chiark / gitweb /
Fix completion checking in Killer Solo.
[sgt-puzzles.git] / cube.c
diff --git a/cube.c b/cube.c
index 0ceef120c3f6eeb3d12d56686a8c6fc06001bdba..c22e29962a85bdf5d38fe1f62063c0784dae606a 100644 (file)
--- a/cube.c
+++ b/cube.c
 /*
  * cube.c: Cube game.
  */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <ctype.h>
+#include <math.h>
+
+#include "puzzles.h"
+
+#define MAXVERTICES 20
+#define MAXFACES 20
+#define MAXORDER 4
+struct solid {
+    int nvertices;
+    float vertices[MAXVERTICES * 3];   /* 3*npoints coordinates */
+    int order;
+    int nfaces;
+    int faces[MAXFACES * MAXORDER];    /* order*nfaces point indices */
+    float normals[MAXFACES * 3];       /* 3*npoints vector components */
+    float shear;                       /* isometric shear for nice drawing */
+    float border;                      /* border required around arena */
+};
+
+static const struct solid s_tetrahedron = {
+    4,
+    {
+        0.0F, -0.57735026919F, -0.20412414523F,
+        -0.5F, 0.28867513459F, -0.20412414523F,
+        0.0F, -0.0F, 0.6123724357F,
+        0.5F, 0.28867513459F, -0.20412414523F,
+    },
+    3, 4,
+    {
+        0,2,1, 3,1,2, 2,0,3, 1,3,0
+    },
+    {
+        -0.816496580928F, -0.471404520791F, 0.333333333334F,
+        0.0F, 0.942809041583F, 0.333333333333F,
+        0.816496580928F, -0.471404520791F, 0.333333333334F,
+        0.0F, 0.0F, -1.0F,
+    },
+    0.0F, 0.3F
+};
+
+static const struct solid s_cube = {
+    8,
+    {
+        -0.5F,-0.5F,-0.5F, -0.5F,-0.5F,+0.5F,
+       -0.5F,+0.5F,-0.5F, -0.5F,+0.5F,+0.5F,
+        +0.5F,-0.5F,-0.5F, +0.5F,-0.5F,+0.5F,
+       +0.5F,+0.5F,-0.5F, +0.5F,+0.5F,+0.5F,
+    },
+    4, 6,
+    {
+        0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2
+    },
+    {
+        -1.0F,0.0F,0.0F, 0.0F,0.0F,+1.0F,
+       +1.0F,0.0F,0.0F, 0.0F,0.0F,-1.0F,
+       0.0F,-1.0F,0.0F, 0.0F,+1.0F,0.0F
+    },
+    0.3F, 0.5F
+};
+
+static const struct solid s_octahedron = {
+    6,
+    {
+        -0.5F, -0.28867513459472505F, 0.4082482904638664F,
+        0.5F, 0.28867513459472505F, -0.4082482904638664F,
+        -0.5F, 0.28867513459472505F, -0.4082482904638664F,
+        0.5F, -0.28867513459472505F, 0.4082482904638664F,
+        0.0F, -0.57735026918945009F, -0.4082482904638664F,
+        0.0F, 0.57735026918945009F, 0.4082482904638664F,
+    },
+    3, 8,
+    {
+        4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3
+    },
+    {
+        -0.816496580928F, -0.471404520791F, -0.333333333334F,
+        -0.816496580928F, 0.471404520791F, 0.333333333334F,
+        0.0F, -0.942809041583F, 0.333333333333F,
+        0.0F, 0.0F, 1.0F,
+        0.0F, 0.0F, -1.0F,
+        0.0F, 0.942809041583F, -0.333333333333F,
+        0.816496580928F, -0.471404520791F, -0.333333333334F,
+        0.816496580928F, 0.471404520791F, 0.333333333334F,
+    },
+    0.0F, 0.5F
+};
+
+static const struct solid s_icosahedron = {
+    12,
+    {
+        0.0F, 0.57735026919F, 0.75576131408F,
+        0.0F, -0.93417235896F, 0.17841104489F,
+        0.0F, 0.93417235896F, -0.17841104489F,
+        0.0F, -0.57735026919F, -0.75576131408F,
+        -0.5F, -0.28867513459F, 0.75576131408F,
+        -0.5F, 0.28867513459F, -0.75576131408F,
+        0.5F, -0.28867513459F, 0.75576131408F,
+        0.5F, 0.28867513459F, -0.75576131408F,
+        -0.80901699437F, 0.46708617948F, 0.17841104489F,
+        0.80901699437F, 0.46708617948F, 0.17841104489F,
+        -0.80901699437F, -0.46708617948F, -0.17841104489F,
+        0.80901699437F, -0.46708617948F, -0.17841104489F,
+    },
+    3, 20,
+    {
+        8,0,2,  0,9,2,  1,10,3, 11,1,3,  0,4,6,
+        4,1,6,  5,2,7,  3,5,7,  4,8,10,  8,5,10,
+        9,6,11, 7,9,11,  0,8,4,  9,0,6,  10,1,4,
+        1,11,6, 8,2,5,  2,9,7,  3,10,5, 11,3,7,
+    },
+    {
+        -0.356822089773F, 0.87267799625F, 0.333333333333F,
+        0.356822089773F, 0.87267799625F, 0.333333333333F,
+        -0.356822089773F, -0.87267799625F, -0.333333333333F,
+        0.356822089773F, -0.87267799625F, -0.333333333333F,
+        -0.0F, 0.0F, 1.0F,
+        0.0F, -0.666666666667F, 0.745355992501F,
+        0.0F, 0.666666666667F, -0.745355992501F,
+        0.0F, 0.0F, -1.0F,
+        -0.934172358963F, -0.12732200375F, 0.333333333333F,
+        -0.934172358963F, 0.12732200375F, -0.333333333333F,
+        0.934172358963F, -0.12732200375F, 0.333333333333F,
+        0.934172358963F, 0.12732200375F, -0.333333333333F,
+        -0.57735026919F, 0.333333333334F, 0.745355992501F,
+        0.57735026919F, 0.333333333334F, 0.745355992501F,
+        -0.57735026919F, -0.745355992501F, 0.333333333334F,
+        0.57735026919F, -0.745355992501F, 0.333333333334F,
+        -0.57735026919F, 0.745355992501F, -0.333333333334F,
+        0.57735026919F, 0.745355992501F, -0.333333333334F,
+        -0.57735026919F, -0.333333333334F, -0.745355992501F,
+        0.57735026919F, -0.333333333334F, -0.745355992501F,
+    },
+    0.0F, 0.8F
+};
+
+enum {
+    TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON
+};
+static const struct solid *solids[] = {
+    &s_tetrahedron, &s_cube, &s_octahedron, &s_icosahedron
+};
+
+enum {
+    COL_BACKGROUND,
+    COL_BORDER,
+    COL_BLUE,
+    NCOLOURS
+};
+
+enum { LEFT, RIGHT, UP, DOWN, UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT };
+
+#define PREFERRED_GRID_SCALE 48
+#define GRID_SCALE (ds->gridscale)
+#define ROLLTIME 0.13F
+
+#define SQ(x) ( (x) * (x) )
+
+#define MATMUL(ra,m,a) do { \
+    float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \
+    rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \
+    ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \
+    rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \
+    (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \
+} while (0)
+
+#define APPROXEQ(x,y) ( SQ(x-y) < 0.1 )
+
+struct grid_square {
+    float x, y;
+    int npoints;
+    float points[8];                   /* maximum */
+    int directions[8];                 /* bit masks showing point pairs */
+    int flip;
+    int tetra_class;
+};
+
+struct game_params {
+    int solid;
+    /*
+     * Grid dimensions. For a square grid these are width and
+     * height respectively; otherwise the grid is a hexagon, with
+     * the top side and the two lower diagonals having length d1
+     * and the remaining three sides having length d2 (so that
+     * d1==d2 gives a regular hexagon, and d2==0 gives a triangle).
+     */
+    int d1, d2;
+};
+
+typedef struct game_grid game_grid;
+struct game_grid {
+    int refcount;
+    struct grid_square *squares;
+    int nsquares;
+};
+
+#define SET_SQUARE(state, i, val) \
+    ((state)->bluemask[(i)/32] &= ~(1 << ((i)%32)), \
+     (state)->bluemask[(i)/32] |= ((!!val) << ((i)%32)))
+#define GET_SQUARE(state, i) \
+    (((state)->bluemask[(i)/32] >> ((i)%32)) & 1)
+
+struct game_state {
+    struct game_params params;
+    const struct solid *solid;
+    int *facecolours;
+    game_grid *grid;
+    unsigned long *bluemask;
+    int current;                       /* index of current grid square */
+    int sgkey[2];                      /* key-point indices into grid sq */
+    int dgkey[2];                      /* key-point indices into grid sq */
+    int spkey[2];                      /* key-point indices into polyhedron */
+    int dpkey[2];                      /* key-point indices into polyhedron */
+    int previous;
+    float angle;
+    int completed;
+    int movecount;
+};
+
+static game_params *default_params(void)
+{
+    game_params *ret = snew(game_params);
+
+    ret->solid = CUBE;
+    ret->d1 = 4;
+    ret->d2 = 4;
+
+    return ret;
+}
+
+static int game_fetch_preset(int i, char **name, game_params **params)
+{
+    game_params *ret = snew(game_params);
+    char *str;
+
+    switch (i) {
+      case 0:
+        str = "Cube";
+        ret->solid = CUBE;
+        ret->d1 = 4;
+        ret->d2 = 4;
+        break;
+      case 1:
+        str = "Tetrahedron";
+        ret->solid = TETRAHEDRON;
+        ret->d1 = 1;
+        ret->d2 = 2;
+        break;
+      case 2:
+        str = "Octahedron";
+        ret->solid = OCTAHEDRON;
+        ret->d1 = 2;
+        ret->d2 = 2;
+        break;
+      case 3:
+        str = "Icosahedron";
+        ret->solid = ICOSAHEDRON;
+        ret->d1 = 3;
+        ret->d2 = 3;
+        break;
+      default:
+        sfree(ret);
+        return FALSE;
+    }
+
+    *name = dupstr(str);
+    *params = ret;
+    return TRUE;
+}
+
+static void free_params(game_params *params)
+{
+    sfree(params);
+}
+
+static game_params *dup_params(const game_params *params)
+{
+    game_params *ret = snew(game_params);
+    *ret = *params;                   /* structure copy */
+    return ret;
+}
+
+static void decode_params(game_params *ret, char const *string)
+{
+    switch (*string) {
+      case 't': ret->solid = TETRAHEDRON; string++; break;
+      case 'c': ret->solid = CUBE;        string++; break;
+      case 'o': ret->solid = OCTAHEDRON;  string++; break;
+      case 'i': ret->solid = ICOSAHEDRON; string++; break;
+      default: break;
+    }
+    ret->d1 = ret->d2 = atoi(string);
+    while (*string && isdigit((unsigned char)*string)) string++;
+    if (*string == 'x') {
+        string++;
+        ret->d2 = atoi(string);
+    }
+}
+
+static char *encode_params(const game_params *params, int full)
+{
+    char data[256];
+
+    assert(params->solid >= 0 && params->solid < 4);
+    sprintf(data, "%c%dx%d", "tcoi"[params->solid], params->d1, params->d2);
+
+    return dupstr(data);
+}
+typedef void (*egc_callback)(void *, struct grid_square *);
+
+static void enum_grid_squares(const game_params *params, egc_callback callback,
+                              void *ctx)
+{
+    const struct solid *solid = solids[params->solid];
+
+    if (solid->order == 4) {
+        int x, y;
+
+       for (y = 0; y < params->d2; y++)
+           for (x = 0; x < params->d1; x++) {
+                struct grid_square sq;
+
+                sq.x = (float)x;
+                sq.y = (float)y;
+                sq.points[0] = x - 0.5F;
+                sq.points[1] = y - 0.5F;
+                sq.points[2] = x - 0.5F;
+                sq.points[3] = y + 0.5F;
+                sq.points[4] = x + 0.5F;
+                sq.points[5] = y + 0.5F;
+                sq.points[6] = x + 0.5F;
+                sq.points[7] = y - 0.5F;
+                sq.npoints = 4;
+
+                sq.directions[LEFT]  = 0x03;   /* 0,1 */
+                sq.directions[RIGHT] = 0x0C;   /* 2,3 */
+                sq.directions[UP]    = 0x09;   /* 0,3 */
+                sq.directions[DOWN]  = 0x06;   /* 1,2 */
+                sq.directions[UP_LEFT] = 0;   /* no diagonals in a square */
+                sq.directions[UP_RIGHT] = 0;   /* no diagonals in a square */
+                sq.directions[DOWN_LEFT] = 0;   /* no diagonals in a square */
+                sq.directions[DOWN_RIGHT] = 0;   /* no diagonals in a square */
+
+                sq.flip = FALSE;
+
+                /*
+                 * This is supremely irrelevant, but just to avoid
+                 * having any uninitialised structure members...
+                 */
+                sq.tetra_class = 0;
+
+                callback(ctx, &sq);
+            }
+    } else {
+        int row, rowlen, other, i, firstix = -1;
+        float theight = (float)(sqrt(3) / 2.0);
+
+        for (row = 0; row < params->d1 + params->d2; row++) {
+            if (row < params->d2) {
+                other = +1;
+                rowlen = row + params->d1;
+            } else {
+                other = -1;
+                rowlen = 2*params->d2 + params->d1 - row;
+            }
+
+            /*
+             * There are `rowlen' down-pointing triangles.
+             */
+            for (i = 0; i < rowlen; i++) {
+                struct grid_square sq;
+                int ix;
+                float x, y;
+
+                ix = (2 * i - (rowlen-1));
+                x = ix * 0.5F;
+                y = theight * row;
+                sq.x = x;
+                sq.y = y + theight / 3;
+                sq.points[0] = x - 0.5F;
+                sq.points[1] = y;
+                sq.points[2] = x;
+                sq.points[3] = y + theight;
+                sq.points[4] = x + 0.5F;
+                sq.points[5] = y;
+                sq.npoints = 3;
+
+                sq.directions[LEFT]  = 0x03;   /* 0,1 */
+                sq.directions[RIGHT] = 0x06;   /* 1,2 */
+                sq.directions[UP]    = 0x05;   /* 0,2 */
+                sq.directions[DOWN]  = 0;      /* invalid move */
+
+                /*
+                 * Down-pointing triangle: both the up diagonals go
+                 * up, and the down ones go left and right.
+                 */
+                sq.directions[UP_LEFT] = sq.directions[UP_RIGHT] =
+                    sq.directions[UP];
+                sq.directions[DOWN_LEFT] = sq.directions[LEFT];
+                sq.directions[DOWN_RIGHT] = sq.directions[RIGHT];
+
+                sq.flip = TRUE;
+
+                if (firstix < 0)
+                    firstix = ix & 3;
+                ix -= firstix;
+                sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
+
+                callback(ctx, &sq);
+            }
+
+            /*
+             * There are `rowlen+other' up-pointing triangles.
+             */
+            for (i = 0; i < rowlen+other; i++) {
+                struct grid_square sq;
+                int ix;
+                float x, y;
+
+                ix = (2 * i - (rowlen+other-1));
+                x = ix * 0.5F;
+                y = theight * row;
+                sq.x = x;
+                sq.y = y + 2*theight / 3;
+                sq.points[0] = x + 0.5F;
+                sq.points[1] = y + theight;
+                sq.points[2] = x;
+                sq.points[3] = y;
+                sq.points[4] = x - 0.5F;
+                sq.points[5] = y + theight;
+                sq.npoints = 3;
+
+                sq.directions[LEFT]  = 0x06;   /* 1,2 */
+                sq.directions[RIGHT] = 0x03;   /* 0,1 */
+                sq.directions[DOWN]  = 0x05;   /* 0,2 */
+                sq.directions[UP]    = 0;      /* invalid move */
+
+                /*
+                 * Up-pointing triangle: both the down diagonals go
+                 * down, and the up ones go left and right.
+                 */
+                sq.directions[DOWN_LEFT] = sq.directions[DOWN_RIGHT] =
+                    sq.directions[DOWN];
+                sq.directions[UP_LEFT] = sq.directions[LEFT];
+                sq.directions[UP_RIGHT] = sq.directions[RIGHT];
+
+                sq.flip = FALSE;
+
+                if (firstix < 0)
+                    firstix = (ix - 1) & 3;
+                ix -= firstix;
+                sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
+
+                callback(ctx, &sq);
+            }
+        }
+    }
+}
+
+static int grid_area(int d1, int d2, int order)
+{
+    /*
+     * An NxM grid of squares has NM squares in it.
+     * 
+     * A grid of triangles with dimensions A and B has a total of
+     * A^2 + B^2 + 4AB triangles in it. (You can divide it up into
+     * a side-A triangle containing A^2 subtriangles, a side-B
+     * triangle containing B^2, and two congruent parallelograms,
+     * each with side lengths A and B, each therefore containing AB
+     * two-triangle rhombuses.)
+     */
+    if (order == 4)
+        return d1 * d2;
+    else
+        return d1*d1 + d2*d2 + 4*d1*d2;
+}
+
+static config_item *game_configure(const game_params *params)
+{
+    config_item *ret = snewn(4, config_item);
+    char buf[80];
+
+    ret[0].name = "Type of solid";
+    ret[0].type = C_CHOICES;
+    ret[0].sval = ":Tetrahedron:Cube:Octahedron:Icosahedron";
+    ret[0].ival = params->solid;
+
+    ret[1].name = "Width / top";
+    ret[1].type = C_STRING;
+    sprintf(buf, "%d", params->d1);
+    ret[1].sval = dupstr(buf);
+    ret[1].ival = 0;
+
+    ret[2].name = "Height / bottom";
+    ret[2].type = C_STRING;
+    sprintf(buf, "%d", params->d2);
+    ret[2].sval = dupstr(buf);
+    ret[2].ival = 0;
+
+    ret[3].name = NULL;
+    ret[3].type = C_END;
+    ret[3].sval = NULL;
+    ret[3].ival = 0;
+
+    return ret;
+}
+
+static game_params *custom_params(const config_item *cfg)
+{
+    game_params *ret = snew(game_params);
+
+    ret->solid = cfg[0].ival;
+    ret->d1 = atoi(cfg[1].sval);
+    ret->d2 = atoi(cfg[2].sval);
+
+    return ret;
+}
+
+static void count_grid_square_callback(void *ctx, struct grid_square *sq)
+{
+    int *classes = (int *)ctx;
+    int thisclass;
+
+    if (classes[4] == 4)
+       thisclass = sq->tetra_class;
+    else if (classes[4] == 2)
+       thisclass = sq->flip;
+    else
+       thisclass = 0;
+
+    classes[thisclass]++;
+}
+
+static char *validate_params(const game_params *params, int full)
+{
+    int classes[5];
+    int i;
+
+    if (params->solid < 0 || params->solid >= lenof(solids))
+       return "Unrecognised solid type";
+
+    if (solids[params->solid]->order == 4) {
+       if (params->d1 <= 0 || params->d2 <= 0)
+           return "Both grid dimensions must be greater than zero";
+    } else {
+       if (params->d1 <= 0 && params->d2 <= 0)
+           return "At least one grid dimension must be greater than zero";
+    }
+
+    for (i = 0; i < 4; i++)
+       classes[i] = 0;
+    if (params->solid == TETRAHEDRON)
+       classes[4] = 4;
+    else if (params->solid == OCTAHEDRON)
+       classes[4] = 2;
+    else
+       classes[4] = 1;
+    enum_grid_squares(params, count_grid_square_callback, classes);
+
+    for (i = 0; i < classes[4]; i++)
+       if (classes[i] < solids[params->solid]->nfaces / classes[4])
+           return "Not enough grid space to place all blue faces";
+
+    if (grid_area(params->d1, params->d2, solids[params->solid]->order) <
+       solids[params->solid]->nfaces + 1)
+       return "Not enough space to place the solid on an empty square";
+
+    return NULL;
+}
+
+struct grid_data {
+    int *gridptrs[4];
+    int nsquares[4];
+    int nclasses;
+    int squareindex;
+};
+
+static void classify_grid_square_callback(void *ctx, struct grid_square *sq)
+{
+    struct grid_data *data = (struct grid_data *)ctx;
+    int thisclass;
+
+    if (data->nclasses == 4)
+       thisclass = sq->tetra_class;
+    else if (data->nclasses == 2)
+       thisclass = sq->flip;
+    else
+       thisclass = 0;
+
+    data->gridptrs[thisclass][data->nsquares[thisclass]++] =
+       data->squareindex++;
+}
+
+static char *new_game_desc(const game_params *params, random_state *rs,
+                          char **aux, int interactive)
+{
+    struct grid_data data;
+    int i, j, k, m, area, facesperclass;
+    int *flags;
+    char *desc, *p;
+
+    /*
+     * Enumerate the grid squares, dividing them into equivalence
+     * classes as appropriate. (For the tetrahedron, there is one
+     * equivalence class for each face; for the octahedron there
+     * are two classes; for the other two solids there's only one.)
+     */
+
+    area = grid_area(params->d1, params->d2, solids[params->solid]->order);
+    if (params->solid == TETRAHEDRON)
+       data.nclasses = 4;
+    else if (params->solid == OCTAHEDRON)
+       data.nclasses = 2;
+    else
+       data.nclasses = 1;
+    data.gridptrs[0] = snewn(data.nclasses * area, int);
+    for (i = 0; i < data.nclasses; i++) {
+       data.gridptrs[i] = data.gridptrs[0] + i * area;
+       data.nsquares[i] = 0;
+    }
+    data.squareindex = 0;
+    enum_grid_squares(params, classify_grid_square_callback, &data);
+
+    facesperclass = solids[params->solid]->nfaces / data.nclasses;
+
+    for (i = 0; i < data.nclasses; i++)
+       assert(data.nsquares[i] >= facesperclass);
+    assert(data.squareindex == area);
+
+    /*
+     * So now we know how many faces to allocate in each class. Get
+     * on with it.
+     */
+    flags = snewn(area, int);
+    for (i = 0; i < area; i++)
+       flags[i] = FALSE;
+
+    for (i = 0; i < data.nclasses; i++) {
+       for (j = 0; j < facesperclass; j++) {
+            int n = random_upto(rs, data.nsquares[i]);
+
+           assert(!flags[data.gridptrs[i][n]]);
+           flags[data.gridptrs[i][n]] = TRUE;
+
+           /*
+            * Move everything else up the array. I ought to use a
+            * better data structure for this, but for such small
+            * numbers it hardly seems worth the effort.
+            */
+           while (n < data.nsquares[i]-1) {
+               data.gridptrs[i][n] = data.gridptrs[i][n+1];
+               n++;
+           }
+           data.nsquares[i]--;
+       }
+    }
+
+    /*
+     * Now we know precisely which squares are blue. Encode this
+     * information in hex. While we're looping over this, collect
+     * the non-blue squares into a list in the now-unused gridptrs
+     * array.
+     */
+    desc = snewn(area / 4 + 40, char);
+    p = desc;
+    j = 0;
+    k = 8;
+    m = 0;
+    for (i = 0; i < area; i++) {
+       if (flags[i]) {
+           j |= k;
+       } else {
+           data.gridptrs[0][m++] = i;
+       }
+       k >>= 1;
+       if (!k) {
+           *p++ = "0123456789ABCDEF"[j];
+           k = 8;
+           j = 0;
+       }
+    }
+    if (k != 8)
+       *p++ = "0123456789ABCDEF"[j];
+
+    /*
+     * Choose a non-blue square for the polyhedron.
+     */
+    sprintf(p, ",%d", data.gridptrs[0][random_upto(rs, m)]);
+
+    sfree(data.gridptrs[0]);
+    sfree(flags);
+
+    return desc;
+}
+
+static void add_grid_square_callback(void *ctx, struct grid_square *sq)
+{
+    game_grid *grid = (game_grid *)ctx;
+
+    grid->squares[grid->nsquares++] = *sq;   /* structure copy */
+}
+
+static int lowest_face(const struct solid *solid)
+{
+    int i, j, best;
+    float zmin;
+
+    best = 0;
+    zmin = 0.0;
+    for (i = 0; i < solid->nfaces; i++) {
+        float z = 0;
+
+        for (j = 0; j < solid->order; j++) {
+            int f = solid->faces[i*solid->order + j];
+            z += solid->vertices[f*3+2];
+        }
+
+        if (i == 0 || zmin > z) {
+            zmin = z;
+            best = i;
+        }
+    }
+
+    return best;
+}
+
+static int align_poly(const struct solid *solid, struct grid_square *sq,
+                      int *pkey)
+{
+    float zmin;
+    int i, j;
+    int flip = (sq->flip ? -1 : +1);
+
+    /*
+     * First, find the lowest z-coordinate present in the solid.
+     */
+    zmin = 0.0;
+    for (i = 0; i < solid->nvertices; i++)
+        if (zmin > solid->vertices[i*3+2])
+            zmin = solid->vertices[i*3+2];
+
+    /*
+     * Now go round the grid square. For each point in the grid
+     * square, we're looking for a point of the polyhedron with the
+     * same x- and y-coordinates (relative to the square's centre),
+     * and z-coordinate equal to zmin (near enough).
+     */
+    for (j = 0; j < sq->npoints; j++) {
+        int matches, index;
+
+        matches = 0;
+        index = -1;
+
+        for (i = 0; i < solid->nvertices; i++) {
+            float dist = 0;
+
+            dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x);
+            dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y);
+            dist += SQ(solid->vertices[i*3+2] - zmin);
+
+            if (dist < 0.1) {
+                matches++;
+                index = i;
+            }
+        }
+
+        if (matches != 1 || index < 0)
+            return FALSE;
+        pkey[j] = index;
+    }
+
+    return TRUE;
+}
+
+static void flip_poly(struct solid *solid, int flip)
+{
+    int i;
+
+    if (flip) {
+        for (i = 0; i < solid->nvertices; i++) {
+            solid->vertices[i*3+0] *= -1;
+            solid->vertices[i*3+1] *= -1;
+        }
+        for (i = 0; i < solid->nfaces; i++) {
+            solid->normals[i*3+0] *= -1;
+            solid->normals[i*3+1] *= -1;
+        }
+    }
+}
+
+static struct solid *transform_poly(const struct solid *solid, int flip,
+                                    int key0, int key1, float angle)
+{
+    struct solid *ret = snew(struct solid);
+    float vx, vy, ax, ay;
+    float vmatrix[9], amatrix[9], vmatrix2[9];
+    int i;
+
+    *ret = *solid;                     /* structure copy */
+
+    flip_poly(ret, flip);
+
+    /*
+     * Now rotate the polyhedron through the given angle. We must
+     * rotate about the Z-axis to bring the two vertices key0 and
+     * key1 into horizontal alignment, then rotate about the
+     * X-axis, then rotate back again.
+     */
+    vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0];
+    vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1];
+    assert(APPROXEQ(vx*vx + vy*vy, 1.0));
+
+    vmatrix[0] =  vx; vmatrix[3] = vy; vmatrix[6] = 0;
+    vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0;
+    vmatrix[2] =   0; vmatrix[5] =  0; vmatrix[8] = 1;
+
+    ax = (float)cos(angle);
+    ay = (float)sin(angle);
+
+    amatrix[0] = 1; amatrix[3] =   0; amatrix[6] =  0;
+    amatrix[1] = 0; amatrix[4] =  ax; amatrix[7] = ay;
+    amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax;
+
+    memcpy(vmatrix2, vmatrix, sizeof(vmatrix));
+    vmatrix2[1] = vy;
+    vmatrix2[3] = -vy;
+
+    for (i = 0; i < ret->nvertices; i++) {
+        MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i);
+        MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i);
+        MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i);
+    }
+    for (i = 0; i < ret->nfaces; i++) {
+        MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i);
+        MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i);
+        MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i);
+    }
+
+    return ret;
+}
+
+static char *validate_desc(const game_params *params, const char *desc)
+{
+    int area = grid_area(params->d1, params->d2, solids[params->solid]->order);
+    int i, j;
+
+    i = (area + 3) / 4;
+    for (j = 0; j < i; j++) {
+       int c = desc[j];
+       if (c >= '0' && c <= '9') continue;
+       if (c >= 'A' && c <= 'F') continue;
+       if (c >= 'a' && c <= 'f') continue;
+       return "Not enough hex digits at start of string";
+       /* NB if desc[j]=='\0' that will also be caught here, so we're safe */
+    }
+
+    if (desc[i] != ',')
+       return "Expected ',' after hex digits";
+
+    i++;
+    do {
+       if (desc[i] < '0' || desc[i] > '9')
+           return "Expected decimal integer after ','";
+       i++;
+    } while (desc[i]);
+
+    return NULL;
+}
+
+static game_state *new_game(midend *me, const game_params *params,
+                            const char *desc)
+{
+    game_grid *grid = snew(game_grid);
+    game_state *state = snew(game_state);
+    int area;
+
+    state->params = *params;           /* structure copy */
+    state->solid = solids[params->solid];
+
+    area = grid_area(params->d1, params->d2, state->solid->order);
+    grid->squares = snewn(area, struct grid_square);
+    grid->nsquares = 0;
+    enum_grid_squares(params, add_grid_square_callback, grid);
+    assert(grid->nsquares == area);
+    state->grid = grid;
+    grid->refcount = 1;
+
+    state->facecolours = snewn(state->solid->nfaces, int);
+    memset(state->facecolours, 0, state->solid->nfaces * sizeof(int));
+
+    state->bluemask = snewn((state->grid->nsquares + 31) / 32, unsigned long);
+    memset(state->bluemask, 0, (state->grid->nsquares + 31) / 32 *
+          sizeof(unsigned long));
+
+    /*
+     * Set up the blue squares and polyhedron position according to
+     * the game description.
+     */
+    {
+       const char *p = desc;
+       int i, j, v;
+
+       j = 8;
+       v = 0;
+       for (i = 0; i < state->grid->nsquares; i++) {
+           if (j == 8) {
+               v = *p++;
+               if (v >= '0' && v <= '9')
+                   v -= '0';
+               else if (v >= 'A' && v <= 'F')
+                   v -= 'A' - 10;
+               else if (v >= 'a' && v <= 'f')
+                   v -= 'a' - 10;
+               else
+                   break;
+           }
+           if (v & j)
+               SET_SQUARE(state, i, TRUE);
+           j >>= 1;
+           if (j == 0)
+               j = 8;
+       }
+
+       if (*p == ',')
+           p++;
+
+       state->current = atoi(p);
+       if (state->current < 0 || state->current >= state->grid->nsquares)
+           state->current = 0;        /* got to do _something_ */
+    }
+
+    /*
+     * Align the polyhedron with its grid square and determine
+     * initial key points.
+     */
+    {
+        int pkey[4];
+        int ret;
+
+        ret = align_poly(state->solid, &state->grid->squares[state->current], pkey);
+        assert(ret);
+
+        state->dpkey[0] = state->spkey[0] = pkey[0];
+        state->dpkey[1] = state->spkey[0] = pkey[1];
+        state->dgkey[0] = state->sgkey[0] = 0;
+        state->dgkey[1] = state->sgkey[0] = 1;
+    }
+
+    state->previous = state->current;
+    state->angle = 0.0;
+    state->completed = 0;
+    state->movecount = 0;
+
+    return state;
+}
+
+static game_state *dup_game(const game_state *state)
+{
+    game_state *ret = snew(game_state);
+
+    ret->params = state->params;           /* structure copy */
+    ret->solid = state->solid;
+    ret->facecolours = snewn(ret->solid->nfaces, int);
+    memcpy(ret->facecolours, state->facecolours,
+           ret->solid->nfaces * sizeof(int));
+    ret->current = state->current;
+    ret->grid = state->grid;
+    ret->grid->refcount++;
+    ret->bluemask = snewn((ret->grid->nsquares + 31) / 32, unsigned long);
+    memcpy(ret->bluemask, state->bluemask, (ret->grid->nsquares + 31) / 32 *
+          sizeof(unsigned long));
+    ret->dpkey[0] = state->dpkey[0];
+    ret->dpkey[1] = state->dpkey[1];
+    ret->dgkey[0] = state->dgkey[0];
+    ret->dgkey[1] = state->dgkey[1];
+    ret->spkey[0] = state->spkey[0];
+    ret->spkey[1] = state->spkey[1];
+    ret->sgkey[0] = state->sgkey[0];
+    ret->sgkey[1] = state->sgkey[1];
+    ret->previous = state->previous;
+    ret->angle = state->angle;
+    ret->completed = state->completed;
+    ret->movecount = state->movecount;
+
+    return ret;
+}
+
+static void free_game(game_state *state)
+{
+    if (--state->grid->refcount <= 0) {
+       sfree(state->grid->squares);
+       sfree(state->grid);
+    }
+    sfree(state->bluemask);
+    sfree(state->facecolours);
+    sfree(state);
+}
+
+static char *solve_game(const game_state *state, const game_state *currstate,
+                        const char *aux, char **error)
+{
+    return NULL;
+}
+
+static int game_can_format_as_text_now(const game_params *params)
+{
+    return TRUE;
+}
+
+static char *game_text_format(const game_state *state)
+{
+    return NULL;
+}
+
+static game_ui *new_ui(const game_state *state)
+{
+    return NULL;
+}
+
+static void free_ui(game_ui *ui)
+{
+}
+
+static char *encode_ui(const game_ui *ui)
+{
+    return NULL;
+}
+
+static void decode_ui(game_ui *ui, const char *encoding)
+{
+}
+
+static void game_changed_state(game_ui *ui, const game_state *oldstate,
+                               const game_state *newstate)
+{
+}
+
+struct game_drawstate {
+    float gridscale;
+    int ox, oy;                        /* pixel position of float origin */
+};
+
+/*
+ * Code shared between interpret_move() and execute_move().
+ */
+static int find_move_dest(const game_state *from, int direction,
+                         int *skey, int *dkey)
+{
+    int mask, dest, i, j;
+    float points[4];
+
+    /*
+     * Find the two points in the current grid square which
+     * correspond to this move.
+     */
+    mask = from->grid->squares[from->current].directions[direction];
+    if (mask == 0)
+        return -1;
+    for (i = j = 0; i < from->grid->squares[from->current].npoints; i++)
+        if (mask & (1 << i)) {
+            points[j*2] = from->grid->squares[from->current].points[i*2];
+            points[j*2+1] = from->grid->squares[from->current].points[i*2+1];
+            skey[j] = i;
+            j++;
+        }
+    assert(j == 2);
+
+    /*
+     * Now find the other grid square which shares those points.
+     * This is our move destination.
+     */
+    dest = -1;
+    for (i = 0; i < from->grid->nsquares; i++)
+        if (i != from->current) {
+            int match = 0;
+            float dist;
+
+            for (j = 0; j < from->grid->squares[i].npoints; j++) {
+                dist = (SQ(from->grid->squares[i].points[j*2] - points[0]) +
+                        SQ(from->grid->squares[i].points[j*2+1] - points[1]));
+                if (dist < 0.1)
+                    dkey[match++] = j;
+                dist = (SQ(from->grid->squares[i].points[j*2] - points[2]) +
+                        SQ(from->grid->squares[i].points[j*2+1] - points[3]));
+                if (dist < 0.1)
+                    dkey[match++] = j;
+            }
+
+            if (match == 2) {
+                dest = i;
+                break;
+            }
+        }
+
+    return dest;
+}
+
+static char *interpret_move(const game_state *state, game_ui *ui,
+                            const game_drawstate *ds,
+                            int x, int y, int button)
+{
+    int direction, mask, i;
+    int skey[2], dkey[2];
+
+    button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
+
+    /*
+     * Moves can be made with the cursor keys or numeric keypad, or
+     * alternatively you can left-click and the polyhedron will
+     * move in the general direction of the mouse pointer.
+     */
+    if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
+        direction = UP;
+    else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
+        direction = DOWN;
+    else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
+        direction = LEFT;
+    else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
+        direction = RIGHT;
+    else if (button == (MOD_NUM_KEYPAD | '7'))
+        direction = UP_LEFT;
+    else if (button == (MOD_NUM_KEYPAD | '1'))
+        direction = DOWN_LEFT;
+    else if (button == (MOD_NUM_KEYPAD | '9'))
+        direction = UP_RIGHT;
+    else if (button == (MOD_NUM_KEYPAD | '3'))
+        direction = DOWN_RIGHT;
+    else if (button == LEFT_BUTTON) {
+        /*
+         * Find the bearing of the click point from the current
+         * square's centre.
+         */
+        int cx, cy;
+        double angle;
+
+        cx = (int)(state->grid->squares[state->current].x * GRID_SCALE) + ds->ox;
+        cy = (int)(state->grid->squares[state->current].y * GRID_SCALE) + ds->oy;
+
+        if (x == cx && y == cy)
+            return NULL;               /* clicked in exact centre!  */
+        angle = atan2(y - cy, x - cx);
+
+        /*
+         * There are three possibilities.
+         * 
+         *  - This square is a square, so we choose between UP,
+         *    DOWN, LEFT and RIGHT by dividing the available angle
+         *    at the 45-degree points.
+         * 
+         *  - This square is an up-pointing triangle, so we choose
+         *    between DOWN, LEFT and RIGHT by dividing into
+         *    120-degree arcs.
+         * 
+         *  - This square is a down-pointing triangle, so we choose
+         *    between UP, LEFT and RIGHT in the inverse manner.
+         * 
+         * Don't forget that since our y-coordinates increase
+         * downwards, `angle' is measured _clockwise_ from the
+         * x-axis, not anticlockwise as most mathematicians would
+         * instinctively assume.
+         */
+        if (state->grid->squares[state->current].npoints == 4) {
+            /* Square. */
+            if (fabs(angle) > 3*PI/4)
+                direction = LEFT;
+            else if (fabs(angle) < PI/4)
+                direction = RIGHT;
+            else if (angle > 0)
+                direction = DOWN;
+            else
+                direction = UP;
+        } else if (state->grid->squares[state->current].directions[UP] == 0) {
+            /* Up-pointing triangle. */
+            if (angle < -PI/2 || angle > 5*PI/6)
+                direction = LEFT;
+            else if (angle > PI/6)
+                direction = DOWN;
+            else
+                direction = RIGHT;
+        } else {
+            /* Down-pointing triangle. */
+            assert(state->grid->squares[state->current].directions[DOWN] == 0);
+            if (angle > PI/2 || angle < -5*PI/6)
+                direction = LEFT;
+            else if (angle < -PI/6)
+                direction = UP;
+            else
+                direction = RIGHT;
+        }
+    } else
+        return NULL;
+
+    mask = state->grid->squares[state->current].directions[direction];
+    if (mask == 0)
+        return NULL;
+
+    /*
+     * Translate diagonal directions into orthogonal ones.
+     */
+    if (direction > DOWN) {
+       for (i = LEFT; i <= DOWN; i++)
+           if (state->grid->squares[state->current].directions[i] == mask) {
+               direction = i;
+               break;
+           }
+       assert(direction <= DOWN);
+    }
+
+    if (find_move_dest(state, direction, skey, dkey) < 0)
+       return NULL;
+
+    if (direction == LEFT)  return dupstr("L");
+    if (direction == RIGHT) return dupstr("R");
+    if (direction == UP)    return dupstr("U");
+    if (direction == DOWN)  return dupstr("D");
+
+    return NULL;                      /* should never happen */
+}
+
+static game_state *execute_move(const game_state *from, const char *move)
+{
+    game_state *ret;
+    float angle;
+    struct solid *poly;
+    int pkey[2];
+    int skey[2], dkey[2];
+    int i, j, dest;
+    int direction;
+
+    switch (*move) {
+      case 'L': direction = LEFT; break;
+      case 'R': direction = RIGHT; break;
+      case 'U': direction = UP; break;
+      case 'D': direction = DOWN; break;
+      default: return NULL;
+    }
+
+    dest = find_move_dest(from, direction, skey, dkey);
+    if (dest < 0)
+        return NULL;
+
+    ret = dup_game(from);
+    ret->current = dest;
+
+    /*
+     * So we know what grid square we're aiming for, and we also
+     * know the two key points (as indices in both the source and
+     * destination grid squares) which are invariant between source
+     * and destination.
+     * 
+     * Next we must roll the polyhedron on to that square. So we
+     * find the indices of the key points within the polyhedron's
+     * vertex array, then use those in a call to transform_poly,
+     * and align the result on the new grid square.
+     */
+    {
+        int all_pkey[4];
+        align_poly(from->solid, &from->grid->squares[from->current], all_pkey);
+        pkey[0] = all_pkey[skey[0]];
+        pkey[1] = all_pkey[skey[1]];
+        /*
+         * Now pkey[0] corresponds to skey[0] and dkey[0], and
+         * likewise [1].
+         */
+    }
+
+    /*
+     * Now find the angle through which to rotate the polyhedron.
+     * Do this by finding the two faces that share the two vertices
+     * we've found, and taking the dot product of their normals.
+     */
+    {
+        int f[2], nf = 0;
+        float dp;
+
+        for (i = 0; i < from->solid->nfaces; i++) {
+            int match = 0;
+            for (j = 0; j < from->solid->order; j++)
+                if (from->solid->faces[i*from->solid->order + j] == pkey[0] ||
+                    from->solid->faces[i*from->solid->order + j] == pkey[1])
+                    match++;
+            if (match == 2) {
+                assert(nf < 2);
+                f[nf++] = i;
+            }
+        }
+
+        assert(nf == 2);
+
+        dp = 0;
+        for (i = 0; i < 3; i++)
+            dp += (from->solid->normals[f[0]*3+i] *
+                   from->solid->normals[f[1]*3+i]);
+        angle = (float)acos(dp);
+    }
+
+    /*
+     * Now transform the polyhedron. We aren't entirely sure
+     * whether we need to rotate through angle or -angle, and the
+     * simplest way round this is to try both and see which one
+     * aligns successfully!
+     * 
+     * Unfortunately, _both_ will align successfully if this is a
+     * cube, which won't tell us anything much. So for that
+     * particular case, I resort to gross hackery: I simply negate
+     * the angle before trying the alignment, depending on the
+     * direction. Which directions work which way is determined by
+     * pure trial and error. I said it was gross :-/
+     */
+    {
+        int all_pkey[4];
+        int success;
+
+        if (from->solid->order == 4 && direction == UP)
+            angle = -angle;            /* HACK */
+
+        poly = transform_poly(from->solid,
+                              from->grid->squares[from->current].flip,
+                              pkey[0], pkey[1], angle);
+        flip_poly(poly, from->grid->squares[ret->current].flip);
+        success = align_poly(poly, &from->grid->squares[ret->current], all_pkey);
+
+        if (!success) {
+            sfree(poly);
+            angle = -angle;
+            poly = transform_poly(from->solid,
+                                  from->grid->squares[from->current].flip,
+                                  pkey[0], pkey[1], angle);
+            flip_poly(poly, from->grid->squares[ret->current].flip);
+            success = align_poly(poly, &from->grid->squares[ret->current], all_pkey);
+        }
+
+        assert(success);
+    }
+
+    /*
+     * Now we have our rotated polyhedron, which we expect to be
+     * exactly congruent to the one we started with - but with the
+     * faces permuted. So we map that congruence and thereby figure
+     * out how to permute the faces as a result of the polyhedron
+     * having rolled.
+     */
+    {
+        int *newcolours = snewn(from->solid->nfaces, int);
+
+        for (i = 0; i < from->solid->nfaces; i++)
+            newcolours[i] = -1;
+
+        for (i = 0; i < from->solid->nfaces; i++) {
+            int nmatch = 0;
+
+            /*
+             * Now go through the transformed polyhedron's faces
+             * and figure out which one's normal is approximately
+             * equal to this one.
+             */
+            for (j = 0; j < poly->nfaces; j++) {
+                float dist;
+                int k;
+
+                dist = 0;
+
+                for (k = 0; k < 3; k++)
+                    dist += SQ(poly->normals[j*3+k] -
+                               from->solid->normals[i*3+k]);
+
+                if (APPROXEQ(dist, 0)) {
+                    nmatch++;
+                    newcolours[i] = ret->facecolours[j];
+                }
+            }
+
+            assert(nmatch == 1);
+        }
+
+        for (i = 0; i < from->solid->nfaces; i++)
+            assert(newcolours[i] != -1);
+
+        sfree(ret->facecolours);
+        ret->facecolours = newcolours;
+    }
+
+    ret->movecount++;
+
+    /*
+     * And finally, swap the colour between the bottom face of the
+     * polyhedron and the face we've just landed on.
+     * 
+     * We don't do this if the game is already complete, since we
+     * allow the user to roll the fully blue polyhedron around the
+     * grid as a feeble reward.
+     */
+    if (!ret->completed) {
+        i = lowest_face(from->solid);
+        j = ret->facecolours[i];
+        ret->facecolours[i] = GET_SQUARE(ret, ret->current);
+        SET_SQUARE(ret, ret->current, j);
+
+        /*
+         * Detect game completion.
+         */
+        j = 0;
+        for (i = 0; i < ret->solid->nfaces; i++)
+            if (ret->facecolours[i])
+                j++;
+        if (j == ret->solid->nfaces)
+            ret->completed = ret->movecount;
+    }
+
+    sfree(poly);
+
+    /*
+     * Align the normal polyhedron with its grid square, to get key
+     * points for non-animated display.
+     */
+    {
+        int pkey[4];
+        int success;
+
+        success = align_poly(ret->solid, &ret->grid->squares[ret->current], pkey);
+        assert(success);
+
+        ret->dpkey[0] = pkey[0];
+        ret->dpkey[1] = pkey[1];
+        ret->dgkey[0] = 0;
+        ret->dgkey[1] = 1;
+    }
+
+
+    ret->spkey[0] = pkey[0];
+    ret->spkey[1] = pkey[1];
+    ret->sgkey[0] = skey[0];
+    ret->sgkey[1] = skey[1];
+    ret->previous = from->current;
+    ret->angle = angle;
+
+    return ret;
+}
+
+/* ----------------------------------------------------------------------
+ * Drawing routines.
+ */
+
+struct bbox {
+    float l, r, u, d;
+};
+
+static void find_bbox_callback(void *ctx, struct grid_square *sq)
+{
+    struct bbox *bb = (struct bbox *)ctx;
+    int i;
+
+    for (i = 0; i < sq->npoints; i++) {
+        if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2];
+        if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2];
+        if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1];
+        if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1];
+    }
+}
+
+static struct bbox find_bbox(const game_params *params)
+{
+    struct bbox bb;
+
+    /*
+     * These should be hugely more than the real bounding box will
+     * be.
+     */
+    bb.l = 2.0F * (params->d1 + params->d2);
+    bb.r = -2.0F * (params->d1 + params->d2);
+    bb.u = 2.0F * (params->d1 + params->d2);
+    bb.d = -2.0F * (params->d1 + params->d2);
+    enum_grid_squares(params, find_bbox_callback, &bb);
+
+    return bb;
+}
+
+#define XSIZE(gs, bb, solid) \
+    ((int)(((bb).r - (bb).l + 2*(solid)->border) * gs))
+#define YSIZE(gs, bb, solid) \
+    ((int)(((bb).d - (bb).u + 2*(solid)->border) * gs))
+
+static void game_compute_size(const game_params *params, int tilesize,
+                              int *x, int *y)
+{
+    struct bbox bb = find_bbox(params);
+
+    *x = XSIZE(tilesize, bb, solids[params->solid]);
+    *y = YSIZE(tilesize, bb, solids[params->solid]);
+}
+
+static void game_set_size(drawing *dr, game_drawstate *ds,
+                          const game_params *params, int tilesize)
+{
+    struct bbox bb = find_bbox(params);
+
+    ds->gridscale = (float)tilesize;
+    ds->ox = (int)(-(bb.l - solids[params->solid]->border) * ds->gridscale);
+    ds->oy = (int)(-(bb.u - solids[params->solid]->border) * ds->gridscale);
+}
+
+static float *game_colours(frontend *fe, int *ncolours)
+{
+    float *ret = snewn(3 * NCOLOURS, float);
+
+    frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
+
+    ret[COL_BORDER * 3 + 0] = 0.0;
+    ret[COL_BORDER * 3 + 1] = 0.0;
+    ret[COL_BORDER * 3 + 2] = 0.0;
+
+    ret[COL_BLUE * 3 + 0] = 0.0;
+    ret[COL_BLUE * 3 + 1] = 0.0;
+    ret[COL_BLUE * 3 + 2] = 1.0;
+
+    *ncolours = NCOLOURS;
+    return ret;
+}
+
+static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
+{
+    struct game_drawstate *ds = snew(struct game_drawstate);
+
+    ds->ox = ds->oy = 0;
+    ds->gridscale = 0.0F; /* not decided yet */
+
+    return ds;
+}
+
+static void game_free_drawstate(drawing *dr, game_drawstate *ds)
+{
+    sfree(ds);
+}
+
+static void game_redraw(drawing *dr, game_drawstate *ds,
+                        const game_state *oldstate, const game_state *state,
+                        int dir, const game_ui *ui,
+                        float animtime, float flashtime)
+{
+    int i, j;
+    struct bbox bb = find_bbox(&state->params);
+    struct solid *poly;
+    const int *pkey, *gkey;
+    float t[3];
+    float angle;
+    int square;
+
+    draw_rect(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid),
+             YSIZE(GRID_SCALE, bb, state->solid), COL_BACKGROUND);
+
+    if (dir < 0) {
+        const game_state *t;
+
+        /*
+         * This is an Undo. So reverse the order of the states, and
+         * run the roll timer backwards.
+         */
+       assert(oldstate);
+
+        t = oldstate;
+        oldstate = state;
+        state = t;
+
+        animtime = ROLLTIME - animtime;
+    }
+
+    if (!oldstate) {
+        oldstate = state;
+        angle = 0.0;
+        square = state->current;
+        pkey = state->dpkey;
+        gkey = state->dgkey;
+    } else {
+        angle = state->angle * animtime / ROLLTIME;
+        square = state->previous;
+        pkey = state->spkey;
+        gkey = state->sgkey;
+    }
+    state = oldstate;
+
+    for (i = 0; i < state->grid->nsquares; i++) {
+        int coords[8];
+
+        for (j = 0; j < state->grid->squares[i].npoints; j++) {
+            coords[2*j] = ((int)(state->grid->squares[i].points[2*j] * GRID_SCALE)
+                          + ds->ox);
+            coords[2*j+1] = ((int)(state->grid->squares[i].points[2*j+1]*GRID_SCALE)
+                            + ds->oy);
+        }
+
+        draw_polygon(dr, coords, state->grid->squares[i].npoints,
+                     GET_SQUARE(state, i) ? COL_BLUE : COL_BACKGROUND,
+                    COL_BORDER);
+    }
+
+    /*
+     * Now compute and draw the polyhedron.
+     */
+    poly = transform_poly(state->solid, state->grid->squares[square].flip,
+                          pkey[0], pkey[1], angle);
+
+    /*
+     * Compute the translation required to align the two key points
+     * on the polyhedron with the same key points on the current
+     * face.
+     */
+    for (i = 0; i < 3; i++) {
+        float tc = 0.0;
+
+        for (j = 0; j < 2; j++) {
+            float grid_coord;
+
+            if (i < 2) {
+                grid_coord =
+                    state->grid->squares[square].points[gkey[j]*2+i];
+            } else {
+                grid_coord = 0.0;
+            }
+
+            tc += (grid_coord - poly->vertices[pkey[j]*3+i]);
+        }
+
+        t[i] = tc / 2;
+    }
+    for (i = 0; i < poly->nvertices; i++)
+        for (j = 0; j < 3; j++)
+            poly->vertices[i*3+j] += t[j];
+
+    /*
+     * Now actually draw each face.
+     */
+    for (i = 0; i < poly->nfaces; i++) {
+        float points[8];
+        int coords[8];
+
+        for (j = 0; j < poly->order; j++) {
+            int f = poly->faces[i*poly->order + j];
+            points[j*2] = (poly->vertices[f*3+0] -
+                           poly->vertices[f*3+2] * poly->shear);
+            points[j*2+1] = (poly->vertices[f*3+1] -
+                             poly->vertices[f*3+2] * poly->shear);
+        }
+
+        for (j = 0; j < poly->order; j++) {
+            coords[j*2] = (int)floor(points[j*2] * GRID_SCALE) + ds->ox;
+            coords[j*2+1] = (int)floor(points[j*2+1] * GRID_SCALE) + ds->oy;
+        }
+
+        /*
+         * Find out whether these points are in a clockwise or
+         * anticlockwise arrangement. If the latter, discard the
+         * face because it's facing away from the viewer.
+         *
+         * This would involve fiddly winding-number stuff for a
+         * general polygon, but for the simple parallelograms we'll
+         * be seeing here, all we have to do is check whether the
+         * corners turn right or left. So we'll take the vector
+         * from point 0 to point 1, turn it right 90 degrees,
+         * and check the sign of the dot product with that and the
+         * next vector (point 1 to point 2).
+         */
+        {
+            float v1x = points[2]-points[0];
+            float v1y = points[3]-points[1];
+            float v2x = points[4]-points[2];
+            float v2y = points[5]-points[3];
+            float dp = v1x * v2y - v1y * v2x;
+
+            if (dp <= 0)
+                continue;
+        }
+
+        draw_polygon(dr, coords, poly->order,
+                     state->facecolours[i] ? COL_BLUE : COL_BACKGROUND,
+                    COL_BORDER);
+    }
+    sfree(poly);
+
+    draw_update(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid),
+               YSIZE(GRID_SCALE, bb, state->solid));
+
+    /*
+     * Update the status bar.
+     */
+    {
+       char statusbuf[256];
+
+       sprintf(statusbuf, "%sMoves: %d",
+               (state->completed ? "COMPLETED! " : ""),
+               (state->completed ? state->completed : state->movecount));
+
+       status_bar(dr, statusbuf);
+    }
+}
+
+static float game_anim_length(const game_state *oldstate,
+                              const game_state *newstate, int dir, game_ui *ui)
+{
+    return ROLLTIME;
+}
+
+static float game_flash_length(const game_state *oldstate,
+                               const game_state *newstate, int dir, game_ui *ui)
+{
+    return 0.0F;
+}
+
+static int game_status(const game_state *state)
+{
+    return state->completed ? +1 : 0;
+}
+
+static int game_timing_state(const game_state *state, game_ui *ui)
+{
+    return TRUE;
+}
+
+static void game_print_size(const game_params *params, float *x, float *y)
+{
+}
+
+static void game_print(drawing *dr, const game_state *state, int tilesize)
+{
+}
+
+#ifdef COMBINED
+#define thegame cube
+#endif
+
+const struct game thegame = {
+    "Cube", "games.cube", "cube",
+    default_params,
+    game_fetch_preset,
+    decode_params,
+    encode_params,
+    free_params,
+    dup_params,
+    TRUE, game_configure, custom_params,
+    validate_params,
+    new_game_desc,
+    validate_desc,
+    new_game,
+    dup_game,
+    free_game,
+    FALSE, solve_game,
+    FALSE, game_can_format_as_text_now, game_text_format,
+    new_ui,
+    free_ui,
+    encode_ui,
+    decode_ui,
+    game_changed_state,
+    interpret_move,
+    execute_move,
+    PREFERRED_GRID_SCALE, game_compute_size, game_set_size,
+    game_colours,
+    game_new_drawstate,
+    game_free_drawstate,
+    game_redraw,
+    game_anim_length,
+    game_flash_length,
+    game_status,
+    FALSE, FALSE, game_print_size, game_print,
+    TRUE,                             /* wants_statusbar */
+    FALSE, game_timing_state,
+    0,                                /* flags */
+};