2 * rsa.c: implementation of RSA with PKCS#1 padding
5 * This file is Free Software. It was originally written for secnet.
7 * Copyright 1995-2003 Stephen Early
8 * Copyright 2002-2014 Ian Jackson
9 * Copyright 2001 Simon Tatham
10 * Copyright 2013 Mark Wooding
12 * You may redistribute secnet as a whole and/or modify it under the
13 * terms of the GNU General Public License as published by the Free
14 * Software Foundation; either version 3, or (at your option) any
17 * You may redistribute this file and/or modify it under the terms of
18 * the GNU General Public License as published by the Free Software
19 * Foundation; either version 2, or (at your option) any later
22 * This software is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
27 * You should have received a copy of the GNU General Public License
28 * along with this software; if not, see
29 * https://www.gnu.org/licenses/gpl.html.
39 #define AUTHFILE_ID_STRING "SSH PRIVATE KEY FILE FORMAT 1.1\n"
41 #define mpp(s,n) do { char *p = mpz_get_str(NULL,16,n); printf("%s 0x%sL\n", s, p); free(p); } while (0)
45 struct rsaprivkey_if ops;
54 struct rsapubkey_if ops;
59 /* Sign data. NB data must be smaller than modulus */
61 #define RSA_MAX_MODBYTES 2048
62 /* The largest modulus I've seen is 15360 bits, which works out at 1920
63 * bytes. Using keys this big is quite implausible, but it doesn't cost us
64 * much to support them.
67 static const char *hexchars="0123456789abcdef";
69 static void emsa_pkcs1(MP_INT *n, MP_INT *m,
70 const uint8_t *data, int32_t datalen)
72 char buff[2*RSA_MAX_MODBYTES + 1];
75 /* RSA PKCS#1 v1.5 signature padding:
77 * <------------ msize hex digits ---------->
79 * 00 01 ff ff .... ff ff 00 vv vv vv .... vv
83 * = datalen*2 hex digits
85 * NB that according to PKCS#1 v1.5 we're supposed to include a
86 * hash function OID in the data. We don't do that (because we
87 * don't have the hash function OID to hand here), thus violating
88 * the spec in a way that affects interop but not security.
93 msize=mpz_sizeinbase(n, 16);
95 if (datalen*2+6>=msize) {
96 fatal("rsa_sign: message too big");
101 for (i=0; i<datalen; i++) {
102 buff[msize+(-datalen+i)*2]=hexchars[(data[i]&0xf0)>>4];
103 buff[msize+(-datalen+i)*2+1]=hexchars[data[i]&0xf];
106 buff[msize-datalen*2-2]= '0';
107 buff[msize-datalen*2-1]= '0';
109 for (i=4; i<msize-datalen*2-2; i++)
114 mpz_set_str(m, buff, 16);
117 static string_t rsa_sign(void *sst, uint8_t *data, int32_t datalen)
119 struct rsapriv *st=sst;
120 MP_INT a, b, u, v, tmp, tmp2;
126 /* Construct the message representative. */
127 emsa_pkcs1(&st->n, &a, data, datalen);
130 * Produce an RSA signature (a^d mod n) using the Chinese
131 * Remainder Theorem. We compute:
133 * u = a^dp mod p (== a^d mod p, since dp == d mod (p-1))
134 * v = a^dq mod q (== a^d mod q, similarly)
136 * We also know w == iqmp * q, which has the property that w ==
137 * 0 mod q and w == 1 mod p. So (1-w) has the reverse property
138 * (congruent to 0 mod p and to 1 mod q). Hence we now compute
140 * b = w * u + (1-w) * v
143 * so that b is congruent to a^d both mod p and mod q. Hence b,
144 * reduced mod n, is the required signature.
151 mpz_powm_sec(&u, &a, &st->dp, &st->p);
152 mpz_powm_sec(&v, &a, &st->dq, &st->q);
153 mpz_sub(&tmp, &u, &v);
154 mpz_mul(&tmp2, &tmp, &st->w);
155 mpz_add(&tmp, &tmp2, &v);
156 mpz_mod(&b, &tmp, &st->n);
163 signature=write_mpstring(&b);
170 static rsa_checksig_fn rsa_sig_check;
171 static bool_t rsa_sig_check(void *sst, uint8_t *data, int32_t datalen,
174 struct rsapub *st=sst;
182 emsa_pkcs1(&st->n, &a, data, datalen);
184 mpz_set_str(&b, signature, 16);
186 mpz_powm(&c, &b, &st->e, &st->n);
188 ok=(mpz_cmp(&a, &c)==0);
197 static list_t *rsapub_apply(closure_t *self, struct cloc loc, dict_t *context,
205 st->cl.description="rsapub";
206 st->cl.type=CL_RSAPUBKEY;
208 st->cl.interface=&st->ops;
210 st->ops.check=rsa_sig_check;
215 if (i->type!=t_string) {
216 cfgfatal(i->loc,"rsa-public","first argument must be a string\n");
219 if (mpz_init_set_str(&st->e,e,10)!=0) {
220 cfgfatal(i->loc,"rsa-public","encryption key \"%s\" is not a "
221 "decimal number string\n",e);
224 cfgfatal(loc,"rsa-public","you must provide an encryption key\n");
226 if (mpz_sizeinbase(&st->e, 256) > RSA_MAX_MODBYTES) {
227 cfgfatal(loc, "rsa-public", "implausibly large public exponent\n");
232 if (i->type!=t_string) {
233 cfgfatal(i->loc,"rsa-public","second argument must be a string\n");
236 if (mpz_init_set_str(&st->n,n,10)!=0) {
237 cfgfatal(i->loc,"rsa-public","modulus \"%s\" is not a decimal "
238 "number string\n",n);
241 cfgfatal(loc,"rsa-public","you must provide a modulus\n");
243 if (mpz_sizeinbase(&st->n, 256) > RSA_MAX_MODBYTES) {
244 cfgfatal(loc, "rsa-public", "implausibly large modulus\n");
246 return new_closure(&st->cl);
249 static uint32_t keyfile_get_int(struct cloc loc, FILE *f)
256 cfgfile_postreadcheck(loc,f);
260 static uint16_t keyfile_get_short(struct cloc loc, FILE *f)
265 cfgfile_postreadcheck(loc,f);
269 static list_t *rsapriv_apply(closure_t *self, struct cloc loc, dict_t *context,
279 MP_INT e,d,iqmp,tmp,tmp2,tmp3;
283 st->cl.description="rsapriv";
284 st->cl.type=CL_RSAPRIVKEY;
286 st->cl.interface=&st->ops;
288 st->ops.sign=rsa_sign;
291 /* Argument is filename pointing to SSH1 private key file */
294 if (i->type!=t_string) {
295 cfgfatal(i->loc,"rsa-private","first argument must be a string\n");
297 filename=i->data.string;
299 filename=NULL; /* Make compiler happy */
300 cfgfatal(loc,"rsa-private","you must provide a filename\n");
303 f=fopen(filename,"rb");
305 if (just_check_config) {
306 Message(M_WARNING,"rsa-private (%s:%d): cannot open keyfile "
307 "\"%s\"; assuming it's valid while we check the "
308 "rest of the configuration\n",loc.file,loc.line,filename);
311 fatal_perror("rsa-private (%s:%d): cannot open file \"%s\"",
312 loc.file,loc.line,filename);
316 /* Check that the ID string is correct */
317 length=strlen(AUTHFILE_ID_STRING)+1;
318 b=safe_malloc(length,"rsapriv_apply");
319 if (fread(b,length,1,f)!=1 || memcmp(b,AUTHFILE_ID_STRING,length)!=0) {
320 cfgfatal_maybefile(f,loc,"rsa-private","failed to read magic ID"
321 " string from SSH1 private keyfile \"%s\"\n",
326 cipher_type=fgetc(f);
327 keyfile_get_int(loc,f); /* "Reserved data" */
328 if (cipher_type != 0) {
329 cfgfatal(loc,"rsa-private","we don't support encrypted keyfiles\n");
332 /* Read the public key */
333 keyfile_get_int(loc,f); /* Not sure what this is */
334 length=(keyfile_get_short(loc,f)+7)/8;
335 if (length>RSA_MAX_MODBYTES) {
336 cfgfatal(loc,"rsa-private","implausible length %ld for modulus\n",
339 b=safe_malloc(length,"rsapriv_apply");
340 if (fread(b,length,1,f) != 1) {
341 cfgfatal_maybefile(f,loc,"rsa-private","error reading modulus\n");
344 read_mpbin(&st->n,b,length);
346 length=(keyfile_get_short(loc,f)+7)/8;
347 if (length>RSA_MAX_MODBYTES) {
348 cfgfatal(loc,"rsa-private","implausible length %ld for e\n",length);
350 b=safe_malloc(length,"rsapriv_apply");
351 if (fread(b,length,1,f)!=1) {
352 cfgfatal_maybefile(f,loc,"rsa-private","error reading e\n");
355 read_mpbin(&e,b,length);
358 length=keyfile_get_int(loc,f);
360 cfgfatal(loc,"rsa-private","implausibly long (%ld) key comment\n",
363 c=safe_malloc(length+1,"rsapriv_apply");
364 if (fread(c,length,1,f)!=1) {
365 cfgfatal_maybefile(f,loc,"rsa-private","error reading key comment\n");
369 /* Check that the next two pairs of characters are identical - the
370 keyfile is not encrypted, so they should be */
372 if (keyfile_get_short(loc,f) != keyfile_get_short(loc,f)) {
373 cfgfatal(loc,"rsa-private","corrupt keyfile\n");
377 length=(keyfile_get_short(loc,f)+7)/8;
378 if (length>RSA_MAX_MODBYTES) {
379 cfgfatal(loc,"rsa-private","implausibly long (%ld) decryption key\n",
382 b=safe_malloc(length,"rsapriv_apply");
383 if (fread(b,length,1,f)!=1) {
384 cfgfatal_maybefile(f,loc,"rsa-private",
385 "error reading decryption key\n");
388 read_mpbin(&d,b,length);
390 /* Read iqmp (inverse of q mod p) */
391 length=(keyfile_get_short(loc,f)+7)/8;
392 if (length>RSA_MAX_MODBYTES) {
393 cfgfatal(loc,"rsa-private","implausibly long (%ld)"
394 " iqmp auxiliary value\n", length);
396 b=safe_malloc(length,"rsapriv_apply");
397 if (fread(b,length,1,f)!=1) {
398 cfgfatal_maybefile(f,loc,"rsa-private",
399 "error reading decryption key\n");
402 read_mpbin(&iqmp,b,length);
404 /* Read q (the smaller of the two primes) */
405 length=(keyfile_get_short(loc,f)+7)/8;
406 if (length>RSA_MAX_MODBYTES) {
407 cfgfatal(loc,"rsa-private","implausibly long (%ld) q value\n",
410 b=safe_malloc(length,"rsapriv_apply");
411 if (fread(b,length,1,f)!=1) {
412 cfgfatal_maybefile(f,loc,"rsa-private",
413 "error reading q value\n");
416 read_mpbin(&st->q,b,length);
418 /* Read p (the larger of the two primes) */
419 length=(keyfile_get_short(loc,f)+7)/8;
420 if (length>RSA_MAX_MODBYTES) {
421 cfgfatal(loc,"rsa-private","implausibly long (%ld) p value\n",
424 b=safe_malloc(length,"rsapriv_apply");
425 if (fread(b,length,1,f)!=1) {
426 cfgfatal_maybefile(f,loc,"rsa-private",
427 "error reading p value\n");
430 read_mpbin(&st->p,b,length);
434 fatal_perror("rsa-private (%s:%d): fclose",loc.file,loc.line);
438 * Now verify the validity of the key, and set up the auxiliary
439 * values for fast CRT signing.
446 if (i && i->type==t_bool && i->data.bool==False) {
447 Message(M_INFO,"rsa-private (%s:%d): skipping RSA key validity "
448 "check\n",loc.file,loc.line);
450 /* Verify that p*q is equal to n. */
451 mpz_mul(&tmp, &st->p, &st->q);
452 if (mpz_cmp(&tmp, &st->n) != 0)
456 * Verify that d*e is congruent to 1 mod (p-1), and mod
457 * (q-1). This is equivalent to it being congruent to 1 mod
458 * lambda(n) = lcm(p-1,q-1). The usual `textbook' condition,
459 * that d e == 1 (mod (p-1)(q-1)) is sufficient, but not
460 * actually necessary.
462 mpz_mul(&tmp, &d, &e);
463 mpz_sub_ui(&tmp2, &st->p, 1);
464 mpz_mod(&tmp3, &tmp, &tmp2);
465 if (mpz_cmp_si(&tmp3, 1) != 0)
467 mpz_sub_ui(&tmp2, &st->q, 1);
468 mpz_mod(&tmp3, &tmp, &tmp2);
469 if (mpz_cmp_si(&tmp3, 1) != 0)
472 /* Verify that q*iqmp is congruent to 1 mod p. */
473 mpz_mul(&tmp, &st->q, &iqmp);
474 mpz_mod(&tmp2, &tmp, &st->p);
475 if (mpz_cmp_si(&tmp2, 1) != 0)
478 /* Now we know the key is valid (or we don't care). */
482 * Now we compute auxiliary values dp, dq and w to allow us
483 * to use the CRT optimisation when signing.
485 * dp == d mod (p-1) so that a^dp == a^d mod p, for all a
486 * dq == d mod (q-1) similarly mod q
487 * w == iqmp * q so that w == 0 mod q, and w == 1 mod p
492 mpz_sub_ui(&tmp, &st->p, 1);
493 mpz_mod(&st->dp, &d, &tmp);
494 mpz_sub_ui(&tmp, &st->q, 1);
495 mpz_mod(&st->dq, &d, &tmp);
496 mpz_mul(&st->w, &iqmp, &st->q);
500 cfgfatal(loc,"rsa-private","file \"%s\" does not contain a "
501 "valid RSA key!\n",filename);
513 return new_closure(&st->cl);
516 void rsa_module(dict_t *dict)
518 add_closure(dict,"rsa-private",rsapriv_apply);
519 add_closure(dict,"rsa-public",rsapub_apply);