2 * singles.c: implementation of Hitori ('let me alone') from Nikoli.
4 * Make single-get able to fetch a specific puzzle ID from menneske.no?
6 * www.menneske.no solving methods:
9 * SC: if you circle a cell, any cells in same row/col with same no --> black
11 * SB: if you make a cell black, any cells around it --> white
12 * -- solver_op_blacken
13 * ST: 3 identical cells in row, centre is white and outer two black.
14 * SP: 2 identical cells with single-cell gap, middle cell is white.
15 * -- solver_singlesep (both ST and SP)
16 * PI: if you have a pair of same number in row/col, any other
17 * cells of same number must be black.
19 * CC: if you have a black on edge one cell away from corner, cell
20 * on edge diag. adjacent must be white.
21 * CE: if you have 2 black cells of triangle on edge, third cell must
23 * QM: if you have 3 black cells of diagonal square in middle, fourth
25 * -- solve_allblackbutone (CC, CE, and QM).
26 * QC: a corner with 4 identical numbers (or 2 and 2) must have the
27 * corner cell (and cell diagonal to that) black.
28 * TC: a corner with 3 identical numbers (with the L either way)
29 * must have the apex of L black, and other two white.
30 * DC: a corner with 2 identical numbers in domino can set a white
32 * -- solve_corners (QC, TC, DC)
33 * IP: pair with one-offset-pair force whites by offset pair
35 * MC: any cells diag. adjacent to black cells that would split board
36 * into separate white regions must be white.
37 * -- solve_removesplits
41 * TEP: 3 pairs of dominos parallel to side, can mark 4 white cells
43 * DEP: 2 pairs of dominos parallel to side, can mark 2 white cells.
44 * FI: if you have two sets of double-cells packed together, singles
45 * in that row/col must be white (qv. PI)
46 * QuM: four identical cells (or 2 and 2) in middle of grid only have
47 * two possible solutions each.
48 * FDE: doubles one row/column away from edge can force a white cell.
49 * FDM: doubles in centre (next to bits of diag. square) can force a white cell.
50 * MP: two pairs with same number between force number to black.
51 * CnC: if circling a cell leads to impossible board, cell is black.
52 * MC: if we have two possiblilities, can we force a white circle?
66 #ifdef STANDALONE_SOLVER
70 #define PREFERRED_TILE_SIZE 32
71 #define TILE_SIZE (ds->tilesize)
72 #define BORDER (TILE_SIZE / 2)
74 #define CRAD ((TILE_SIZE / 2) - 1)
75 #define TEXTSZ ((14*CRAD/10) - 1) /* 2 * sqrt(2) of CRAD */
77 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
78 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
80 #define INGRID(s,x,y) ((x) >= 0 && (x) < (s)->w && (y) >= 0 && (y) < (s)->h)
82 #define FLASH_TIME 0.7F
85 COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT,
86 COL_BLACK, COL_WHITE, COL_BLACKNUM, COL_GRID,
87 COL_CURSOR, COL_ERROR,
101 int w, h, n, o; /* n = w*h; o = max(w, h) */
102 int completed, used_solve, impossible;
103 int *nums; /* size w*h */
104 unsigned int *flags; /* size w*h */
107 /* top, right, bottom, left */
108 static const int dxs[4] = { 0, 1, 0, -1 };
109 static const int dys[4] = { -1, 0, 1, 0 };
111 /* --- Game parameters and preset functions --- */
113 #define DIFFLIST(A) \
117 #define ENUM(upper,title,lower) DIFF_ ## upper,
118 #define TITLE(upper,title,lower) #title,
119 #define ENCODE(upper,title,lower) #lower
120 #define CONFIG(upper,title,lower) ":" #title
122 enum { DIFFLIST(ENUM) DIFF_MAX, DIFF_ANY };
123 static char const *const singles_diffnames[] = { DIFFLIST(TITLE) };
124 static char const singles_diffchars[] = DIFFLIST(ENCODE);
125 #define DIFFCOUNT lenof(singles_diffchars)
126 #define DIFFCONFIG DIFFLIST(CONFIG)
128 static game_params *default_params(void)
130 game_params *ret = snew(game_params);
132 ret->diff = DIFF_EASY;
137 static const struct game_params singles_presets[] = {
139 { 5, 5, DIFF_TRICKY },
141 { 6, 6, DIFF_TRICKY },
143 { 8, 8, DIFF_TRICKY },
144 { 10, 10, DIFF_EASY },
145 { 10, 10, DIFF_TRICKY },
146 { 12, 12, DIFF_EASY },
147 { 12, 12, DIFF_TRICKY }
150 static int game_fetch_preset(int i, char **name, game_params **params)
155 if (i < 0 || i >= lenof(singles_presets))
158 ret = default_params();
159 *ret = singles_presets[i];
162 sprintf(buf, "%dx%d %s", ret->w, ret->h, singles_diffnames[ret->diff]);
168 static void free_params(game_params *params)
173 static game_params *dup_params(const game_params *params)
175 game_params *ret = snew(game_params);
176 *ret = *params; /* structure copy */
180 static void decode_params(game_params *ret, char const *string)
182 char const *p = string;
185 ret->w = ret->h = atoi(p);
186 while (*p && isdigit((unsigned char)*p)) p++;
190 while (*p && isdigit((unsigned char)*p)) p++;
193 ret->diff = DIFF_MAX; /* which is invalid */
195 for (i = 0; i < DIFFCOUNT; i++) {
196 if (*p == singles_diffchars[i])
203 static char *encode_params(const game_params *params, int full)
208 sprintf(data, "%dx%dd%c", params->w, params->h, singles_diffchars[params->diff]);
210 sprintf(data, "%dx%d", params->w, params->h);
215 static config_item *game_configure(const game_params *params)
220 ret = snewn(4, config_item);
222 ret[0].name = "Width";
223 ret[0].type = C_STRING;
224 sprintf(buf, "%d", params->w);
225 ret[0].sval = dupstr(buf);
228 ret[1].name = "Height";
229 ret[1].type = C_STRING;
230 sprintf(buf, "%d", params->h);
231 ret[1].sval = dupstr(buf);
234 ret[2].name = "Difficulty";
235 ret[2].type = C_CHOICES;
236 ret[2].sval = DIFFCONFIG;
237 ret[2].ival = params->diff;
247 static game_params *custom_params(const config_item *cfg)
249 game_params *ret = snew(game_params);
251 ret->w = atoi(cfg[0].sval);
252 ret->h = atoi(cfg[1].sval);
253 ret->diff = cfg[2].ival;
258 static char *validate_params(const game_params *params, int full)
260 if (params->w < 2 || params->h < 2)
261 return "Width and neight must be at least two";
262 if (params->w > 10+26+26 || params->h > 10+26+26)
263 return "Puzzle is too large";
265 if (params->diff < 0 || params->diff >= DIFF_MAX)
266 return "Unknown difficulty rating";
272 /* --- Game description string generation and unpicking --- */
274 static game_state *blank_game(int w, int h)
276 game_state *state = snew(game_state);
278 memset(state, 0, sizeof(game_state));
284 state->completed = state->used_solve = state->impossible = 0;
286 state->nums = snewn(state->n, int);
287 state->flags = snewn(state->n, unsigned int);
289 memset(state->nums, 0, state->n*sizeof(int));
290 memset(state->flags, 0, state->n*sizeof(unsigned int));
295 static game_state *dup_game(const game_state *state)
297 game_state *ret = blank_game(state->w, state->h);
299 ret->completed = state->completed;
300 ret->used_solve = state->used_solve;
301 ret->impossible = state->impossible;
303 memcpy(ret->nums, state->nums, state->n*sizeof(int));
304 memcpy(ret->flags, state->flags, state->n*sizeof(unsigned int));
309 static void free_game(game_state *state)
316 static char n2c(int num) {
319 else if (num < 10+26)
320 return 'a' + num - 10;
322 return 'A' + num - 10 - 26;
326 static int c2n(char c) {
327 if (isdigit((unsigned char)c))
328 return (int)(c - '0');
329 else if (c >= 'a' && c <= 'z')
330 return (int)(c - 'a' + 10);
331 else if (c >= 'A' && c <= 'Z')
332 return (int)(c - 'A' + 10 + 26);
336 static void unpick_desc(const game_params *params, const char *desc,
337 game_state **sout, char **mout)
339 game_state *state = blank_game(params->w, params->h);
343 if (strlen(desc) != state->n) {
344 msg = "Game description is wrong length";
347 for (i = 0; i < state->n; i++) {
349 if (num <= 0 || num > state->o) {
350 msg = "Game description contains unexpected characters";
353 state->nums[i] = num;
356 if (msg) { /* sth went wrong. */
357 if (mout) *mout = msg;
360 if (mout) *mout = NULL;
361 if (sout) *sout = state;
362 else free_game(state);
366 static char *generate_desc(game_state *state, int issolve)
368 char *ret = snewn(state->n+1+(issolve?1:0), char);
373 for (i = 0; i < state->n; i++)
374 ret[p++] = n2c(state->nums[i]);
379 /* --- Useful game functions (completion, etc.) --- */
381 static int game_can_format_as_text_now(const game_params *params)
386 static char *game_text_format(const game_state *state)
391 len = (state->w)*2; /* one row ... */
392 len = len * (state->h*2); /* ... h rows, including gaps ... */
393 len += 1; /* ... final NL */
394 p = ret = snewn(len, char);
396 for (y = 0; y < state->h; y++) {
397 for (x = 0; x < state->w; x++) {
399 if (x > 0) *p++ = ' ';
400 *p++ = (state->flags[i] & F_BLACK) ? '*' : n2c(state->nums[i]);
403 for (x = 0; x < state->w; x++) {
405 if (x > 0) *p++ = ' ';
406 *p++ = (state->flags[i] & F_CIRCLE) ? '~' : ' ';
411 assert(p - ret == len);
416 static void debug_state(const char *desc, game_state *state) {
417 char *dbg = game_text_format(state);
418 debug(("%s:\n%s", desc, dbg));
422 static void connect_if_same(game_state *state, int *dsf, int i1, int i2)
426 if ((state->flags[i1] & F_BLACK) != (state->flags[i2] & F_BLACK))
429 c1 = dsf_canonify(dsf, i1);
430 c2 = dsf_canonify(dsf, i2);
431 dsf_merge(dsf, c1, c2);
434 static void connect_dsf(game_state *state, int *dsf)
438 /* Construct a dsf array for connected blocks; connections
439 * tracked to right and down. */
440 dsf_init(dsf, state->n);
441 for (x = 0; x < state->w; x++) {
442 for (y = 0; y < state->h; y++) {
446 connect_if_same(state, dsf, i, i+1); /* right */
448 connect_if_same(state, dsf, i, i+state->w); /* down */
453 #define CC_MARK_ERRORS 1
454 #define CC_MUST_FILL 2
456 static int check_rowcol(game_state *state, int starti, int di, int sz, unsigned flags)
458 int nerr = 0, n, m, i, j;
460 /* if any circled numbers have identical non-circled numbers on
461 * same row/column, error (non-circled)
462 * if any circled numbers in same column are same number, highlight them.
463 * if any rows/columns have >1 of same number, not complete. */
465 for (n = 0, i = starti; n < sz; n++, i += di) {
466 if (state->flags[i] & F_BLACK) continue;
467 for (m = n+1, j = i+di; m < sz; m++, j += di) {
468 if (state->flags[j] & F_BLACK) continue;
469 if (state->nums[i] != state->nums[j]) continue;
471 nerr++; /* ok, we have two numbers the same in a row. */
472 if (!(flags & CC_MARK_ERRORS)) continue;
474 /* If we have two circles in the same row around
475 * two identical numbers, they are _both_ wrong. */
476 if ((state->flags[i] & F_CIRCLE) &&
477 (state->flags[j] & F_CIRCLE)) {
478 state->flags[i] |= F_ERROR;
479 state->flags[j] |= F_ERROR;
481 /* Otherwise, if we have a circle, any other identical
482 * numbers in that row are obviously wrong. We don't
483 * highlight this, however, since it makes the process
484 * of solving the puzzle too easy (you circle a number
485 * and it promptly tells you which numbers to blacken! */
487 else if (state->flags[i] & F_CIRCLE)
488 state->flags[j] |= F_ERROR;
489 else if (state->flags[j] & F_CIRCLE)
490 state->flags[i] |= F_ERROR;
497 static int check_complete(game_state *state, unsigned flags)
499 int *dsf = snewn(state->n, int);
500 int x, y, i, error = 0, nwhite, w = state->w, h = state->h;
502 if (flags & CC_MARK_ERRORS) {
503 for (i = 0; i < state->n; i++)
504 state->flags[i] &= ~F_ERROR;
506 connect_dsf(state, dsf);
508 /* If we're the solver we need the grid all to be definitively
509 * black or definitively white (i.e. circled) otherwise the solver
510 * has found an ambiguous grid. */
511 if (flags & CC_MUST_FILL) {
512 for (i = 0; i < state->n; i++) {
513 if (!(state->flags[i] & F_BLACK) && !(state->flags[i] & F_CIRCLE))
518 /* Mark any black squares in groups of >1 as errors.
519 * Count number of white squares. */
521 for (i = 0; i < state->n; i++) {
522 if (state->flags[i] & F_BLACK) {
523 if (dsf_size(dsf, i) > 1) {
525 if (flags & CC_MARK_ERRORS)
526 state->flags[i] |= F_ERROR;
532 /* Check attributes of white squares, row- and column-wise. */
533 for (x = 0; x < w; x++) /* check cols from (x,0) */
534 error += check_rowcol(state, x, w, h, flags);
535 for (y = 0; y < h; y++) /* check rows from (0,y) */
536 error += check_rowcol(state, y*w, 1, w, flags);
538 /* If there's more than one white region, pick the largest one to
539 * be the canonical one (arbitrarily tie-breaking towards lower
540 * array indices), and mark all the others as erroneous. */
542 int largest = 0, canonical = -1;
543 for (i = 0; i < state->n; i++)
544 if (!(state->flags[i] & F_BLACK)) {
545 int size = dsf_size(dsf, i);
546 if (largest < size) {
552 if (largest < nwhite) {
553 for (i = 0; i < state->n; i++)
554 if (!(state->flags[i] & F_BLACK) &&
555 dsf_canonify(dsf, i) != canonical) {
557 if (flags & CC_MARK_ERRORS)
558 state->flags[i] |= F_ERROR;
564 return (error > 0) ? 0 : 1;
567 static char *game_state_diff(const game_state *src, const game_state *dst,
570 char *ret = NULL, buf[80], c;
571 int retlen = 0, x, y, i, k;
572 unsigned int fmask = F_BLACK | F_CIRCLE;
574 assert(src->n == dst->n);
577 ret = sresize(ret, 3, char);
578 ret[0] = 'S'; ret[1] = ';'; ret[2] = '\0';
582 for (x = 0; x < dst->w; x++) {
583 for (y = 0; y < dst->h; y++) {
585 if ((src->flags[i] & fmask) != (dst->flags[i] & fmask)) {
586 assert((dst->flags[i] & fmask) != fmask);
587 if (dst->flags[i] & F_BLACK)
589 else if (dst->flags[i] & F_CIRCLE)
593 k = sprintf(buf, "%c%d,%d;", (int)c, x, y);
594 ret = sresize(ret, retlen + k + 1, char);
595 strcpy(ret + retlen, buf);
605 enum { BLACK, CIRCLE };
608 int x, y, op; /* op one of BLACK or CIRCLE. */
609 const char *desc; /* must be non-malloced. */
612 struct solver_state {
613 struct solver_op *ops;
618 static struct solver_state *solver_state_new(game_state *state)
620 struct solver_state *ss = snew(struct solver_state);
623 ss->n_ops = ss->n_alloc = 0;
624 ss->scratch = snewn(state->n, int);
629 static void solver_state_free(struct solver_state *ss)
632 if (ss->ops) sfree(ss->ops);
636 static void solver_op_add(struct solver_state *ss, int x, int y, int op, const char *desc)
638 struct solver_op *sop;
640 if (ss->n_alloc < ss->n_ops + 1) {
641 ss->n_alloc = (ss->n_alloc + 1) * 2;
642 ss->ops = sresize(ss->ops, ss->n_alloc, struct solver_op);
644 sop = &(ss->ops[ss->n_ops++]);
645 sop->x = x; sop->y = y; sop->op = op; sop->desc = desc;
646 debug(("added solver op %s ('%s') at (%d,%d)\n",
647 op == BLACK ? "BLACK" : "CIRCLE", desc, x, y));
650 static void solver_op_circle(game_state *state, struct solver_state *ss,
653 int i = y*state->w + x;
655 if (!INGRID(state, x, y)) return;
656 if (state->flags[i] & F_BLACK) {
657 debug(("... solver wants to add auto-circle on black (%d,%d)\n", x, y));
658 state->impossible = 1;
661 /* Only add circle op if it's not already circled. */
662 if (!(state->flags[i] & F_CIRCLE)) {
663 solver_op_add(ss, x, y, CIRCLE, "SB - adjacent to black square");
667 static void solver_op_blacken(game_state *state, struct solver_state *ss,
668 int x, int y, int num)
670 int i = y*state->w + x;
672 if (!INGRID(state, x, y)) return;
673 if (state->nums[i] != num) return;
674 if (state->flags[i] & F_CIRCLE) {
675 debug(("... solver wants to add auto-black on circled(%d,%d)\n", x, y));
676 state->impossible = 1;
679 /* Only add black op if it's not already black. */
680 if (!(state->flags[i] & F_BLACK)) {
681 solver_op_add(ss, x, y, BLACK, "SC - number on same row/col as circled");
685 static int solver_ops_do(game_state *state, struct solver_state *ss)
687 int next_op = 0, i, x, y, n_ops = 0;
690 /* Care here: solver_op_* may call solver_op_add which may extend the
693 while (next_op < ss->n_ops) {
694 op = ss->ops[next_op++]; /* copy this away, it may get reallocated. */
695 i = op.y*state->w + op.x;
697 if (op.op == BLACK) {
698 if (state->flags[i] & F_CIRCLE) {
699 debug(("Solver wants to blacken circled square (%d,%d)!\n", op.x, op.y));
700 state->impossible = 1;
703 if (!(state->flags[i] & F_BLACK)) {
704 debug(("... solver adding black at (%d,%d): %s\n", op.x, op.y, op.desc));
705 #ifdef STANDALONE_SOLVER
707 printf("Adding black at (%d,%d): %s\n", op.x, op.y, op.desc);
709 state->flags[i] |= F_BLACK;
710 /*debug_state("State after adding black", state);*/
712 solver_op_circle(state, ss, op.x-1, op.y);
713 solver_op_circle(state, ss, op.x+1, op.y);
714 solver_op_circle(state, ss, op.x, op.y-1);
715 solver_op_circle(state, ss, op.x, op.y+1);
718 if (state->flags[i] & F_BLACK) {
719 debug(("Solver wants to circle blackened square (%d,%d)!\n", op.x, op.y));
720 state->impossible = 1;
723 if (!(state->flags[i] & F_CIRCLE)) {
724 debug(("... solver adding circle at (%d,%d): %s\n", op.x, op.y, op.desc));
725 #ifdef STANDALONE_SOLVER
727 printf("Adding circle at (%d,%d): %s\n", op.x, op.y, op.desc);
729 state->flags[i] |= F_CIRCLE;
730 /*debug_state("State after adding circle", state);*/
732 for (x = 0; x < state->w; x++) {
734 solver_op_blacken(state, ss, x, op.y, state->nums[i]);
736 for (y = 0; y < state->h; y++) {
738 solver_op_blacken(state, ss, op.x, y, state->nums[i]);
747 /* If the grid has two identical numbers with one cell between them, the inner
748 * cell _must_ be white (and thus circled); (at least) one of the two must be
749 * black (since they're in the same column or row) and thus the middle cell is
750 * next to a black cell. */
751 static int solve_singlesep(game_state *state, struct solver_state *ss)
753 int x, y, i, ir, irr, id, idd, n_ops = ss->n_ops;
755 for (x = 0; x < state->w; x++) {
756 for (y = 0; y < state->h; y++) {
759 /* Cell two to our right? */
760 ir = i + 1; irr = ir + 1;
761 if (x < (state->w-2) &&
762 state->nums[i] == state->nums[irr] &&
763 !(state->flags[ir] & F_CIRCLE)) {
764 solver_op_add(ss, x+1, y, CIRCLE, "SP/ST - between identical nums");
766 /* Cell two below us? */
767 id = i + state->w; idd = id + state->w;
768 if (y < (state->h-2) &&
769 state->nums[i] == state->nums[idd] &&
770 !(state->flags[id] & F_CIRCLE)) {
771 solver_op_add(ss, x, y+1, CIRCLE, "SP/ST - between identical nums");
775 return ss->n_ops - n_ops;
778 /* If we have two identical numbers next to each other (in a row or column),
779 * any other identical numbers in that column must be black. */
780 static int solve_doubles(game_state *state, struct solver_state *ss)
782 int x, y, i, ii, n_ops = ss->n_ops, xy;
784 for (y = 0, i = 0; y < state->h; y++) {
785 for (x = 0; x < state->w; x++, i++) {
786 assert(i == y*state->w+x);
787 if (state->flags[i] & F_BLACK) continue;
789 ii = i+1; /* check cell to our right. */
790 if (x < (state->w-1) &&
791 !(state->flags[ii] & F_BLACK) &&
792 state->nums[i] == state->nums[ii]) {
793 for (xy = 0; xy < state->w; xy++) {
794 if (xy == x || xy == (x+1)) continue;
795 if (state->nums[y*state->w + xy] == state->nums[i] &&
796 !(state->flags[y*state->w + xy] & F_BLACK))
797 solver_op_add(ss, xy, y, BLACK, "PI - same row as pair");
801 ii = i+state->w; /* check cell below us */
802 if (y < (state->h-1) &&
803 !(state->flags[ii] & F_BLACK) &&
804 state->nums[i] == state->nums[ii]) {
805 for (xy = 0; xy < state->h; xy++) {
806 if (xy == y || xy == (y+1)) continue;
807 if (state->nums[xy*state->w + x] == state->nums[i] &&
808 !(state->flags[xy*state->w + x] & F_BLACK))
809 solver_op_add(ss, x, xy, BLACK, "PI - same col as pair");
814 return ss->n_ops - n_ops;
817 /* If a white square has all-but-one possible adjacent squares black, the
818 * one square left over must be white. */
819 static int solve_allblackbutone(game_state *state, struct solver_state *ss)
821 int x, y, i, n_ops = ss->n_ops, xd, yd, id, ifree;
829 for (y = 0, i = 0; y < state->h; y++) {
830 for (x = 0; x < state->w; x++, i++) {
831 assert(i == y*state->w+x);
832 if (state->flags[i] & F_BLACK) continue;
835 for (d = 0; d < 4; d++) {
836 xd = x + dxs[d]; yd = y + dys[d]; id = i + dis[d];
837 if (!INGRID(state, xd, yd)) continue;
839 if (state->flags[id] & F_CIRCLE)
840 goto skip; /* this cell already has a way out */
841 if (!(state->flags[id] & F_BLACK)) {
843 goto skip; /* this cell has >1 white cell around it. */
848 solver_op_add(ss, ifree%state->w, ifree/state->w, CIRCLE,
849 "CC/CE/QM: white cell with single non-black around it");
851 debug(("White cell with no escape at (%d,%d)\n", x, y));
852 state->impossible = 1;
858 return ss->n_ops - n_ops;
861 /* If we have 4 numbers the same in a 2x2 corner, the far corner and the
862 * diagonally-adjacent square must both be black.
863 * If we have 3 numbers the same in a 2x2 corner, the apex of the L
864 * thus formed must be black.
865 * If we have 2 numbers the same in a 2x2 corner, the non-same cell
866 * one away from the corner must be white. */
867 static void solve_corner(game_state *state, struct solver_state *ss,
868 int x, int y, int dx, int dy)
870 int is[4], ns[4], xx, yy, w = state->w;
872 for (yy = 0; yy < 2; yy++) {
873 for (xx = 0; xx < 2; xx++) {
874 is[yy*2+xx] = (y + dy*yy) * w + (x + dx*xx);
875 ns[yy*2+xx] = state->nums[is[yy*2+xx]];
877 } /* order is now (corner, side 1, side 2, inner) */
879 if (ns[0] == ns[1] && ns[0] == ns[2] && ns[0] == ns[3]) {
880 solver_op_add(ss, is[0]%w, is[0]/w, BLACK, "QC: corner with 4 matching");
881 solver_op_add(ss, is[3]%w, is[3]/w, BLACK, "QC: corner with 4 matching");
882 } else if (ns[0] == ns[1] && ns[0] == ns[2]) {
883 /* corner and 2 sides: apex is corner. */
884 solver_op_add(ss, is[0]%w, is[0]/w, BLACK, "TC: corner apex from 3 matching");
885 } else if (ns[1] == ns[2] && ns[1] == ns[3]) {
886 /* side, side, fourth: apex is fourth. */
887 solver_op_add(ss, is[3]%w, is[3]/w, BLACK, "TC: inside apex from 3 matching");
888 } else if (ns[0] == ns[1] || ns[1] == ns[3]) {
889 /* either way here we match the non-identical side. */
890 solver_op_add(ss, is[2]%w, is[2]/w, CIRCLE, "DC: corner with 2 matching");
891 } else if (ns[0] == ns[2] || ns[2] == ns[3]) {
893 solver_op_add(ss, is[1]%w, is[1]/w, CIRCLE, "DC: corner with 2 matching");
897 static int solve_corners(game_state *state, struct solver_state *ss)
899 int n_ops = ss->n_ops;
901 solve_corner(state, ss, 0, 0, 1, 1);
902 solve_corner(state, ss, state->w-1, 0, -1, 1);
903 solve_corner(state, ss, state->w-1, state->h-1, -1, -1);
904 solve_corner(state, ss, 0, state->h-1, 1, -1);
906 return ss->n_ops - n_ops;
909 /* If you have the following situation:
911 * ...x A x x y A x...
912 * ...x B x x B y x...
914 * then both squares marked 'y' must be white. One of the left-most A or B must
915 * be white (since two side-by-side black cells are disallowed), which means
916 * that the corresponding right-most A or B must be black (since you can't
917 * have two of the same number on one line); thus, the adjacent squares
918 * to that right-most A or B must be white, which include the two marked 'y'
920 * Obviously this works in any row or column. It also works if A == B.
921 * It doesn't work for the degenerate case:
924 * where the square marked 'y' isn't necessarily white (consider the left-most A
928 static void solve_offsetpair_pair(game_state *state, struct solver_state *ss,
929 int x1, int y1, int x2, int y2)
931 int ox, oy, w = state->w, ax, ay, an, d, dx[2], dy[2], dn, xd, yd;
933 if (x1 == x2) { /* same column */
940 /* We try adjacent to (x1,y1) and the two diag. adjacent to (x2, y2).
941 * We expect to be called twice, once each way around. */
942 ax = x1+ox; ay = y1+oy;
943 assert(INGRID(state, ax, ay));
944 an = state->nums[ay*w + ax];
946 dx[0] = x2 + ox + oy; dx[1] = x2 + ox - oy;
947 dy[0] = y2 + oy + ox; dy[1] = y2 + oy - ox;
949 for (d = 0; d < 2; d++) {
950 if (INGRID(state, dx[d], dy[d]) && (dx[d] != ax || dy[d] != ay)) {
951 /* The 'dx != ax || dy != ay' removes the degenerate case,
952 * mentioned above. */
953 dn = state->nums[dy[d]*w + dx[d]];
955 /* We have a match; so (WLOG) the 'A' marked above are at
956 * (x1,y1) and (x2,y2), and the 'B' are at (ax,ay) and (dx,dy). */
957 debug(("Found offset-pair: %d at (%d,%d) and (%d,%d)\n",
958 state->nums[y1*w + x1], x1, y1, x2, y2));
959 debug((" and: %d at (%d,%d) and (%d,%d)\n",
960 an, ax, ay, dx[d], dy[d]));
962 xd = dx[d] - x2; yd = dy[d] - y2;
963 solver_op_add(ss, x2 + xd, y2, CIRCLE, "IP: next to offset-pair");
964 solver_op_add(ss, x2, y2 + yd, CIRCLE, "IP: next to offset-pair");
970 static int solve_offsetpair(game_state *state, struct solver_state *ss)
972 int n_ops = ss->n_ops, x, xx, y, yy, n1, n2;
974 for (x = 0; x < state->w-1; x++) {
975 for (y = 0; y < state->h; y++) {
976 n1 = state->nums[y*state->w + x];
977 for (yy = y+1; yy < state->h; yy++) {
978 n2 = state->nums[yy*state->w + x];
980 solve_offsetpair_pair(state, ss, x, y, x, yy);
981 solve_offsetpair_pair(state, ss, x, yy, x, y);
986 for (y = 0; y < state->h-1; y++) {
987 for (x = 0; x < state->w; x++) {
988 n1 = state->nums[y*state->w + x];
989 for (xx = x+1; xx < state->w; xx++) {
990 n2 = state->nums[y*state->w + xx];
992 solve_offsetpair_pair(state, ss, x, y, xx, y);
993 solve_offsetpair_pair(state, ss, xx, y, x, y);
998 return ss->n_ops - n_ops;
1001 static int solve_hassinglewhiteregion(game_state *state, struct solver_state *ss)
1003 int i, j, nwhite = 0, lwhite = -1, szwhite, start, end, next, a, d, x, y;
1005 for (i = 0; i < state->n; i++) {
1006 if (!(state->flags[i] & F_BLACK)) {
1010 state->flags[i] &= ~F_SCRATCH;
1013 debug(("solve_hassinglewhite: no white squares found!\n"));
1014 state->impossible = 1;
1017 /* We don't use connect_dsf here; it's too slow, and there's a quicker
1018 * algorithm if all we want is the size of one region. */
1019 /* Having written this, this algorithm is only about 5% faster than
1021 memset(ss->scratch, -1, state->n * sizeof(int));
1022 ss->scratch[0] = lwhite;
1023 state->flags[lwhite] |= F_SCRATCH;
1024 start = 0; end = next = 1;
1025 while (start < end) {
1026 for (a = start; a < end; a++) {
1027 i = ss->scratch[a]; assert(i != -1);
1028 for (d = 0; d < 4; d++) {
1029 x = (i % state->w) + dxs[d];
1030 y = (i / state->w) + dys[d];
1032 if (!INGRID(state, x, y)) continue;
1033 if (state->flags[j] & (F_BLACK | F_SCRATCH)) continue;
1034 ss->scratch[next++] = j;
1035 state->flags[j] |= F_SCRATCH;
1038 start = end; end = next;
1041 return (szwhite == nwhite) ? 1 : 0;
1044 static void solve_removesplits_check(game_state *state, struct solver_state *ss,
1047 int i = y*state->w + x, issingle;
1049 if (!INGRID(state, x, y)) return;
1050 if ((state->flags[i] & F_CIRCLE) || (state->flags[i] & F_BLACK))
1053 /* If putting a black square at (x,y) would make the white region
1054 * non-contiguous, it must be circled. */
1055 state->flags[i] |= F_BLACK;
1056 issingle = solve_hassinglewhiteregion(state, ss);
1057 state->flags[i] &= ~F_BLACK;
1060 solver_op_add(ss, x, y, CIRCLE, "MC: black square here would split white region");
1063 /* For all black squares, search in squares diagonally adjacent to see if
1064 * we can rule out putting a black square there (because it would make the
1065 * white region non-contiguous). */
1066 /* This function is likely to be somewhat slow. */
1067 static int solve_removesplits(game_state *state, struct solver_state *ss)
1069 int i, x, y, n_ops = ss->n_ops;
1071 if (!solve_hassinglewhiteregion(state, ss)) {
1072 debug(("solve_removesplits: white region is not contiguous at start!\n"));
1073 state->impossible = 1;
1077 for (i = 0; i < state->n; i++) {
1078 if (!(state->flags[i] & F_BLACK)) continue;
1080 x = i%state->w; y = i/state->w;
1081 solve_removesplits_check(state, ss, x-1, y-1);
1082 solve_removesplits_check(state, ss, x+1, y-1);
1083 solve_removesplits_check(state, ss, x+1, y+1);
1084 solve_removesplits_check(state, ss, x-1, y+1);
1086 return ss->n_ops - n_ops;
1090 * This function performs a solver step that isn't implicit in the rules
1091 * of the game and is thus treated somewhat differently.
1093 * It marks cells whose number does not exist elsewhere in its row/column
1094 * with circles. As it happens the game generator here does mean that this
1095 * is always correct, but it's a solving method that people should not have
1096 * to rely upon (except in the hidden 'sneaky' difficulty setting) and so
1097 * all grids at 'tricky' and above are checked to make sure that the grid
1098 * is no easier if this solving step is performed beforehand.
1100 * Calling with ss=NULL just returns the number of sneaky deductions that
1101 * would have been made.
1103 static int solve_sneaky(game_state *state, struct solver_state *ss)
1105 int i, ii, x, xx, y, yy, nunique = 0;
1107 /* Clear SCRATCH flags. */
1108 for (i = 0; i < state->n; i++) state->flags[i] &= ~F_SCRATCH;
1110 for (x = 0; x < state->w; x++) {
1111 for (y = 0; y < state->h; y++) {
1114 /* Check for duplicate numbers on our row, mark (both) if so */
1115 for (xx = x; xx < state->w; xx++) {
1116 ii = y*state->w + xx;
1117 if (i == ii) continue;
1119 if (state->nums[i] == state->nums[ii]) {
1120 state->flags[i] |= F_SCRATCH;
1121 state->flags[ii] |= F_SCRATCH;
1125 /* Check for duplicate numbers on our col, mark (both) if so */
1126 for (yy = y; yy < state->h; yy++) {
1127 ii = yy*state->w + x;
1128 if (i == ii) continue;
1130 if (state->nums[i] == state->nums[ii]) {
1131 state->flags[i] |= F_SCRATCH;
1132 state->flags[ii] |= F_SCRATCH;
1138 /* Any cell with no marking has no duplicates on its row or column:
1139 * set its CIRCLE. */
1140 for (i = 0; i < state->n; i++) {
1141 if (!(state->flags[i] & F_SCRATCH)) {
1142 if (ss) solver_op_add(ss, i%state->w, i/state->w, CIRCLE,
1143 "SNEAKY: only one of its number in row and col");
1146 state->flags[i] &= ~F_SCRATCH;
1151 static int solve_specific(game_state *state, int diff, int sneaky)
1153 struct solver_state *ss = solver_state_new(state);
1155 if (sneaky) solve_sneaky(state, ss);
1157 /* Some solver operations we only have to perform once --
1158 * they're only based on the numbers available, and not black
1159 * squares or circles which may be added later. */
1161 solve_singlesep(state, ss); /* never sets impossible */
1162 solve_doubles(state, ss); /* ditto */
1163 solve_corners(state, ss); /* ditto */
1165 if (diff >= DIFF_TRICKY)
1166 solve_offsetpair(state, ss); /* ditto */
1169 if (ss->n_ops > 0) solver_ops_do(state, ss);
1170 if (state->impossible) break;
1172 if (solve_allblackbutone(state, ss) > 0) continue;
1173 if (state->impossible) break;
1175 if (diff >= DIFF_TRICKY) {
1176 if (solve_removesplits(state, ss) > 0) continue;
1177 if (state->impossible) break;
1183 solver_state_free(ss);
1184 return state->impossible ? -1 : check_complete(state, CC_MUST_FILL);
1187 static char *solve_game(const game_state *state, const game_state *currstate,
1188 const char *aux, char **error)
1190 game_state *solved = dup_game(currstate);
1193 if (solve_specific(solved, DIFF_ANY, 0) > 0) goto solved;
1196 solved = dup_game(state);
1197 if (solve_specific(solved, DIFF_ANY, 0) > 0) goto solved;
1200 *error = "Unable to solve puzzle.";
1204 move = game_state_diff(currstate, solved, 1);
1209 /* --- Game generation --- */
1211 /* A correctly completed Hitori board is essentially a latin square
1212 * (no duplicated numbers in any row or column) with black squares
1213 * added such that no black square touches another, and the white
1214 * squares make a contiguous region.
1216 * So we can generate it by:
1217 * constructing a latin square
1218 * adding black squares at random (minding the constraints)
1219 * altering the numbers under the new black squares such that
1220 the solver gets a headstart working out where they are.
1223 static int new_game_is_good(const game_params *params,
1224 game_state *state, game_state *tosolve)
1226 int sret, sret_easy = 0;
1228 memcpy(tosolve->nums, state->nums, state->n * sizeof(int));
1229 memset(tosolve->flags, 0, state->n * sizeof(unsigned int));
1230 tosolve->completed = tosolve->impossible = 0;
1233 * We try and solve it twice, once at our requested difficulty level
1234 * (ensuring it's soluble at all) and once at the level below (if
1235 * it exists), which we hope to fail: if you can also solve it at
1236 * the level below then it's too easy and we have to try again.
1238 * With this puzzle in particular there's an extra finesse, which is
1239 * that we check that the generated puzzle isn't too easy _with
1240 * an extra solver step first_, which is the 'sneaky' mode of deductions
1241 * (asserting that any number which fulfils the latin-square rules
1242 * on its row/column must be white). This is an artefact of the
1243 * generation process and not implicit in the rules, so we don't want
1244 * people to be able to use it to make the puzzle easier.
1247 assert(params->diff < DIFF_MAX);
1248 sret = solve_specific(tosolve, params->diff, 0);
1249 if (params->diff > DIFF_EASY) {
1250 memset(tosolve->flags, 0, state->n * sizeof(unsigned int));
1251 tosolve->completed = tosolve->impossible = 0;
1253 /* this is the only time the 'sneaky' flag is set to 1. */
1254 sret_easy = solve_specific(tosolve, params->diff-1, 1);
1257 if (sret <= 0 || sret_easy > 0) {
1258 debug(("Generated puzzle %s at chosen difficulty %s\n",
1259 sret <= 0 ? "insoluble" : "too easy",
1260 singles_diffnames[params->diff]));
1268 static int best_black_col(game_state *state, random_state *rs, int *scratch,
1269 int i, int *rownums, int *colnums)
1271 int w = state->w, x = i%w, y = i/w, j, o = state->o;
1273 /* Randomise the list of numbers to try. */
1274 for (i = 0; i < o; i++) scratch[i] = i;
1275 shuffle(scratch, o, sizeof(int), rs);
1277 /* Try each number in turn, first giving preference to removing
1278 * latin-square characteristics (i.e. those numbers which only
1279 * occur once in a row/column). The '&&' here, although intuitively
1280 * wrong, results in a smaller number of 'sneaky' deductions on
1281 * solvable boards. */
1282 for (i = 0; i < o; i++) {
1284 if (rownums[y*o + j-1] == 1 && colnums[x*o + j-1] == 1)
1288 /* Then try each number in turn returning the first one that's
1289 * not actually unique in its row/column (see comment below) */
1290 for (i = 0; i < o; i++) {
1292 if (rownums[y*o + j-1] != 0 || colnums[x*o + j-1] != 0)
1295 assert(!"unable to place number under black cell.");
1299 /* Update column and row counts assuming this number will be placed. */
1300 rownums[y*o + j-1] += 1;
1301 colnums[x*o + j-1] += 1;
1305 static char *new_game_desc(const game_params *params, random_state *rs,
1306 char **aux, int interactive)
1308 game_state *state = blank_game(params->w, params->h);
1309 game_state *tosolve = blank_game(params->w, params->h);
1310 int i, j, *scratch, *rownums, *colnums, x, y, ntries;
1311 int w = state->w, h = state->h, o = state->o;
1314 struct solver_state *ss = solver_state_new(state);
1316 scratch = snewn(state->n, int);
1317 rownums = snewn(h*o, int);
1318 colnums = snewn(w*o, int);
1322 debug(("Starting game generation, size %dx%d\n", w, h));
1324 memset(state->flags, 0, state->n*sizeof(unsigned int));
1326 /* First, generate the latin rectangle.
1327 * The order of this, o, is max(w,h). */
1328 latin = latin_generate_rect(w, h, rs);
1329 for (i = 0; i < state->n; i++)
1330 state->nums[i] = (int)latin[i];
1332 debug_state("State after latin square", state);
1334 /* Add black squares at random, using bits of solver as we go (to lay
1335 * white squares), until we can lay no more blacks. */
1336 for (i = 0; i < state->n; i++)
1338 shuffle(scratch, state->n, sizeof(int), rs);
1339 for (j = 0; j < state->n; j++) {
1341 if ((state->flags[i] & F_CIRCLE) || (state->flags[i] & F_BLACK)) {
1342 debug(("generator skipping (%d,%d): %s\n", i%w, i/w,
1343 (state->flags[i] & F_CIRCLE) ? "CIRCLE" : "BLACK"));
1344 continue; /* solver knows this must be one or the other already. */
1347 /* Add a random black cell... */
1348 solver_op_add(ss, i%w, i/w, BLACK, "Generator: adding random black cell");
1349 solver_ops_do(state, ss);
1351 /* ... and do as well as we know how to lay down whites that are now forced. */
1352 solve_allblackbutone(state, ss);
1353 solver_ops_do(state, ss);
1355 solve_removesplits(state, ss);
1356 solver_ops_do(state, ss);
1358 if (state->impossible) {
1359 debug(("generator made impossible, restarting...\n"));
1363 debug_state("State after adding blacks", state);
1365 /* Now we know which squares are white and which are black, we lay numbers
1366 * under black squares at random, except that the number must appear in
1367 * white cells at least once more in the same column or row as that [black]
1368 * square. That's necessary to avoid multiple solutions, where blackening
1369 * squares in the finished puzzle becomes optional. We use two arrays:
1371 * rownums[ROW * o + NUM-1] is the no. of white cells containing NUM in y=ROW
1372 * colnums[COL * o + NUM-1] is the no. of white cells containing NUM in x=COL
1375 memset(rownums, 0, h*o * sizeof(int));
1376 memset(colnums, 0, w*o * sizeof(int));
1377 for (i = 0; i < state->n; i++) {
1378 if (state->flags[i] & F_BLACK) continue;
1381 rownums[y * o + j-1] += 1;
1382 colnums[x * o + j-1] += 1;
1387 for (i = 0; i < state->n; i++) {
1388 if (!(state->flags[i] & F_BLACK)) continue;
1389 state->nums[i] = best_black_col(state, rs, scratch, i, rownums, colnums);
1391 debug_state("State after adding numbers", state);
1393 /* DIFF_ANY just returns whatever we first generated, for testing purposes. */
1394 if (params->diff != DIFF_ANY &&
1395 !new_game_is_good(params, state, tosolve)) {
1397 if (ntries > MAXTRIES) {
1398 debug(("Ran out of randomisation attempts, re-generating.\n"));
1401 debug(("Re-randomising numbers under black squares.\n"));
1405 ret = generate_desc(state, 0);
1409 solver_state_free(ss);
1417 static char *validate_desc(const game_params *params, const char *desc)
1421 unpick_desc(params, desc, NULL, &ret);
1425 static game_state *new_game(midend *me, const game_params *params,
1428 game_state *state = NULL;
1430 unpick_desc(params, desc, &state, NULL);
1431 if (!state) assert(!"new_game failed to unpick");
1435 /* --- Game UI and move routines --- */
1439 int show_black_nums;
1442 static game_ui *new_ui(const game_state *state)
1444 game_ui *ui = snew(game_ui);
1446 ui->cx = ui->cy = ui->cshow = 0;
1447 ui->show_black_nums = 0;
1452 static void free_ui(game_ui *ui)
1457 static char *encode_ui(const game_ui *ui)
1462 static void decode_ui(game_ui *ui, const char *encoding)
1466 static void game_changed_state(game_ui *ui, const game_state *oldstate,
1467 const game_state *newstate)
1469 if (!oldstate->completed && newstate->completed)
1473 #define DS_BLACK 0x1
1474 #define DS_CIRCLE 0x2
1475 #define DS_CURSOR 0x4
1476 #define DS_BLACK_NUM 0x8
1477 #define DS_ERROR 0x10
1478 #define DS_FLASH 0x20
1479 #define DS_IMPOSSIBLE 0x40
1481 struct game_drawstate {
1482 int tilesize, started, solved;
1485 unsigned int *flags;
1488 static char *interpret_move(const game_state *state, game_ui *ui,
1489 const game_drawstate *ds,
1490 int mx, int my, int button)
1493 int i, x = FROMCOORD(mx), y = FROMCOORD(my);
1494 enum { NONE, TOGGLE_BLACK, TOGGLE_CIRCLE, UI } action = NONE;
1496 if (IS_CURSOR_MOVE(button)) {
1497 move_cursor(button, &ui->cx, &ui->cy, state->w, state->h, 1);
1500 } else if (IS_CURSOR_SELECT(button)) {
1501 x = ui->cx; y = ui->cy;
1506 if (button == CURSOR_SELECT) {
1507 action = TOGGLE_BLACK;
1508 } else if (button == CURSOR_SELECT2) {
1509 action = TOGGLE_CIRCLE;
1511 } else if (IS_MOUSE_DOWN(button)) {
1516 if (!INGRID(state, x, y)) {
1517 ui->show_black_nums = 1 - ui->show_black_nums;
1518 action = UI; /* this wants to be a per-game option. */
1519 } else if (button == LEFT_BUTTON) {
1520 action = TOGGLE_BLACK;
1521 } else if (button == RIGHT_BUTTON) {
1522 action = TOGGLE_CIRCLE;
1525 if (action == UI) return "";
1527 if (action == TOGGLE_BLACK || action == TOGGLE_CIRCLE) {
1528 i = y * state->w + x;
1529 if (state->flags[i] & (F_BLACK | F_CIRCLE))
1532 c = (action == TOGGLE_BLACK) ? 'B' : 'C';
1533 sprintf(buf, "%c%d,%d", (int)c, x, y);
1540 static game_state *execute_move(const game_state *state, const char *move)
1542 game_state *ret = dup_game(state);
1545 debug(("move: %s\n", move));
1549 if (c == 'B' || c == 'C' || c == 'E') {
1551 if (sscanf(move, "%d,%d%n", &x, &y, &n) != 2 ||
1552 !INGRID(state, x, y))
1556 ret->flags[i] &= ~(F_CIRCLE | F_BLACK); /* empty first, always. */
1558 ret->flags[i] |= F_BLACK;
1560 ret->flags[i] |= F_CIRCLE;
1562 } else if (c == 'S') {
1564 ret->used_solve = 1;
1573 if (check_complete(ret, CC_MARK_ERRORS)) ret->completed = 1;
1581 /* ----------------------------------------------------------------------
1585 static void game_compute_size(const game_params *params, int tilesize,
1588 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1589 struct { int tilesize; } ads, *ds = &ads;
1590 ads.tilesize = tilesize;
1592 *x = TILE_SIZE * params->w + 2 * BORDER;
1593 *y = TILE_SIZE * params->h + 2 * BORDER;
1596 static void game_set_size(drawing *dr, game_drawstate *ds,
1597 const game_params *params, int tilesize)
1599 ds->tilesize = tilesize;
1602 static float *game_colours(frontend *fe, int *ncolours)
1604 float *ret = snewn(3 * NCOLOURS, float);
1607 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
1608 for (i = 0; i < 3; i++) {
1609 ret[COL_BLACK * 3 + i] = 0.0F;
1610 ret[COL_BLACKNUM * 3 + i] = 0.4F;
1611 ret[COL_WHITE * 3 + i] = 1.0F;
1612 ret[COL_GRID * 3 + i] = ret[COL_LOWLIGHT * 3 + i];
1614 ret[COL_CURSOR * 3 + 0] = 0.2F;
1615 ret[COL_CURSOR * 3 + 1] = 0.8F;
1616 ret[COL_CURSOR * 3 + 2] = 0.0F;
1618 ret[COL_ERROR * 3 + 0] = 1.0F;
1619 ret[COL_ERROR * 3 + 1] = 0.0F;
1620 ret[COL_ERROR * 3 + 2] = 0.0F;
1622 *ncolours = NCOLOURS;
1626 static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
1628 struct game_drawstate *ds = snew(struct game_drawstate);
1630 ds->tilesize = ds->started = ds->solved = 0;
1635 ds->flags = snewn(state->n, unsigned int);
1637 memset(ds->flags, 0, state->n*sizeof(unsigned int));
1642 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1648 static void tile_redraw(drawing *dr, game_drawstate *ds, int x, int y,
1649 int num, unsigned int f)
1651 int tcol, bg, dnum, cx, cy, tsz;
1655 bg = (f & DS_ERROR) ? COL_ERROR : COL_BLACK;
1656 tcol = COL_BLACKNUM;
1657 dnum = (f & DS_BLACK_NUM) ? 1 : 0;
1659 bg = (f & DS_FLASH) ? COL_LOWLIGHT : COL_BACKGROUND;
1660 tcol = (f & DS_ERROR) ? COL_ERROR : COL_BLACK;
1664 cx = x + TILE_SIZE/2; cy = y + TILE_SIZE/2;
1666 draw_rect(dr, x, y, TILE_SIZE, TILE_SIZE, bg);
1667 draw_rect_outline(dr, x, y, TILE_SIZE, TILE_SIZE,
1668 (f & DS_IMPOSSIBLE) ? COL_ERROR : COL_GRID);
1670 if (f & DS_CIRCLE) {
1671 draw_circle(dr, cx, cy, CRAD, tcol, tcol);
1672 draw_circle(dr, cx, cy, CRAD-1, bg, tcol);
1676 sprintf(buf, "%d", num);
1677 if (strlen(buf) == 1)
1680 tsz = (CRAD*2 - 1) / strlen(buf);
1681 draw_text(dr, cx, cy, FONT_VARIABLE, tsz,
1682 ALIGN_VCENTRE | ALIGN_HCENTRE, tcol, buf);
1686 draw_rect_corners(dr, cx, cy, TEXTSZ/2, COL_CURSOR);
1688 draw_update(dr, x, y, TILE_SIZE, TILE_SIZE);
1691 static void game_redraw(drawing *dr, game_drawstate *ds,
1692 const game_state *oldstate, const game_state *state,
1693 int dir, const game_ui *ui,
1694 float animtime, float flashtime)
1699 flash = (int)(flashtime * 5 / FLASH_TIME) % 2;
1702 int wsz = TILE_SIZE * state->w + 2 * BORDER;
1703 int hsz = TILE_SIZE * state->h + 2 * BORDER;
1704 draw_rect(dr, 0, 0, wsz, hsz, COL_BACKGROUND);
1705 draw_rect_outline(dr, COORD(0)-1, COORD(0)-1,
1706 TILE_SIZE * state->w + 2, TILE_SIZE * state->h + 2,
1708 draw_update(dr, 0, 0, wsz, hsz);
1710 for (x = 0; x < state->w; x++) {
1711 for (y = 0; y < state->h; y++) {
1715 if (flash) f |= DS_FLASH;
1716 if (state->impossible) f |= DS_IMPOSSIBLE;
1718 if (ui->cshow && x == ui->cx && y == ui->cy)
1720 if (state->flags[i] & F_BLACK) {
1722 if (ui->show_black_nums) f |= DS_BLACK_NUM;
1724 if (state->flags[i] & F_CIRCLE)
1726 if (state->flags[i] & F_ERROR)
1729 if (!ds->started || ds->flags[i] != f) {
1730 tile_redraw(dr, ds, COORD(x), COORD(y),
1739 static float game_anim_length(const game_state *oldstate,
1740 const game_state *newstate, int dir, game_ui *ui)
1745 static float game_flash_length(const game_state *oldstate,
1746 const game_state *newstate, int dir, game_ui *ui)
1748 if (!oldstate->completed &&
1749 newstate->completed && !newstate->used_solve)
1754 static int game_status(const game_state *state)
1756 return state->completed ? +1 : 0;
1759 static int game_timing_state(const game_state *state, game_ui *ui)
1764 static void game_print_size(const game_params *params, float *x, float *y)
1768 /* 8mm squares by default. */
1769 game_compute_size(params, 800, &pw, &ph);
1774 static void game_print(drawing *dr, const game_state *state, int tilesize)
1776 int ink = print_mono_colour(dr, 0);
1777 int paper = print_mono_colour(dr, 1);
1778 int x, y, ox, oy, i;
1781 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1782 game_drawstate ads, *ds = &ads;
1783 game_set_size(dr, ds, NULL, tilesize);
1785 print_line_width(dr, 2 * TILE_SIZE / 40);
1787 for (x = 0; x < state->w; x++) {
1788 for (y = 0; y < state->h; y++) {
1789 ox = COORD(x); oy = COORD(y);
1792 if (state->flags[i] & F_BLACK) {
1793 draw_rect(dr, ox, oy, TILE_SIZE, TILE_SIZE, ink);
1795 draw_rect_outline(dr, ox, oy, TILE_SIZE, TILE_SIZE, ink);
1797 if (state->flags[i] & DS_CIRCLE)
1798 draw_circle(dr, ox+TILE_SIZE/2, oy+TILE_SIZE/2, CRAD,
1801 sprintf(buf, "%d", state->nums[i]);
1802 draw_text(dr, ox+TILE_SIZE/2, oy+TILE_SIZE/2, FONT_VARIABLE,
1803 TEXTSZ/strlen(buf), ALIGN_VCENTRE | ALIGN_HCENTRE,
1811 #define thegame singles
1814 const struct game thegame = {
1815 "Singles", "games.singles", "singles",
1817 game_fetch_preset, NULL,
1822 TRUE, game_configure, custom_params,
1830 TRUE, game_can_format_as_text_now, game_text_format,
1838 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1841 game_free_drawstate,
1846 TRUE, FALSE, game_print_size, game_print,
1847 FALSE, /* wants_statusbar */
1848 FALSE, game_timing_state,
1849 REQUIRE_RBUTTON, /* flags */
1852 #ifdef STANDALONE_SOLVER
1857 static void start_soak(game_params *p, random_state *rs)
1859 time_t tt_start, tt_now, tt_last;
1862 int i, n = 0, ndiff[DIFF_MAX], diff, sret, nblack = 0, nsneaky = 0;
1864 tt_start = tt_now = time(NULL);
1866 printf("Soak-testing a %dx%d grid.\n", p->w, p->h);
1869 memset(ndiff, 0, DIFF_MAX * sizeof(int));
1873 desc = new_game_desc(p, rs, &aux, 0);
1874 s = new_game(NULL, p, desc);
1875 nsneaky += solve_sneaky(s, NULL);
1877 for (diff = 0; diff < DIFF_MAX; diff++) {
1878 memset(s->flags, 0, s->n * sizeof(unsigned int));
1879 s->completed = s->impossible = 0;
1880 sret = solve_specific(s, diff, 0);
1884 } else if (sret < 0)
1885 fprintf(stderr, "Impossible! %s\n", desc);
1887 for (i = 0; i < s->n; i++) {
1888 if (s->flags[i] & F_BLACK) nblack++;
1893 tt_last = time(NULL);
1894 if (tt_last > tt_now) {
1896 printf("%d total, %3.1f/s, bl/sn %3.1f%%/%3.1f%%: ",
1897 n, (double)n / ((double)tt_now - tt_start),
1898 ((double)nblack * 100.0) / (double)(n * p->w * p->h),
1899 ((double)nsneaky * 100.0) / (double)(n * p->w * p->h));
1900 for (diff = 0; diff < DIFF_MAX; diff++) {
1901 if (diff > 0) printf(", ");
1902 printf("%d (%3.1f%%) %s",
1903 ndiff[diff], (double)ndiff[diff] * 100.0 / (double)n,
1904 singles_diffnames[diff]);
1911 int main(int argc, char **argv)
1913 char *id = NULL, *desc, *desc_gen = NULL, *tgame, *err, *aux;
1914 game_state *s = NULL;
1915 game_params *p = NULL;
1916 int soln, soak = 0, ret = 1;
1917 time_t seed = time(NULL);
1918 random_state *rs = NULL;
1920 setvbuf(stdout, NULL, _IONBF, 0);
1922 while (--argc > 0) {
1924 if (!strcmp(p, "-v")) {
1926 } else if (!strcmp(p, "--soak")) {
1928 } else if (!strcmp(p, "--seed")) {
1930 fprintf(stderr, "%s: --seed needs an argument", argv[0]);
1933 seed = (time_t)atoi(*++argv);
1935 } else if (*p == '-') {
1936 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
1943 rs = random_new((void*)&seed, sizeof(time_t));
1946 fprintf(stderr, "usage: %s [-v] [--soak] <params> | <game_id>\n", argv[0]);
1949 desc = strchr(id, ':');
1950 if (desc) *desc++ = '\0';
1952 p = default_params();
1953 decode_params(p, id);
1954 err = validate_params(p, 1);
1956 fprintf(stderr, "%s: %s", argv[0], err);
1962 fprintf(stderr, "%s: --soak only needs params, not game desc.\n", argv[0]);
1967 if (!desc) desc = desc_gen = new_game_desc(p, rs, &aux, 0);
1969 err = validate_desc(p, desc);
1971 fprintf(stderr, "%s: %s\n", argv[0], err);
1975 s = new_game(NULL, p, desc);
1978 tgame = game_text_format(s);
1979 fputs(tgame, stdout);
1983 soln = solve_specific(s, DIFF_ANY, 0);
1984 tgame = game_text_format(s);
1985 fputs(tgame, stdout);
1987 printf("Game was %s.\n\n",
1988 soln < 0 ? "impossible" : soln > 0 ? "solved" : "not solved");
1993 if (desc_gen) sfree(desc_gen);
1994 if (p) free_params(p);
1995 if (s) free_game(s);
1996 if (rs) random_free(rs);
2004 /* vim: set shiftwidth=4 tabstop=8: */