
+            memcpy(subcolouring, origcolouring, n * sizeof(int));
+
+            place_colour(rsc, subcolouring, best, i
+#ifdef SOLVER_DIAGNOSTICS
+                         , "trying"
+#endif
+                         );
+
+            subret = map_solver(rsc, graph, n, ngraph,
+                                subcolouring, difficulty);
 
-    return 1;                         /* success! */
+#ifdef SOLVER_DIAGNOSTICS
+            if (verbose) {
+                printf("%*sretracting %c in region %d; found %s\n",
+                       2*sc->depth, "", colnames[i], best,
+                       subret == 0 ? "no solutions" :
+                       subret == 1 ? "one solution" : "multiple solutions");
+            }
+#endif
+
+            /*
+             * If this possibility turned up more than one valid
+             * solution, or if it turned up one and we already had
+             * one, we're definitely ambiguous.
+             */
+            if (subret == 2 || (subret == 1 && we_already_got_one)) {
+                ret = 2;
+                break;
+            }
+
+            /*
+             * If this possibility turned up one valid solution and
+             * it's the first we've seen, copy it into the output.
+             */
+            if (subret == 1) {
+                memcpy(colouring, subcolouring, n * sizeof(int));
+                we_already_got_one = TRUE;
+                ret = 1;
+            }
+
+            /*
+             * Otherwise, this guess led to a contradiction, so we
+             * do nothing.
+             */
+        }
+
+        sfree(origcolouring);
+        sfree(subcolouring);
+        free_scratch(rsc);
+
+#ifdef SOLVER_DIAGNOSTICS
+        if (verbose && sc->depth == 0) {
+            printf("%*s%s found\n",
+                   2*sc->depth, "",
+                   ret == 0 ? "no solutions" :
+                   ret == 1 ? "one solution" : "multiple solutions");
+        }
+#endif
+        return ret;
+    }
 }
 
 /* ----------------------------------------------------------------------
  * Game generation main function.
  */
 
-static char *new_game_desc(game_params *params, random_state *rs,
+static char *new_game_desc(const game_params *params, random_state *rs,
                           char **aux, int interactive)
 {
     struct solver_scratch *sc = NULL;
@@ -1142,8 +1569,8 @@ static char *new_game_desc(game_params *params, random_state *rs,
          * Finally, check that the puzzle is _at least_ as hard as
          * required, and indeed that it isn't already solved.
          * (Calling map_solver with negative difficulty ensures the
-         * latter - if a solver which _does nothing_ can't solve
-         * it, it's too easy!)
+         * latter - if a solver which _does nothing_ can solve it,
+         * it's too easy!)
          */
         memcpy(colouring2, colouring, n*sizeof(int));
         if (map_solver(sc, graph, n, ngraph, colouring2,
@@ -1151,7 +1578,7 @@ static char *new_game_desc(game_params *params, random_state *rs,
            /*
             * Drop minimum difficulty if necessary.
             */
-           if (mindiff > 0 && (n < 9 || n > 3*wh/2)) {
+           if (mindiff > 0 && (n < 9 || n > 2*wh/3)) {
                if (tries-- <= 0)
                    mindiff = 0;       /* give up and go for Easy */
            }
@@ -1277,14 +1704,14 @@ static char *new_game_desc(game_params *params, random_state *rs,
     return ret;
 }
 
-static char *parse_edge_list(game_params *params, char **desc, int *map)
+static char *parse_edge_list(const game_params *params, const char **desc,
+                             int *map)
 {
     int w = params->w, h = params->h, wh = w*h, n = params->n;
     int i, k, pos, state;
-    char *p = *desc;
+    const char *p = *desc;
 
-    for (i = 0; i < wh; i++)
-       map[wh+i] = i;
+    dsf_init(map+wh, wh);
 
     pos = -1;
     state = 0;
@@ -1354,7 +1781,7 @@ static char *parse_edge_list(game_params *params, char **desc, int *map)
     return NULL;
 }
 
-static char *validate_desc(game_params *params, char *desc)
+static char *validate_desc(const game_params *params, const char *desc)
 {
     int w = params->w, h = params->h, wh = w*h, n = params->n;
     int area;
@@ -1363,9 +1790,9 @@ static char *validate_desc(game_params *params, char *desc)
 
     map = snewn(2*wh, int);
     ret = parse_edge_list(params, &desc, map);
+    sfree(map);
     if (ret)
        return ret;
-    sfree(map);
 
     if (*desc != ',')
        return "Expected comma before clue list";
@@ -1389,17 +1816,21 @@ static char *validate_desc(game_params *params, char *desc)
     return NULL;
 }
 
-static game_state *new_game(midend *me, game_params *params, char *desc)
+static game_state *new_game(midend *me, const game_params *params,
+                            const char *desc)
 {
     int w = params->w, h = params->h, wh = w*h, n = params->n;
     int i, pos;
-    char *p;
+    const char *p;
     game_state *state = snew(game_state);
 
     state->p = *params;
     state->colouring = snewn(n, int);
     for (i = 0; i < n; i++)
        state->colouring[i] = -1;
+    state->pencil = snewn(n, int);
+    for (i = 0; i < n; i++)
+       state->pencil[i] = 0;
 
     state->completed = state->cheated = FALSE;
 
@@ -1453,7 +1884,7 @@ static game_state *new_game(midend *me, game_params *params, char *desc)
      * outlines by the judicious use of diagonally divided squares.
      */
     {
-        random_state *rs = random_init(desc, strlen(desc));
+        random_state *rs = random_new(desc, strlen(desc));
         int *squares = snewn(wh, int);
         int done_something;
 
@@ -1502,16 +1933,238 @@ static game_state *new_game(midend *me, game_params *params, char *desc)
         random_free(rs);
     }
 
+    /*
+     * Analyse the map to find a canonical line segment
+     * corresponding to each edge, and a canonical point
+     * corresponding to each region. The former are where we'll
+     * eventually put error markers; the latter are where we'll put
+     * per-region flags such as numbers (when in diagnostic mode).
+     */
+    {
+       int *bestx, *besty, *an, pass;
+       float *ax, *ay, *best;
+
+       ax = snewn(state->map->ngraph + n, float);
+       ay = snewn(state->map->ngraph + n, float);
+       an = snewn(state->map->ngraph + n, int);
+       bestx = snewn(state->map->ngraph + n, int);
+       besty = snewn(state->map->ngraph + n, int);
+       best = snewn(state->map->ngraph + n, float);
+
+       for (i = 0; i < state->map->ngraph + n; i++) {
+           bestx[i] = besty[i] = -1;
+           best[i] = (float)(2*(w+h)+1);
+           ax[i] = ay[i] = 0.0F;
+           an[i] = 0;
+       }
+
+       /*
+        * We make two passes over the map, finding all the line
+        * segments separating regions and all the suitable points
+        * within regions. In the first pass, we compute the
+        * _average_ x and y coordinate of all the points in a
+        * given class; in the second pass, for each such average
+        * point, we find the candidate closest to it and call that
+        * canonical.
+        * 
+        * Line segments are considered to have coordinates in
+        * their centre. Thus, at least one coordinate for any line
+        * segment is always something-and-a-half; so we store our
+        * coordinates as twice their normal value.
+        */
+       for (pass = 0; pass < 2; pass++) {
+           int x, y;
+
+           for (y = 0; y < h; y++)
+               for (x = 0; x < w; x++) {
+                   int ex[4], ey[4], ea[4], eb[4], en = 0;
+
+                   /*
+                    * Look for an edge to the right of this
+                    * square, an edge below it, and an edge in the
+                    * middle of it. Also look to see if the point
+                    * at the bottom right of this square is on an
+                    * edge (and isn't a place where more than two
+                    * regions meet).
+                    */
+                   if (x+1 < w) {
+                       /* right edge */
+                       ea[en] = state->map->map[RE * wh + y*w+x];
+                       eb[en] = state->map->map[LE * wh + y*w+(x+1)];
+                        ex[en] = (x+1)*2;
+                        ey[en] = y*2+1;
+                        en++;
+                   }
+                   if (y+1 < h) {
+                       /* bottom edge */
+                       ea[en] = state->map->map[BE * wh + y*w+x];
+                       eb[en] = state->map->map[TE * wh + (y+1)*w+x];
+                        ex[en] = x*2+1;
+                        ey[en] = (y+1)*2;
+                        en++;
+                   }
+                   /* diagonal edge */
+                   ea[en] = state->map->map[TE * wh + y*w+x];
+                   eb[en] = state->map->map[BE * wh + y*w+x];
+                    ex[en] = x*2+1;
+                    ey[en] = y*2+1;
+                    en++;
+
+                   if (x+1 < w && y+1 < h) {
+                       /* bottom right corner */
+                       int oct[8], othercol, nchanges;
+                       oct[0] = state->map->map[RE * wh + y*w+x];
+                       oct[1] = state->map->map[LE * wh + y*w+(x+1)];
+                       oct[2] = state->map->map[BE * wh + y*w+(x+1)];
+                       oct[3] = state->map->map[TE * wh + (y+1)*w+(x+1)];
+                       oct[4] = state->map->map[LE * wh + (y+1)*w+(x+1)];
+                       oct[5] = state->map->map[RE * wh + (y+1)*w+x];
+                       oct[6] = state->map->map[TE * wh + (y+1)*w+x];
+                       oct[7] = state->map->map[BE * wh + y*w+x];
+
+                       othercol = -1;
+                       nchanges = 0;
+                       for (i = 0; i < 8; i++) {
+                           if (oct[i] != oct[0]) {
+                               if (othercol < 0)
+                                   othercol = oct[i];
+                               else if (othercol != oct[i])
+                                   break;   /* three colours at this point */
+                           }
+                           if (oct[i] != oct[(i+1) & 7])
+                               nchanges++;
+                       }
+
+                       /*
+                        * Now if there are exactly two regions at
+                        * this point (not one, and not three or
+                        * more), and only two changes around the
+                        * loop, then this is a valid place to put
+                        * an error marker.
+                        */
+                       if (i == 8 && othercol >= 0 && nchanges == 2) {
+                           ea[en] = oct[0];
+                           eb[en] = othercol;
+                           ex[en] = (x+1)*2;
+                           ey[en] = (y+1)*2;
+                           en++;
+                       }
+
+                        /*
+                         * If there's exactly _one_ region at this
+                         * point, on the other hand, it's a valid
+                         * place to put a region centre.
+                         */
+                        if (othercol < 0) {
+                           ea[en] = eb[en] = oct[0];
+                           ex[en] = (x+1)*2;
+                           ey[en] = (y+1)*2;
+                           en++;
+                        }
+                   }
+
+                   /*
+                    * Now process the points we've found, one by
+                    * one.
+                    */
+                   for (i = 0; i < en; i++) {
+                       int emin = min(ea[i], eb[i]);
+                       int emax = max(ea[i], eb[i]);
+                       int gindex;
+
+                        if (emin != emax) {
+                            /* Graph edge */
+                            gindex =
+                                graph_edge_index(state->map->graph, n,
+                                                 state->map->ngraph, emin,
+                                                 emax);
+                        } else {
+                            /* Region number */
+                            gindex = state->map->ngraph + emin;
+                        }
+
+                       assert(gindex >= 0);
+
+                       if (pass == 0) {
+                           /*
+                            * In pass 0, accumulate the values
+                            * we'll use to compute the average
+                            * positions.
+                            */
+                           ax[gindex] += ex[i];
+                           ay[gindex] += ey[i];
+                           an[gindex] += 1;
+                       } else {
+                           /*
+                            * In pass 1, work out whether this
+                            * point is closer to the average than
+                            * the last one we've seen.
+                            */
+                           float dx, dy, d;
+
+                           assert(an[gindex] > 0);
+                           dx = ex[i] - ax[gindex];
+                           dy = ey[i] - ay[gindex];
+                           d = (float)sqrt(dx*dx + dy*dy);
+                           if (d < best[gindex]) {
+                               best[gindex] = d;
+                               bestx[gindex] = ex[i];
+                               besty[gindex] = ey[i];
+                           }
+                       }
+                   }
+               }
+
+           if (pass == 0) {
+               for (i = 0; i < state->map->ngraph + n; i++)
+                   if (an[i] > 0) {
+                       ax[i] /= an[i];
+                       ay[i] /= an[i];
+                   }
+           }
+       }
+
+       state->map->edgex = snewn(state->map->ngraph, int);
+       state->map->edgey = snewn(state->map->ngraph, int);
+        memcpy(state->map->edgex, bestx, state->map->ngraph * sizeof(int));
+        memcpy(state->map->edgey, besty, state->map->ngraph * sizeof(int));
+
+       state->map->regionx = snewn(n, int);
+       state->map->regiony = snewn(n, int);
+        memcpy(state->map->regionx, bestx + state->map->ngraph, n*sizeof(int));
+        memcpy(state->map->regiony, besty + state->map->ngraph, n*sizeof(int));
+
+       for (i = 0; i < state->map->ngraph; i++)
+           if (state->map->edgex[i] < 0) {
+               /* Find the other representation of this edge. */
+               int e = state->map->graph[i];
+               int iprime = graph_edge_index(state->map->graph, n,
+                                             state->map->ngraph, e%n, e/n);
+               assert(state->map->edgex[iprime] >= 0);
+               state->map->edgex[i] = state->map->edgex[iprime];
+               state->map->edgey[i] = state->map->edgey[iprime];
+           }
+
+       sfree(ax);
+       sfree(ay);
+       sfree(an);
+       sfree(best);
+       sfree(bestx);
+       sfree(besty);
+    }
+
     return state;
 }
 
-static game_state *dup_game(game_state *state)
+static game_state *dup_game(const game_state *state)
 {
     game_state *ret = snew(game_state);
 
     ret->p = state->p;
     ret->colouring = snewn(state->p.n, int);
     memcpy(ret->colouring, state->colouring, state->p.n * sizeof(int));
+    ret->pencil = snewn(state->p.n, int);
+    memcpy(ret->pencil, state->pencil, state->p.n * sizeof(int));
     ret->map = state->map;
     ret->map->refcount++;
     ret->completed = state->completed;
@@ -1526,14 +2179,19 @@ static void free_game(game_state *state)
        sfree(state->map->map);
        sfree(state->map->graph);
        sfree(state->map->immutable);
+       sfree(state->map->edgex);
+       sfree(state->map->edgey);
+       sfree(state->map->regionx);
+       sfree(state->map->regiony);
        sfree(state->map);
     }
+    sfree(state->pencil);
     sfree(state->colouring);
     sfree(state);
 }
 
-static char *solve_game(game_state *state, game_state *currstate,
-                       char *aux, char **error)
+static char *solve_game(const game_state *state, const game_state *currstate,
+                        const char *aux, char **error)
 {
     if (!aux) {
        /*
@@ -1592,21 +2250,42 @@ static char *solve_game(game_state *state, game_state *currstate,
     return dupstr(aux);
 }
 
-static char *game_text_format(game_state *state)
+static int game_can_format_as_text_now(const game_params *params)
+{
+    return TRUE;
+}
+
+static char *game_text_format(const game_state *state)
 {
     return NULL;
 }
 
 struct game_ui {
-    int drag_colour;                   /* -1 means no drag active */
+    /*
+     * drag_colour:
+     * 
+     *  - -2 means no drag currently active.
+     *  - >=0 means we're dragging a solid colour.
+     *         - -1 means we're dragging a blank space, and drag_pencil
+     *           might or might not add some pencil-mark stipples to that.
+     */
+    int drag_colour;
+    int drag_pencil;
     int dragx, dragy;
+    int show_numbers;
+
+    int cur_x, cur_y, cur_visible, cur_moved, cur_lastmove;
 };
 
-static game_ui *new_ui(game_state *state)
+static game_ui *new_ui(const game_state *state)
 {
     game_ui *ui = snew(game_ui);
     ui->dragx = ui->dragy = -1;
     ui->drag_colour = -2;
+    ui->drag_pencil = 0;
+    ui->show_numbers = FALSE;
+    ui->cur_x = ui->cur_y = ui->cur_visible = ui->cur_moved = 0;
+    ui->cur_lastmove = 0;
     return ui;
 }
 
@@ -1615,35 +2294,58 @@ static void free_ui(game_ui *ui)
     sfree(ui);
 }
 
-static char *encode_ui(game_ui *ui)
+static char *encode_ui(const game_ui *ui)
 {
     return NULL;
 }
 
-static void decode_ui(game_ui *ui, char *encoding)
+static void decode_ui(game_ui *ui, const char *encoding)
 {
 }
 
-static void game_changed_state(game_ui *ui, game_state *oldstate,
-                               game_state *newstate)
+static void game_changed_state(game_ui *ui, const game_state *oldstate,
+                               const game_state *newstate)
 {
 }
 
 struct game_drawstate {
     int tilesize;
-    unsigned char *drawn;
+    unsigned long *drawn, *todraw;
     int started;
     int dragx, dragy, drag_visible;
     blitter *bl;
 };
 
+/* Flags in `drawn'. */
+#define ERR_BASE      0x00800000L
+#define ERR_MASK      0xFF800000L
+#define PENCIL_T_BASE 0x00080000L
+#define PENCIL_T_MASK 0x00780000L
+#define PENCIL_B_BASE 0x00008000L
+#define PENCIL_B_MASK 0x00078000L
+#define PENCIL_MASK   0x007F8000L
+#define SHOW_NUMBERS  0x00004000L
+
 #define TILESIZE (ds->tilesize)
 #define BORDER (TILESIZE)
 #define COORD(x)  ( (x) * TILESIZE + BORDER )
 #define FROMCOORD(x)  ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
 
-static int region_from_coords(game_state *state, game_drawstate *ds,
-                              int x, int y)
+ /*
+  * EPSILON_FOO are epsilons added to absolute cursor position by
+  * cursor movement, such that in pathological cases (e.g. a very
+  * small diamond-shaped area) it's relatively easy to select the
+  * region you wanted.
+  */
+
+#define EPSILON_X(button) (((button) == CURSOR_RIGHT) ? +1 : \
+                           ((button) == CURSOR_LEFT)  ? -1 : 0)
+#define EPSILON_Y(button) (((button) == CURSOR_DOWN)  ? +1 : \
+                           ((button) == CURSOR_UP)    ? -1 : 0)
+
+
+static int region_from_coords(const game_state *state,
+                              const game_drawstate *ds, int x, int y)
 {
     int w = state->p.w, h = state->p.h, wh = w*h /*, n = state->p.n */;
     int tx = FROMCOORD(x), ty = FROMCOORD(y);
@@ -1661,20 +2363,73 @@ static int region_from_coords(game_state *state, game_drawstate *ds,
     return state->map->map[quadrant * wh + ty*w+tx];
 }
 
-static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
-                           int x, int y, int button)
+static char *interpret_move(const game_state *state, game_ui *ui,
+                            const game_drawstate *ds,
+                            int x, int y, int button)
 {
-    char buf[80];
+    char *bufp, buf[256];
+    int alt_button;
+
+    /*
+     * Enable or disable numeric labels on regions.
+     */
+    if (button == 'l' || button == 'L') {
+        ui->show_numbers = !ui->show_numbers;
+        return "";
+    }
+
+    if (IS_CURSOR_MOVE(button)) {
+        move_cursor(button, &ui->cur_x, &ui->cur_y, state->p.w, state->p.h, 0);
+        ui->cur_visible = 1;
+        ui->cur_moved = 1;
+        ui->cur_lastmove = button;
+        ui->dragx = COORD(ui->cur_x) + TILESIZE/2 + EPSILON_X(button);
+        ui->dragy = COORD(ui->cur_y) + TILESIZE/2 + EPSILON_Y(button);
+        return "";
+    }
+    if (IS_CURSOR_SELECT(button)) {
+        if (!ui->cur_visible) {
+            ui->dragx = COORD(ui->cur_x) + TILESIZE/2 + EPSILON_X(ui->cur_lastmove);
+            ui->dragy = COORD(ui->cur_y) + TILESIZE/2 + EPSILON_Y(ui->cur_lastmove);
+            ui->cur_visible = 1;
+            return "";
+        }
+        if (ui->drag_colour == -2) { /* not currently cursor-dragging, start. */
+            int r = region_from_coords(state, ds, ui->dragx, ui->dragy);
+            if (r >= 0) {
+                ui->drag_colour = state->colouring[r];
+                ui->drag_pencil = (ui->drag_colour >= 0) ? 0 : state->pencil[r];
+            } else {
+                ui->drag_colour = -1;
+                ui->drag_pencil = 0;
+            }
+            ui->cur_moved = 0;
+            return "";
+        } else { /* currently cursor-dragging; drop the colour in the new region. */
+            x = COORD(ui->cur_x) + TILESIZE/2 + EPSILON_X(ui->cur_lastmove);
+            y = COORD(ui->cur_y) + TILESIZE/2 + EPSILON_Y(ui->cur_lastmove);
+            alt_button = (button == CURSOR_SELECT2) ? 1 : 0;
+            /* Double-select removes current colour. */
+            if (!ui->cur_moved) ui->drag_colour = -1;
+            goto drag_dropped;
+        }
+    }
 
     if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
        int r = region_from_coords(state, ds, x, y);
 
-        if (r >= 0)
+        if (r >= 0) {
             ui->drag_colour = state->colouring[r];
-        else
+           ui->drag_pencil = state->pencil[r];
+           if (ui->drag_colour >= 0)
+               ui->drag_pencil = 0;  /* should be already, but double-check */
+       } else {
             ui->drag_colour = -1;
+           ui->drag_pencil = 0;
+       }
         ui->dragx = x;
         ui->dragy = y;
+        ui->cur_visible = 0;
         return "";
     }
 
@@ -1687,14 +2442,23 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
 
     if ((button == LEFT_RELEASE || button == RIGHT_RELEASE) &&
         ui->drag_colour > -2) {
+        alt_button = (button == RIGHT_RELEASE) ? 1 : 0;
+        goto drag_dropped;
+    }
+
+    return NULL;
+
+drag_dropped:
+    {
        int r = region_from_coords(state, ds, x, y);
         int c = ui->drag_colour;
+       int p = ui->drag_pencil;
+       int oldp;
 
         /*
          * Cancel the drag, whatever happens.
          */
         ui->drag_colour = -2;
-        ui->dragx = ui->dragy = -1;
 
        if (r < 0)
             return "";                 /* drag into border; do nothing else */
@@ -1702,29 +2466,71 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
        if (state->map->immutable[r])
            return "";                 /* can't change this region */
 
-        if (state->colouring[r] == c)
+        if (state->colouring[r] == c && state->pencil[r] == p)
             return "";                 /* don't _need_ to change this region */
 
-       sprintf(buf, "%c:%d", (int)(c < 0 ? 'C' : '0' + c), r);
-       return dupstr(buf);
-    }
+       if (alt_button) {
+           if (state->colouring[r] >= 0) {
+               /* Can't pencil on a coloured region */
+               return "";
+           } else if (c >= 0) {
+               /* Right-dragging from colour to blank toggles one pencil */
+               p = state->pencil[r] ^ (1 << c);
+               c = -1;
+           }
+           /* Otherwise, right-dragging from blank to blank is equivalent
+            * to left-dragging. */
+       }
 
-    return NULL;
+       bufp = buf;
+       oldp = state->pencil[r];
+       if (c != state->colouring[r]) {
+           bufp += sprintf(bufp, ";%c:%d", (int)(c < 0 ? 'C' : '0' + c), r);
+           if (c >= 0)
+               oldp = 0;
+       }
+       if (p != oldp) {
+           int i;
+           for (i = 0; i < FOUR; i++)
+               if ((oldp ^ p) & (1 << i))
+                   bufp += sprintf(bufp, ";p%c:%d", (int)('0' + i), r);
+       }
+
+       return dupstr(buf+1);          /* ignore first semicolon */
+    }
 }
 
-static game_state *execute_move(game_state *state, char *move)
+static game_state *execute_move(const game_state *state, const char *move)
 {
     int n = state->p.n;
     game_state *ret = dup_game(state);
     int c, k, adv, i;
 
     while (*move) {
+        int pencil = FALSE;
+
        c = *move;
+        if (c == 'p') {
+            pencil = TRUE;
+            c = *++move;
+        }
        if ((c == 'C' || (c >= '0' && c < '0'+FOUR)) &&
            sscanf(move+1, ":%d%n", &k, &adv) == 1 &&
            k >= 0 && k < state->p.n) {
            move += 1 + adv;
-           ret->colouring[k] = (c == 'C' ? -1 : c - '0');
+            if (pencil) {
+               if (ret->colouring[k] >= 0) {
+                   free_game(ret);
+                   return NULL;
+               }
+                if (c == 'C')
+                    ret->pencil[k] = 0;
+                else
+                    ret->pencil[k] ^= 1 << (c - '0');
+            } else {
+                ret->colouring[k] = (c == 'C' ? -1 : c - '0');
+                ret->pencil[k] = 0;
+            }
        } else if (*move == 'S') {
            move++;
            ret->cheated = TRUE;
@@ -1775,8 +2581,8 @@ static game_state *execute_move(game_state *state, char *move)
  * Drawing routines.
  */
 
-static void game_compute_size(game_params *params, int tilesize,
-                             int *x, int *y)
+static void game_compute_size(const game_params *params, int tilesize,
+                              int *x, int *y)
 {
     /* Ick: fake up `ds->tilesize' for macro expansion purposes */
     struct { int tilesize; } ads, *ds = &ads;
@@ -1787,26 +2593,33 @@ static void game_compute_size(game_params *params, int tilesize,
 }
 
 static void game_set_size(drawing *dr, game_drawstate *ds,
-                         game_params *params, int tilesize)
+                          const game_params *params, int tilesize)
 {
     ds->tilesize = tilesize;
 
-    if (ds->bl)
-        blitter_free(dr, ds->bl);
+    assert(!ds->bl);                   /* set_size is never called twice */
     ds->bl = blitter_new(dr, TILESIZE+3, TILESIZE+3);
 }
 
 const float map_colours[FOUR][3] = {
+#ifdef VIVID_COLOURS
+    /* Use more vivid colours (e.g. on the Pocket PC) */
+    {0.75F, 0.25F, 0.25F},
+    {0.3F,  0.7F,  0.3F},
+    {0.3F,  0.3F,  0.7F},
+    {0.85F, 0.85F, 0.1F},
+#else
     {0.7F, 0.5F, 0.4F},
     {0.8F, 0.7F, 0.4F},
     {0.5F, 0.6F, 0.4F},
     {0.55F, 0.45F, 0.35F},
+#endif
 };
 const int map_hatching[FOUR] = {
     HATCH_VERT, HATCH_SLASH, HATCH_HORIZ, HATCH_BACKSLASH
 };
 
-static float *game_colours(frontend *fe, game_state *state, int *ncolours)
+static float *game_colours(frontend *fe, int *ncolours)
 {
     float *ret = snewn(3 * NCOLOURS, float);
 
@@ -1821,17 +2634,28 @@ static float *game_colours(frontend *fe, game_state *state, int *ncolours)
     memcpy(ret + COL_2 * 3, map_colours[2], 3 * sizeof(float));
     memcpy(ret + COL_3 * 3, map_colours[3], 3 * sizeof(float));
 
+    ret[COL_ERROR * 3 + 0] = 1.0F;
+    ret[COL_ERROR * 3 + 1] = 0.0F;
+    ret[COL_ERROR * 3 + 2] = 0.0F;
+
+    ret[COL_ERRTEXT * 3 + 0] = 1.0F;
+    ret[COL_ERRTEXT * 3 + 1] = 1.0F;
+    ret[COL_ERRTEXT * 3 + 2] = 1.0F;
+
     *ncolours = NCOLOURS;
     return ret;
 }
 
-static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
+static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
 {
     struct game_drawstate *ds = snew(struct game_drawstate);
+    int i;
 
     ds->tilesize = 0;
-    ds->drawn = snewn(state->p.w * state->p.h, unsigned char);
-    memset(ds->drawn, 0xFF, state->p.w * state->p.h);
+    ds->drawn = snewn(state->p.w * state->p.h, unsigned long);
+    for (i = 0; i < state->p.w * state->p.h; i++)
+       ds->drawn[i] = 0xFFFFL;
+    ds->todraw = snewn(state->p.w * state->p.h, unsigned long);
     ds->started = FALSE;
     ds->bl = NULL;
     ds->drag_visible = FALSE;
@@ -1843,17 +2667,59 @@ static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
 {
     sfree(ds->drawn);
+    sfree(ds->todraw);
     if (ds->bl)
         blitter_free(dr, ds->bl);
     sfree(ds);
 }
 
+static void draw_error(drawing *dr, game_drawstate *ds, int x, int y)
+{
+    int coords[8];
+    int yext, xext;
+
+    /*
+     * Draw a diamond.
+     */
+    coords[0] = x - TILESIZE*2/5;
+    coords[1] = y;
+    coords[2] = x;
+    coords[3] = y - TILESIZE*2/5;
+    coords[4] = x + TILESIZE*2/5;
+    coords[5] = y;
+    coords[6] = x;
+    coords[7] = y + TILESIZE*2/5;
+    draw_polygon(dr, coords, 4, COL_ERROR, COL_GRID);
+
+    /*
+     * Draw an exclamation mark in the diamond. This turns out to
+     * look unpleasantly off-centre if done via draw_text, so I do
+     * it by hand on the basis that exclamation marks aren't that
+     * difficult to draw...
+     */
+    xext = TILESIZE/16;
+    yext = TILESIZE*2/5 - (xext*2+2);
+    draw_rect(dr, x-xext, y-yext, xext*2+1, yext*2+1 - (xext*3),
+             COL_ERRTEXT);
+    draw_rect(dr, x-xext, y+yext-xext*2+1, xext*2+1, xext*2, COL_ERRTEXT);
+}
+
 static void draw_square(drawing *dr, game_drawstate *ds,
-                       game_params *params, struct map *map,
-                       int x, int y, int v)
+                       const game_params *params, struct map *map,
+                       int x, int y, unsigned long v)
 {
     int w = params->w, h = params->h, wh = w*h;
-    int tv = v / FIVE, bv = v % FIVE;
+    int tv, bv, xo, yo, i, j, oldj;
+    unsigned long errs, pencil, show_numbers;
+
+    errs = v & ERR_MASK;
+    v &= ~ERR_MASK;
+    pencil = v & PENCIL_MASK;
+    v &= ~PENCIL_MASK;
+    show_numbers = v & SHOW_NUMBERS;
+    v &= ~SHOW_NUMBERS;
+    tv = v / FIVE;
+    bv = v % FIVE;
 
     clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
 
@@ -1881,6 +2747,41 @@ static void draw_square(drawing *dr, game_drawstate *ds,
                      (bv == FOUR ? COL_BACKGROUND : COL_0 + bv), COL_GRID);
     }
 
+    /*
+     * Draw `pencil marks'. Currently we arrange these in a square
+     * formation, which means we may be in trouble if the value of
+     * FOUR changes later...
+     */
+    assert(FOUR == 4);
+    for (yo = 0; yo < 4; yo++)
+       for (xo = 0; xo < 4; xo++) {
+           int te = map->map[TE * wh + y*w+x];
+           int e, ee, c;
+
+           e = (yo < xo && yo < 3-xo ? TE :
+                yo > xo && yo > 3-xo ? BE :
+                xo < 2 ? LE : RE);
+           ee = map->map[e * wh + y*w+x];
+
+           if (xo != (yo * 2 + 1) % 5)
+               continue;
+           c = yo;
+
+           if (!(pencil & ((ee == te ? PENCIL_T_BASE : PENCIL_B_BASE) << c)))
+               continue;
+
+           if (yo == xo &&
+               (map->map[TE * wh + y*w+x] != map->map[LE * wh + y*w+x]))
+               continue;              /* avoid TL-BR diagonal line */
+           if (yo == 3-xo &&
+               (map->map[TE * wh + y*w+x] != map->map[RE * wh + y*w+x]))
+               continue;              /* avoid BL-TR diagonal line */
+
+           draw_circle(dr, COORD(x) + (xo+1)*TILESIZE/5,
+                       COORD(y) + (yo+1)*TILESIZE/5,
+                       TILESIZE/7, COL_0 + c, COL_0 + c);
+       }
+
     /*
      * Draw the grid lines, if required.
      */
@@ -1893,16 +2794,53 @@ static void draw_square(drawing *dr, game_drawstate *ds,
         map->map[BE*wh+(y-1)*w+(x-1)] != map->map[LE*wh+y*w+x])
        draw_rect(dr, COORD(x), COORD(y), 1, 1, COL_GRID);
 
+    /*
+     * Draw error markers.
+     */
+    for (yo = 0; yo < 3; yo++)
+       for (xo = 0; xo < 3; xo++)
+           if (errs & (ERR_BASE << (yo*3+xo)))
+               draw_error(dr, ds,
+                          (COORD(x)*2+TILESIZE*xo)/2,
+                          (COORD(y)*2+TILESIZE*yo)/2);
+
+    /*
+     * Draw region numbers, if desired.
+     */
+    if (show_numbers) {
+        oldj = -1;
+        for (i = 0; i < 2; i++) {
+            j = map->map[(i?BE:TE)*wh+y*w+x];
+            if (oldj == j)
+                continue;
+            oldj = j;
+
+            xo = map->regionx[j] - 2*x;
+            yo = map->regiony[j] - 2*y;
+            if (xo >= 0 && xo <= 2 && yo >= 0 && yo <= 2) {
+                char buf[80];
+                sprintf(buf, "%d", j);
+                draw_text(dr, (COORD(x)*2+TILESIZE*xo)/2,
+                          (COORD(y)*2+TILESIZE*yo)/2,
+                          FONT_VARIABLE, 3*TILESIZE/5,
+                          ALIGN_HCENTRE|ALIGN_VCENTRE,
+                          COL_GRID, buf);
+            }
+        }
+    }
+
     unclip(dr);
+
     draw_update(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
 }
 
-static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
-                       game_state *state, int dir, game_ui *ui,
-                       float animtime, float flashtime)
+static void game_redraw(drawing *dr, game_drawstate *ds,
+                        const game_state *oldstate, const game_state *state,
+                        int dir, const game_ui *ui,
+                        float animtime, float flashtime)
 {
-    int w = state->p.w, h = state->p.h, wh = w*h /*, n = state->p.n */;
-    int x, y;
+    int w = state->p.w, h = state->p.h, wh = w*h, n = state->p.n;
+    int x, y, i;
     int flash;
 
     if (ds->drag_visible) {
@@ -1937,11 +2875,14 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
     } else
        flash = -1;
 
+    /*
+     * Set up the `todraw' array.
+     */
     for (y = 0; y < h; y++)
        for (x = 0; x < w; x++) {
            int tv = state->colouring[state->map->map[TE * wh + y*w+x]];
            int bv = state->colouring[state->map->map[BE * wh + y*w+x]];
-            int v;
+            unsigned long v;
 
            if (tv < 0)
                tv = FOUR;
@@ -1967,6 +2908,64 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
 
             v = tv * FIVE + bv;
 
+            /*
+             * Add pencil marks.
+             */
+           for (i = 0; i < FOUR; i++) {
+               if (state->colouring[state->map->map[TE * wh + y*w+x]] < 0 &&
+                   (state->pencil[state->map->map[TE * wh + y*w+x]] & (1<<i)))
+                   v |= PENCIL_T_BASE << i;
+               if (state->colouring[state->map->map[BE * wh + y*w+x]] < 0 &&
+                   (state->pencil[state->map->map[BE * wh + y*w+x]] & (1<<i)))
+                   v |= PENCIL_B_BASE << i;
+           }
+
+            if (ui->show_numbers)
+                v |= SHOW_NUMBERS;
+
+           ds->todraw[y*w+x] = v;
+       }
+
+    /*
+     * Add error markers to the `todraw' array.
+     */
+    for (i = 0; i < state->map->ngraph; i++) {
+       int v1 = state->map->graph[i] / n;
+       int v2 = state->map->graph[i] % n;
+       int xo, yo;
+
+       if (state->colouring[v1] < 0 || state->colouring[v2] < 0)
+           continue;
+       if (state->colouring[v1] != state->colouring[v2])
+           continue;
+
+       x = state->map->edgex[i];
+       y = state->map->edgey[i];
+
+       xo = x % 2; x /= 2;
+       yo = y % 2; y /= 2;
+
+       ds->todraw[y*w+x] |= ERR_BASE << (yo*3+xo);
+       if (xo == 0) {
+           assert(x > 0);
+           ds->todraw[y*w+(x-1)] |= ERR_BASE << (yo*3+2);
+       }
+       if (yo == 0) {
+           assert(y > 0);
+           ds->todraw[(y-1)*w+x] |= ERR_BASE << (2*3+xo);
+       }
+       if (xo == 0 && yo == 0) {
+           assert(x > 0 && y > 0);
+           ds->todraw[(y-1)*w+(x-1)] |= ERR_BASE << (2*3+2);
+       }
+    }
+
+    /*
+     * Now actually draw everything.
+     */
+    for (y = 0; y < h; y++)
+       for (x = 0; x < w; x++) {
+           unsigned long v = ds->todraw[y*w+x];
            if (ds->drawn[y*w+x] != v) {
                draw_square(dr, ds, &state->p, state->map, x, y, v);
                ds->drawn[y*w+x] = v;
@@ -1976,26 +2975,44 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
     /*
      * Draw the dragged colour blob if any.
      */
-    if (ui->drag_colour > -2) {
+    if ((ui->drag_colour > -2) || ui->cur_visible) {
+        int bg, iscur = 0;
+        if (ui->drag_colour >= 0)
+            bg = COL_0 + ui->drag_colour;
+        else if (ui->drag_colour == -1) {
+            bg = COL_BACKGROUND;
+        } else {
+            int r = region_from_coords(state, ds, ui->dragx, ui->dragy);
+            int c = (r < 0) ? -1 : state->colouring[r];
+            assert(ui->cur_visible);
+            /*bg = COL_GRID;*/
+            bg = (c < 0) ? COL_BACKGROUND : COL_0 + c;
+            iscur = 1;
+        }
+
         ds->dragx = ui->dragx - TILESIZE/2 - 2;
         ds->dragy = ui->dragy - TILESIZE/2 - 2;
         blitter_save(dr, ds->bl, ds->dragx, ds->dragy);
-        draw_circle(dr, ui->dragx, ui->dragy, TILESIZE/2,
-                    (ui->drag_colour < 0 ? COL_BACKGROUND :
-                     COL_0 + ui->drag_colour), COL_GRID);
+        draw_circle(dr, ui->dragx, ui->dragy,
+                    iscur ? TILESIZE/4 : TILESIZE/2, bg, COL_GRID);
+       for (i = 0; i < FOUR; i++)
+           if (ui->drag_pencil & (1 << i))
+               draw_circle(dr, ui->dragx + ((i*4+2)%10-3) * TILESIZE/10,
+                           ui->dragy + (i*2-3) * TILESIZE/10,
+                           TILESIZE/8, COL_0 + i, COL_0 + i);
         draw_update(dr, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3);
         ds->drag_visible = TRUE;
     }
 }
 
-static float game_anim_length(game_state *oldstate, game_state *newstate,
-                             int dir, game_ui *ui)
+static float game_anim_length(const game_state *oldstate,
+                              const game_state *newstate, int dir, game_ui *ui)
 {
     return 0.0F;
 }
 
-static float game_flash_length(game_state *oldstate, game_state *newstate,
-                              int dir, game_ui *ui)
+static float game_flash_length(const game_state *oldstate,
+                               const game_state *newstate, int dir, game_ui *ui)
 {
     if (!oldstate->completed && newstate->completed &&
        !oldstate->cheated && !newstate->cheated) {
@@ -2005,24 +3022,24 @@ static float game_flash_length(game_state *oldstate, game_state *newstate,
                flash_type = atoi(env);
            else
                flash_type = 0;
-           flash_length = (flash_type == 1 ? 0.50 : 0.30);
+           flash_length = (flash_type == 1 ? 0.50F : 0.30F);
        }
        return flash_length;
     } else
        return 0.0F;
 }
 
-static int game_wants_statusbar(void)
+static int game_status(const game_state *state)
 {
-    return FALSE;
+    return state->completed ? +1 : 0;
 }
 
-static int game_timing_state(game_state *state, game_ui *ui)
+static int game_timing_state(const game_state *state, game_ui *ui)
 {
     return TRUE;
 }
 
-static void game_print_size(game_params *params, float *x, float *y)
+static void game_print_size(const game_params *params, float *x, float *y)
 {
     int pw, ph;
 
@@ -2032,11 +3049,11 @@ static void game_print_size(game_params *params, float *x, float *y)
      * given tile size and then scale.
      */
     game_compute_size(params, 400, &pw, &ph);
-    *x = pw / 100.0;
-    *y = ph / 100.0;
+    *x = pw / 100.0F;
+    *y = ph / 100.0F;
 }
 
-static void game_print(drawing *dr, game_state *state, int tilesize)
+static void game_print(drawing *dr, const game_state *state, int tilesize)
 {
     int w = state->p.w, h = state->p.h, wh = w*h, n = state->p.n;
     int ink, c[FOUR], i;
@@ -2045,12 +3062,14 @@ static void game_print(drawing *dr, game_state *state, int tilesize)
 
     /* Ick: fake up `ds->tilesize' for macro expansion purposes */
     struct { int tilesize; } ads, *ds = &ads;
+    /* We can't call game_set_size() here because we don't want a blitter */
     ads.tilesize = tilesize;
 
     ink = print_mono_colour(dr, 0);
     for (i = 0; i < FOUR; i++)
-       c[i] = print_rgb_colour(dr, map_hatching[i], map_colours[i][0],
-                               map_colours[i][1], map_colours[i][2]);
+       c[i] = print_rgb_hatched_colour(dr, map_colours[i][0],
+                                       map_colours[i][1], map_colours[i][2],
+                                       map_hatching[i]);
 
     coordsize = 0;
     coords = NULL;
@@ -2140,7 +3159,7 @@ static void game_print(drawing *dr, game_state *state, int tilesize)
                    else
                        d2 = i;
                }
-/* printf("%% %d,%d r=%d: d1=%d d2=%d lastdir=%d\n", x, y, r, d1, d2, lastdir); */
+
            assert(d1 != -1 && d2 != -1);
            if (d1 == lastdir)
                d1 = d2;
@@ -2178,7 +3197,7 @@ static void game_print(drawing *dr, game_state *state, int tilesize)
 #endif
 
 const struct game thegame = {
-    "Map", "games.map",
+    "Map", "games.map", "map",
     default_params,
     game_fetch_preset,
     decode_params,
@@ -2193,7 +3212,7 @@ const struct game thegame = {
     dup_game,
     free_game,
     TRUE, solve_game,
-    FALSE, game_text_format,
+    FALSE, game_can_format_as_text_now, game_text_format,
     new_ui,
     free_ui,
     encode_ui,
@@ -2208,8 +3227,114 @@ const struct game thegame = {
     game_redraw,
     game_anim_length,
     game_flash_length,
+    game_status,
     TRUE, TRUE, game_print_size, game_print,
-    game_wants_statusbar,
+    FALSE,                            /* wants_statusbar */
     FALSE, game_timing_state,
-    0,                                /* mouse_priorities */
+    0,                                /* flags */
 };
+
+#ifdef STANDALONE_SOLVER
+
+int main(int argc, char **argv)
+{
+    game_params *p;
+    game_state *s;
+    char *id = NULL, *desc, *err;
+    int grade = FALSE;
+    int ret, diff, really_verbose = FALSE;
+    struct solver_scratch *sc;
+    int i;
+
+    while (--argc > 0) {
+        char *p = *++argv;
+        if (!strcmp(p, "-v")) {
+            really_verbose = TRUE;
+        } else if (!strcmp(p, "-g")) {
+            grade = TRUE;
+        } else if (*p == '-') {
+            fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
+            return 1;
+        } else {
+            id = p;
+        }
+    }
+
+    if (!id) {
+        fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
+        return 1;
+    }
+
+    desc = strchr(id, ':');
+    if (!desc) {
+        fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
+        return 1;
+    }
+    *desc++ = '\0';
+
+    p = default_params();
+    decode_params(p, id);
+    err = validate_desc(p, desc);
+    if (err) {
+        fprintf(stderr, "%s: %s\n", argv[0], err);
+        return 1;
+    }
+    s = new_game(NULL, p, desc);
+
+    sc = new_scratch(s->map->graph, s->map->n, s->map->ngraph);
+
+    /*
+     * When solving an Easy puzzle, we don't want to bother the
+     * user with Hard-level deductions. For this reason, we grade
+     * the puzzle internally before doing anything else.
+     */
+    ret = -1;                         /* placate optimiser */
+    for (diff = 0; diff < DIFFCOUNT; diff++) {
+        for (i = 0; i < s->map->n; i++)
+            if (!s->map->immutable[i])
+                s->colouring[i] = -1;
+       ret = map_solver(sc, s->map->graph, s->map->n, s->map->ngraph,
+                         s->colouring, diff);
+       if (ret < 2)
+           break;
+    }
+
+    if (diff == DIFFCOUNT) {
+       if (grade)
+           printf("Difficulty rating: harder than Hard, or ambiguous\n");
+       else
+           printf("Unable to find a unique solution\n");
+    } else {
+       if (grade) {
+           if (ret == 0)
+               printf("Difficulty rating: impossible (no solution exists)\n");
+           else if (ret == 1)
+               printf("Difficulty rating: %s\n", map_diffnames[diff]);
+       } else {
+           verbose = really_verbose;
+            for (i = 0; i < s->map->n; i++)
+                if (!s->map->immutable[i])
+                    s->colouring[i] = -1;
+            ret = map_solver(sc, s->map->graph, s->map->n, s->map->ngraph,
+                             s->colouring, diff);
+           if (ret == 0)
+               printf("Puzzle is inconsistent\n");
+           else {
+                int col = 0;
+
+                for (i = 0; i < s->map->n; i++) {
+                    printf("%5d <- %c%c", i, colnames[s->colouring[i]],
+                           (col < 6 && i+1 < s->map->n ? ' ' : '\n'));
+                    if (++col == 7)
+                        col = 0;
+                }
+            }
+       }
+    }
+
+    return 0;
+}
+
+#endif
+
+/* vim: set shiftwidth=4 tabstop=8: */