2 * range.c: implementation of the Nikoli game 'Kurodoko' / 'Kuromasu'.
6 * Puzzle rules: the player is given a WxH grid of white squares, some
7 * of which contain numbers. The goal is to paint some of the squares
10 * - no cell (err, cell = square) with a number is painted black
11 * - no black cells have an adjacent (horz/vert) black cell
12 * - the white cells are all connected (through other white cells)
13 * - if a cell contains a number n, let h and v be the lengths of the
14 * maximal horizontal and vertical white sequences containing that
15 * cell. Then n must equal h + v - 1.
18 /* example instance with its encoding and textual representation, both
19 * solved and unsolved (made by thegame.solve and thegame.text_format)
21 * +--+--+--+--+--+--+--+
23 * +--+--+--+--+--+--+--+
25 * +--+--+--+--+--+--+--+
27 * +--+--+--+--+--+--+--+
29 * +--+--+--+--+--+--+--+
31 * +--+--+--+--+--+--+--+
33 * +--+--+--+--+--+--+--+
35 * +--+--+--+--+--+--+--+
37 * 7x7:d7b3e8e5c7a7c13e4d8b4d
39 * +--+--+--+--+--+--+--+
40 * |..|..|..|..| 7|..|..|
41 * +--+--+--+--+--+--+--+
42 * | 3|..|##|..|##|..| 8|
43 * +--+--+--+--+--+--+--+
44 * |##|..|..|##|..| 5|..|
45 * +--+--+--+--+--+--+--+
46 * |..|..| 7|..| 7|##|..|
47 * +--+--+--+--+--+--+--+
48 * |..|13|..|..|..|..|..|
49 * +--+--+--+--+--+--+--+
50 * | 4|..|##|..|##|..| 8|
51 * +--+--+--+--+--+--+--+
52 * |##|..| 4|..|..|##|..|
53 * +--+--+--+--+--+--+--+
67 #define setmember(obj, field) ( (obj) . field = field )
69 static char *nfmtstr(int n, char *fmt, ...) {
71 char *ret = snewn(n+1, char);
73 vsprintf(ret, fmt, va);
78 #define SWAP(type, lvar1, lvar2) do { \
84 /* ----------------------------------------------------------------------
85 * Game parameters, presets, states
88 typedef signed char puzzle_size;
96 struct game_params params;
97 unsigned int has_cheated: 1;
98 unsigned int was_solved: 1;
102 #define DEFAULT_PRESET 0
103 static struct game_params range_presets[] = {{9, 6}, {12, 8}, {13, 9}, {16, 11}};
104 /* rationale: I want all four combinations of {odd/even, odd/even}, as
105 * they play out differently with respect to two-way symmetry. I also
106 * want them to be generated relatively fast yet still be large enough
107 * to be entertaining for a decent amount of time, and I want them to
108 * make good use of monitor real estate (the typical screen resolution
109 * is why I do 13x9 and not 9x13).
112 static game_params *default_params(void)
114 game_params *ret = snew(game_params);
115 *ret = range_presets[DEFAULT_PRESET]; /* structure copy */
119 static game_params *dup_params(const game_params *params)
121 game_params *ret = snew(game_params);
122 *ret = *params; /* structure copy */
126 static int game_fetch_preset(int i, char **name, game_params **params)
130 if (i < 0 || i >= lenof(range_presets)) return FALSE;
132 ret = default_params();
133 *ret = range_presets[i]; /* struct copy */
136 *name = nfmtstr(40, "%d x %d", range_presets[i].w, range_presets[i].h);
141 static void free_params(game_params *params)
146 static void decode_params(game_params *params, char const *string)
148 /* FIXME check for puzzle_size overflow and decoding issues */
149 params->w = params->h = atoi(string);
150 while (*string && isdigit((unsigned char) *string)) ++string;
151 if (*string == 'x') {
153 params->h = atoi(string);
154 while (*string && isdigit((unsigned char)*string)) string++;
158 static char *encode_params(const game_params *params, int full)
161 sprintf(str, "%dx%d", params->w, params->h);
165 static config_item *game_configure(const game_params *params)
169 ret = snewn(3, config_item);
171 ret[0].name = "Width";
172 ret[0].type = C_STRING;
173 ret[0].sval = nfmtstr(10, "%d", params->w);
176 ret[1].name = "Height";
177 ret[1].type = C_STRING;
178 ret[1].sval = nfmtstr(10, "%d", params->h);
189 static game_params *custom_params(const config_item *configuration)
191 game_params *ret = snew(game_params);
192 ret->w = atoi(configuration[0].sval);
193 ret->h = atoi(configuration[1].sval);
197 #define memdup(dst, src, n, type) do { \
198 dst = snewn(n, type); \
199 memcpy(dst, src, n * sizeof (type)); \
202 static game_state *dup_game(const game_state *state)
204 game_state *ret = snew(game_state);
205 int const n = state->params.w * state->params.h;
207 *ret = *state; /* structure copy */
209 /* copy the poin_tee_, set a new value of the poin_ter_ */
210 memdup(ret->grid, state->grid, n, puzzle_size);
215 static void free_game(game_state *state)
222 /* ----------------------------------------------------------------------
223 * The solver subsystem.
225 * The solver is used for two purposes:
226 * - To solve puzzles when the user selects `Solve'.
227 * - To test solubility of a grid as clues are being removed from it
228 * during the puzzle generation.
230 * It supports the following ways of reasoning:
232 * - A cell adjacent to a black cell must be white.
234 * - If painting a square black would bisect the white regions, that
235 * square is white (by finding biconnected components' cut points)
237 * - A cell with number n, covering at most k white squares in three
238 * directions must white-cover n-k squares in the last direction.
240 * - A cell with number n known to cover k squares, if extending the
241 * cover by one square in a given direction causes the cell to
242 * cover _more_ than n squares, that extension cell must be black.
244 * (either if the square already covers n, or if it extends into a
245 * chunk of size > n - k)
247 * - Recursion. Pick any cell and see if this leads to either a
248 * contradiction or a solution (and then act appropriately).
253 * (propagation upper limit)
254 * - If one has two numbers on the same line, the smaller limits the
255 * larger. Example: in |b|_|_|8|4|_|_|b|, only two _'s can be both
256 * white and connected to the "8" cell; so that cell will propagate
257 * at least four cells orthogonally to the displayed line (which is
258 * better than the current "at least 2").
260 * (propagation upper limit)
261 * - cells can't propagate into other cells if doing so exceeds that
262 * number. Example: in |b|4|.|.|2|b|, at most one _ can be white;
263 * otherwise, the |2| would have too many reaching white cells.
265 * (propagation lower and upper limit)
266 * - `Full Combo': in each four directions d_1 ... d_4, find a set of
267 * possible propagation distances S_1 ... S_4. For each i=1..4,
268 * for each x in S_i: if not exists (y, z, w) in the other sets
269 * such that (x+y+z+w+1 == clue value): then remove x from S_i.
270 * Repeat until this stabilizes. If any cell would contradict
273 #define idx(i, j, w) ((i)*(w) + (j))
274 #define out_of_bounds(r, c, w, h) \
275 ((r) < 0 || (r) >= h || (c) < 0 || (c) >= w)
277 typedef struct square {
281 enum {BLACK = -2, WHITE, EMPTY};
282 /* white is for pencil marks, empty is undecided */
284 static int const dr[4] = {+1, 0, -1, 0};
285 static int const dc[4] = { 0, +1, 0, -1};
286 static int const cursors[4] = /* must match dr and dc */
287 {CURSOR_DOWN, CURSOR_RIGHT, CURSOR_UP, CURSOR_LEFT};
289 typedef struct move {
291 unsigned int colour: 1;
293 enum {M_BLACK = 0, M_WHITE = 1};
295 typedef move *(reasoning)(game_state *state,
300 static reasoning solver_reasoning_not_too_big;
301 static reasoning solver_reasoning_adjacency;
302 static reasoning solver_reasoning_connectedness;
303 static reasoning solver_reasoning_recursion;
312 static move *solve_internal(const game_state *state, move *base, int diff);
314 static char *solve_game(const game_state *orig, const game_state *curpos,
315 const char *aux, char **error)
317 int const n = orig->params.w * orig->params.h;
318 move *const base = snewn(n, move);
319 move *moves = solve_internal(orig, base, DIFF_RECURSION);
324 int const k = moves - base;
325 char *str = ret = snewn(15*k + 2, char);
326 char colour[2] = "BW";
330 for (it = base; it < moves; ++it)
331 str += sprintf(str, "%c,%d,%d", colour[it->colour],
332 it->square.r, it->square.c);
333 } else *error = "This puzzle instance contains a contradiction";
339 static square *find_clues(const game_state *state, int *ret_nclues);
340 static move *do_solve(game_state *state,
346 /* new_game_desc entry point in the solver subsystem */
347 static move *solve_internal(const game_state *state, move *base, int diff)
350 square *const clues = find_clues(state, &nclues);
351 game_state *dup = dup_game(state);
352 move *const moves = do_solve(dup, nclues, clues, base, diff);
358 static reasoning *const reasonings[] = {
359 solver_reasoning_not_too_big,
360 solver_reasoning_adjacency,
361 solver_reasoning_connectedness,
362 solver_reasoning_recursion
365 static move *do_solve(game_state *state,
371 struct move *buf = move_buffer, *oldbuf;
376 for (i = 0; i < lenof(reasonings) && i <= difficulty; ++i) {
377 /* only recurse if all else fails */
378 if (i == DIFF_RECURSION && buf > oldbuf) continue;
379 buf = (*reasonings[i])(state, nclues, clues, buf);
380 if (buf == NULL) return NULL;
382 } while (buf > oldbuf);
387 #define MASK(n) (1 << ((n) + 2))
389 static int runlength(puzzle_size r, puzzle_size c,
390 puzzle_size dr, puzzle_size dc,
391 const game_state *state, int colourmask)
393 int const w = state->params.w, h = state->params.h;
396 int cell = idx(r, c, w);
397 if (out_of_bounds(r, c, w, h)) break;
398 if (state->grid[cell] > 0) {
399 if (!(colourmask & ~(MASK(BLACK) | MASK(WHITE) | MASK(EMPTY))))
401 } else if (!(MASK(state->grid[cell]) & colourmask)) break;
409 static void solver_makemove(puzzle_size r, puzzle_size c, int colour,
410 game_state *state, move **buffer_ptr)
412 int const cell = idx(r, c, state->params.w);
413 if (out_of_bounds(r, c, state->params.w, state->params.h)) return;
414 if (state->grid[cell] != EMPTY) return;
415 setmember((*buffer_ptr)->square, r);
416 setmember((*buffer_ptr)->square, c);
417 setmember(**buffer_ptr, colour);
419 state->grid[cell] = (colour == M_BLACK ? BLACK : WHITE);
422 static move *solver_reasoning_adjacency(game_state *state,
428 for (r = 0; r < state->params.h; ++r)
429 for (c = 0; c < state->params.w; ++c) {
430 int const cell = idx(r, c, state->params.w);
431 if (state->grid[cell] != BLACK) continue;
432 for (i = 0; i < 4; ++i)
433 solver_makemove(r + dr[i], c + dc[i], M_WHITE, state, &buf);
438 enum {NOT_VISITED = -1};
440 static int dfs_biconnect_visit(puzzle_size r, puzzle_size c,
442 square *dfs_parent, int *dfs_depth,
445 static move *solver_reasoning_connectedness(game_state *state,
450 int const w = state->params.w, h = state->params.h, n = w * h;
452 square *const dfs_parent = snewn(n, square);
453 int *const dfs_depth = snewn(n, int);
456 for (i = 0; i < n; ++i) {
457 dfs_parent[i].r = NOT_VISITED;
461 for (i = 0; i < n && state->grid[i] == BLACK; ++i);
463 dfs_parent[i].r = i / w;
464 dfs_parent[i].c = i % w; /* `dfs root`.parent == `dfs root` */
467 dfs_biconnect_visit(i / w, i % w, state, dfs_parent, dfs_depth, &buf);
475 /* returns the `lowpoint` of (r, c) */
476 static int dfs_biconnect_visit(puzzle_size r, puzzle_size c,
478 square *dfs_parent, int *dfs_depth,
481 const puzzle_size w = state->params.w, h = state->params.h;
482 int const i = idx(r, c, w), mydepth = dfs_depth[i];
483 int lowpoint = mydepth, j, nchildren = 0;
485 for (j = 0; j < 4; ++j) {
486 const puzzle_size rr = r + dr[j], cc = c + dc[j];
487 int const cell = idx(rr, cc, w);
489 if (out_of_bounds(rr, cc, w, h)) continue;
490 if (state->grid[cell] == BLACK) continue;
492 if (dfs_parent[cell].r == NOT_VISITED) {
494 dfs_parent[cell].r = r;
495 dfs_parent[cell].c = c;
496 dfs_depth[cell] = mydepth + 1;
497 child_lowpoint = dfs_biconnect_visit(rr, cc, state, dfs_parent,
500 if (child_lowpoint >= mydepth && mydepth > 0)
501 solver_makemove(r, c, M_WHITE, state, buf);
503 lowpoint = min(lowpoint, child_lowpoint);
505 } else if (rr != dfs_parent[i].r || cc != dfs_parent[i].c) {
506 lowpoint = min(lowpoint, dfs_depth[cell]);
510 if (mydepth == 0 && nchildren >= 2)
511 solver_makemove(r, c, M_WHITE, state, buf);
516 static move *solver_reasoning_not_too_big(game_state *state,
521 int const w = state->params.w, runmasks[4] = {
522 ~(MASK(BLACK) | MASK(EMPTY)),
524 ~(MASK(BLACK) | MASK(EMPTY)),
527 enum {RUN_WHITE, RUN_EMPTY, RUN_BEYOND, RUN_SPACE};
529 int i, runlengths[4][4];
531 for (i = 0; i < nclues; ++i) {
532 int j, k, whites, space;
534 const puzzle_size row = clues[i].r, col = clues[i].c;
535 int const clue = state->grid[idx(row, col, w)];
537 for (j = 0; j < 4; ++j) {
538 puzzle_size r = row + dr[j], c = col + dc[j];
539 runlengths[RUN_SPACE][j] = 0;
540 for (k = 0; k <= RUN_SPACE; ++k) {
541 int l = runlength(r, c, dr[j], dc[j], state, runmasks[k]);
543 runlengths[k][j] = l;
547 runlengths[RUN_SPACE][j] += l;
552 for (j = 0; j < 4; ++j) whites += runlengths[RUN_WHITE][j];
554 for (j = 0; j < 4; ++j) {
555 int const delta = 1 + runlengths[RUN_WHITE][j];
556 const puzzle_size r = row + delta * dr[j];
557 const puzzle_size c = col + delta * dc[j];
559 if (whites == clue) {
560 solver_makemove(r, c, M_BLACK, state, &buf);
564 if (runlengths[RUN_EMPTY][j] == 1 &&
566 + runlengths[RUN_EMPTY][j]
567 + runlengths[RUN_BEYOND][j]
569 solver_makemove(r, c, M_BLACK, state, &buf);
574 + runlengths[RUN_EMPTY][j]
575 + runlengths[RUN_BEYOND][j]
577 runlengths[RUN_SPACE][j] =
578 runlengths[RUN_WHITE][j] +
579 runlengths[RUN_EMPTY][j] - 1;
581 if (runlengths[RUN_EMPTY][j] == 1)
582 solver_makemove(r, c, M_BLACK, state, &buf);
587 for (j = 0; j < 4; ++j) space += runlengths[RUN_SPACE][j];
588 for (j = 0; j < 4; ++j) {
589 puzzle_size r = row + dr[j], c = col + dc[j];
591 int k = space - runlengths[RUN_SPACE][j];
592 if (k >= clue) continue;
594 for (; k < clue; ++k, r += dr[j], c += dc[j])
595 solver_makemove(r, c, M_WHITE, state, &buf);
601 static move *solver_reasoning_recursion(game_state *state,
606 int const w = state->params.w, n = w * state->params.h;
609 for (cell = 0; cell < n; ++cell) {
610 int const r = cell / w, c = cell % w;
612 game_state *newstate;
613 move *recursive_result;
615 if (state->grid[cell] != EMPTY) continue;
617 /* FIXME: add enum alias for smallest and largest (or N) */
618 for (colour = M_BLACK; colour <= M_WHITE; ++colour) {
619 newstate = dup_game(state);
620 newstate->grid[cell] = colour;
621 recursive_result = do_solve(newstate, nclues, clues, buf,
624 if (recursive_result == NULL) {
625 solver_makemove(r, c, M_BLACK + M_WHITE - colour, state, &buf);
628 for (i = 0; i < n && newstate->grid[i] != EMPTY; ++i);
629 if (i == n) return buf;
635 static square *find_clues(const game_state *state, int *ret_nclues)
637 int r, c, i, nclues = 0;
638 square *ret = snewn(state->params.w * state->params.h, struct square);
640 for (i = r = 0; r < state->params.h; ++r)
641 for (c = 0; c < state->params.w; ++c, ++i)
642 if (state->grid[i] > 0) {
648 *ret_nclues = nclues;
649 return sresize(ret, nclues + (nclues == 0), square);
652 /* ----------------------------------------------------------------------
655 * Generating kurodoko instances is rather straightforward:
657 * - Start with a white grid and add black squares at randomly chosen
658 * locations, unless colouring that square black would violate
659 * either the adjacency or connectedness constraints.
661 * - For each white square, compute the number it would contain if it
662 * were given as a clue.
664 * - From a starting point of "give _every_ white square as a clue",
665 * for each white square (in a random order), see if the board is
666 * solvable when that square is not given as a clue. If not, don't
667 * give it as a clue, otherwise do.
669 * This never fails, but it's only _almost_ what I do. The real final
672 * - From a starting point of "give _every_ white square as a clue",
673 * first remove all clues that are two-way rotationally symmetric
674 * to a black square. If this leaves the puzzle unsolvable, throw
675 * it out and try again. Otherwise, remove all _pairs_ of clues
676 * (that are rotationally symmetric) which can be removed without
677 * rendering the puzzle unsolvable.
679 * This can fail even if one only removes the black and symmetric
680 * clues; indeed it happens often (avg. once or twice per puzzle) when
681 * generating 1xN instances. (If you add black cells they must be in
682 * the end, and if you only add one, it's ambiguous where).
685 /* forward declarations of internal calls */
686 static void newdesc_choose_black_squares(game_state *state,
687 const int *shuffle_1toN);
688 static void newdesc_compute_clues(game_state *state);
689 static int newdesc_strip_clues(game_state *state, int *shuffle_1toN);
690 static char *newdesc_encode_game_description(int n, puzzle_size *grid);
692 static char *new_game_desc(const game_params *params, random_state *rs,
693 char **aux, int interactive)
695 int const w = params->w, h = params->h, n = w * h;
697 puzzle_size *const grid = snewn(n, puzzle_size);
698 int *const shuffle_1toN = snewn(n, int);
700 int i, clues_removed;
705 state.params = *params;
708 interactive = 0; /* I don't need it, I shouldn't use it*/
710 for (i = 0; i < n; ++i) shuffle_1toN[i] = i;
713 shuffle(shuffle_1toN, n, sizeof (int), rs);
714 newdesc_choose_black_squares(&state, shuffle_1toN);
716 newdesc_compute_clues(&state);
718 shuffle(shuffle_1toN, n, sizeof (int), rs);
719 clues_removed = newdesc_strip_clues(&state, shuffle_1toN);
721 if (clues_removed < 0) continue; else break;
724 encoding = newdesc_encode_game_description(n, grid);
732 static int dfs_count_white(game_state *state, int cell);
734 static void newdesc_choose_black_squares(game_state *state,
735 const int *shuffle_1toN)
737 int const w = state->params.w, h = state->params.h, n = w * h;
739 int k, any_white_cell, n_black_cells;
741 for (k = 0; k < n; ++k) state->grid[k] = WHITE;
743 any_white_cell = shuffle_1toN[n - 1];
746 /* I like the puzzles that result from n / 3, but maybe this
747 * could be made a (generation, i.e. non-full) parameter? */
748 for (k = 0; k < n / 3; ++k) {
749 int const i = shuffle_1toN[k], c = i % w, r = i / w;
752 for (j = 0; j < 4; ++j) {
753 int const rr = r + dr[j], cc = c + dc[j], cell = idx(rr, cc, w);
754 /* if you're out of bounds, we skip you */
755 if (out_of_bounds(rr, cc, w, h)) continue;
756 if (state->grid[cell] == BLACK) break; /* I can't be black */
757 } if (j < 4) continue; /* I have black neighbour: I'm white */
759 state->grid[i] = BLACK;
762 j = dfs_count_white(state, any_white_cell);
763 if (j + n_black_cells < n) {
764 state->grid[i] = WHITE;
770 static void newdesc_compute_clues(game_state *state)
772 int const w = state->params.w, h = state->params.h;
775 for (r = 0; r < h; ++r) {
776 int run_size = 0, c, cc;
777 for (c = 0; c <= w; ++c) {
778 if (c == w || state->grid[idx(r, c, w)] == BLACK) {
779 for (cc = c - run_size; cc < c; ++cc)
780 state->grid[idx(r, cc, w)] += run_size;
786 for (c = 0; c < w; ++c) {
787 int run_size = 0, r, rr;
788 for (r = 0; r <= h; ++r) {
789 if (r == h || state->grid[idx(r, c, w)] == BLACK) {
790 for (rr = r - run_size; rr < r; ++rr)
791 state->grid[idx(rr, c, w)] += run_size;
798 #define rotate(x) (n - 1 - (x))
800 static int newdesc_strip_clues(game_state *state, int *shuffle_1toN)
802 int const w = state->params.w, n = w * state->params.h;
804 move *const move_buffer = snewn(n, move);
806 game_state *dupstate;
809 * do a partition/pivot of shuffle_1toN into three groups:
810 * (1) squares rotationally-symmetric to (3)
811 * (2) squares not in (1) or (3)
814 * They go from [0, left), [left, right) and [right, n) in
815 * shuffle_1toN (and from there into state->grid[ ])
817 * Then, remove clues from the grid one by one in shuffle_1toN
818 * order, until the solver becomes unhappy. If we didn't remove
819 * all of (1), return (-1). Else, we're happy.
822 /* do the partition */
823 int clues_removed, k = 0, left = 0, right = n;
826 while (k < right && state->grid[shuffle_1toN[k]] == BLACK) {
828 SWAP(int, shuffle_1toN[right], shuffle_1toN[k]);
829 assert(state->grid[shuffle_1toN[right]] == BLACK);
831 if (k >= right) break;
833 if (state->grid[rotate(shuffle_1toN[k])] == BLACK) {
834 SWAP(int, shuffle_1toN[k], shuffle_1toN[left]);
837 assert (state->grid[rotate(shuffle_1toN[k])] != BLACK
841 for (k = 0; k < left; ++k) {
842 assert (state->grid[rotate(shuffle_1toN[k])] == BLACK);
843 state->grid[shuffle_1toN[k]] = EMPTY;
845 for (k = left; k < right; ++k) {
846 assert (state->grid[rotate(shuffle_1toN[k])] != BLACK);
847 assert (state->grid[shuffle_1toN[k]] != BLACK);
849 for (k = right; k < n; ++k) {
850 assert (state->grid[shuffle_1toN[k]] == BLACK);
851 state->grid[shuffle_1toN[k]] = EMPTY;
854 clues_removed = (left - 0) + (n - right);
856 dupstate = dup_game(state);
857 buf = solve_internal(dupstate, move_buffer, DIFF_RECURSION - 1);
859 if (buf - move_buffer < clues_removed) {
860 /* branch prediction: I don't think I'll go here */
865 for (k = left; k < right; ++k) {
866 const int i = shuffle_1toN[k], j = rotate(i);
867 int const clue = state->grid[i], clue_rot = state->grid[j];
868 if (clue == BLACK) continue;
869 state->grid[i] = state->grid[j] = EMPTY;
870 dupstate = dup_game(state);
871 buf = solve_internal(dupstate, move_buffer, DIFF_RECURSION - 1);
873 clues_removed += 2 - (i == j);
874 /* if i is the center square, then i == (j = rotate(i))
875 * when i and j are one, removing i and j removes only one */
876 if (buf - move_buffer == clues_removed) continue;
877 /* if the solver is sound, refilling all removed clues means
878 * we have filled all squares, i.e. solved the puzzle. */
879 state->grid[i] = clue;
880 state->grid[j] = clue_rot;
881 clues_removed -= 2 - (i == j);
886 return clues_removed;
889 static int dfs_count_rec(puzzle_size *grid, int r, int c, int w, int h)
891 int const cell = idx(r, c, w);
892 if (out_of_bounds(r, c, w, h)) return 0;
893 if (grid[cell] != WHITE) return 0;
896 dfs_count_rec(grid, r + 0, c + 1, w, h) +
897 dfs_count_rec(grid, r + 0, c - 1, w, h) +
898 dfs_count_rec(grid, r + 1, c + 0, w, h) +
899 dfs_count_rec(grid, r - 1, c + 0, w, h);
902 static int dfs_count_white(game_state *state, int cell)
904 int const w = state->params.w, h = state->params.h, n = w * h;
905 int const r = cell / w, c = cell % w;
906 int i, k = dfs_count_rec(state->grid, r, c, w, h);
907 for (i = 0; i < n; ++i)
908 if (state->grid[i] == EMPTY)
909 state->grid[i] = WHITE;
913 static char *validate_params(const game_params *params, int full)
915 int const w = params->w, h = params->h;
916 if (w < 1) return "Error: width is less than 1";
917 if (h < 1) return "Error: height is less than 1";
918 if (w * h < 1) return "Error: size is less than 1";
919 if (w + h - 1 > SCHAR_MAX) return "Error: w + h is too big";
920 /* I might be unable to store clues in my puzzle_size *grid; */
922 if (w == 2 && h == 2) return "Error: can't create 2x2 puzzles";
923 if (w == 1 && h == 2) return "Error: can't create 1x2 puzzles";
924 if (w == 2 && h == 1) return "Error: can't create 2x1 puzzles";
925 if (w == 1 && h == 1) return "Error: can't create 1x1 puzzles";
930 /* Definition: a puzzle instance is _good_ if:
931 * - it has a unique solution
932 * - the solver can find this solution without using recursion
933 * - the solution contains at least one black square
934 * - the clues are 2-way rotationally symmetric
936 * (the idea being: the generator can not output any _bad_ puzzles)
938 * Theorem: validate_params, when full != 0, discards exactly the set
939 * of parameters for which there are _no_ good puzzle instances.
941 * Proof: it's an immediate consequence of the five lemmas below.
943 * Observation: not only do puzzles on non-tiny grids exist, the
944 * generator is pretty fast about coming up with them. On my pre-2004
945 * desktop box, it generates 100 puzzles on the highest preset (16x11)
946 * in 8.383 seconds, or <= 0.1 second per puzzle.
948 * ----------------------------------------------------------------------
950 * Lemma: On a 1x1 grid, there are no good puzzles.
952 * Proof: the one square can't be a clue because at least one square
953 * is black. But both a white square and a black square satisfy the
954 * solution criteria, so the puzzle is ambiguous (and hence bad).
956 * Lemma: On a 1x2 grid, there are no good puzzles.
958 * Proof: let's name the squares l and r. Note that there can be at
959 * most one black square, or adjacency is violated. By assumption at
960 * least one square is black, so let's call that one l. By clue
961 * symmetry, neither l nor r can be given as a clue, so the puzzle
962 * instance is blank and thus ambiguous.
964 * Corollary: On a 2x1 grid, there are no good puzzles.
965 * Proof: rotate the above proof 90 degrees ;-)
967 * ----------------------------------------------------------------------
969 * Lemma: On a 2x2 grid, there are no soluble puzzles with 2-way
970 * rotational symmetric clues and at least one black square.
972 * Proof: Let's name the squares a, b, c, and d, with a and b on the
973 * top row, a and c in the left column. Let's consider the case where
974 * a is black. Then no other square can be black: b and c would both
975 * violate the adjacency constraint; d would disconnect b from c.
977 * So exactly one square is black (and by 4-way rotation symmetry of
978 * the 2x2 square, it doesn't matter which one, so let's stick to a).
979 * By 2-way rotational symmetry of the clues and the rule about not
980 * painting numbers black, neither a nor d can be clues. A blank
981 * puzzle would be ambiguous, so one of {b, c} is a clue; by symmetry,
982 * so is the other one.
984 * It is readily seen that their clue value is 2. But "a is black"
985 * and "d is black" are both valid solutions in this case, so the
986 * puzzle is ambiguous (and hence bad).
988 * ----------------------------------------------------------------------
990 * Lemma: On a wxh grid with w, h >= 1 and (w > 2 or h > 2), there is
991 * at least one good puzzle.
993 * Proof: assume that w > h (otherwise rotate the proof again). Paint
994 * the top left and bottom right corners black, and fill a clue into
995 * all the other squares. Present this board to the solver code (or
996 * player, hypothetically), except with the two black squares as blank
999 * For an Nx1 puzzle, observe that every clue is N - 2, and there are
1000 * N - 2 of them in one connected sequence, so the remaining two
1001 * squares can be deduced to be black, which solves the puzzle.
1003 * For any other puzzle, let j be a cell in the same row as a black
1004 * cell, but not in the same column (such a cell doesn't exist in 2x3
1005 * puzzles, but we assume w > h and such cells exist in 3x2 puzzles).
1007 * Note that the number of cells in axis parallel `rays' going out
1008 * from j exceeds j's clue value by one. Only one such cell is a
1009 * non-clue, so it must be black. Similarly for the other corner (let
1010 * j' be a cell in the same row as the _other_ black cell, but not in
1011 * the same column as _any_ black cell; repeat this argument at j').
1013 * This fills the grid and satisfies all clues and the adjacency
1014 * constraint and doesn't paint on top of any clues. All that is left
1015 * to see is connectedness.
1017 * Observe that the white cells in each column form a single connected
1018 * `run', and each column contains a white cell adjacent to a white
1019 * cell in the column to the right, if that column exists.
1021 * Thus, any cell in the left-most column can reach any other cell:
1022 * first go to the target column (by repeatedly going to the cell in
1023 * your current column that lets you go right, then going right), then
1024 * go up or down to the desired cell.
1026 * As reachability is symmetric (in undirected graphs) and transitive,
1027 * any cell can reach any left-column cell, and from there any other
1031 /* ----------------------------------------------------------------------
1032 * Game encoding and decoding
1035 #define NDIGITS_BASE '!'
1037 static char *newdesc_encode_game_description(int area, puzzle_size *grid)
1040 int desclen = 0, descsize = 0;
1044 for (i = 0; i <= area; i++) {
1045 int n = (i < area ? grid[i] : -1);
1050 if (descsize < desclen + 40) {
1051 descsize = desclen * 3 / 2 + 40;
1052 desc = sresize(desc, descsize, char);
1056 int c = 'a' - 1 + run;
1059 desc[desclen++] = c;
1060 run -= c - ('a' - 1);
1064 * If there's a number in the very top left or
1065 * bottom right, there's no point putting an
1066 * unnecessary _ before or after it.
1068 if (desclen > 0 && n > 0)
1069 desc[desclen++] = '_';
1072 desclen += sprintf(desc+desclen, "%d", n);
1076 desc[desclen] = '\0';
1080 static char *validate_desc(const game_params *params, const char *desc)
1082 int const n = params->w * params->h;
1084 int range = params->w + params->h - 1; /* maximum cell value */
1086 while (*desc && *desc != ',') {
1088 if (c >= 'a' && c <= 'z') {
1089 squares += c - 'a' + 1;
1090 } else if (c == '_') {
1092 } else if (c > '0' && c <= '9') {
1093 int val = atoi(desc-1);
1094 if (val < 1 || val > range)
1095 return "Out-of-range number in game description";
1097 while (*desc >= '0' && *desc <= '9')
1100 return "Invalid character in game description";
1104 return "Not enough data to fill grid";
1107 return "Too much data to fit in grid";
1112 static game_state *new_game(midend *me, const game_params *params,
1118 int const n = params->w * params->h;
1119 game_state *state = snew(game_state);
1121 me = NULL; /* I don't need it, I shouldn't use it */
1123 state->params = *params; /* structure copy */
1124 state->grid = snewn(n, puzzle_size);
1128 while (i < n && *p) {
1130 if (c >= 'a' && c <= 'z') {
1131 int squares = c - 'a' + 1;
1133 state->grid[i++] = 0;
1134 } else if (c == '_') {
1136 } else if (c > '0' && c <= '9') {
1137 int val = atoi(p-1);
1138 assert(val >= 1 && val <= params->w+params->h-1);
1139 state->grid[i++] = val;
1140 while (*p >= '0' && *p <= '9')
1145 state->has_cheated = FALSE;
1146 state->was_solved = FALSE;
1151 /* ----------------------------------------------------------------------
1152 * User interface: ascii
1155 static int game_can_format_as_text_now(const game_params *params)
1160 static char *game_text_format(const game_state *state)
1162 int cellsize, r, c, i, w_string, h_string, n_string;
1163 char *ret, *buf, *gridline;
1165 int const w = state->params.w, h = state->params.h;
1167 cellsize = 0; /* or may be used uninitialized */
1169 for (c = 0; c < w; ++c) {
1170 for (r = 0; r < h; ++r) {
1171 puzzle_size k = state->grid[idx(r, c, w)];
1173 for (d = 0; k; k /= 10, ++d);
1174 cellsize = max(cellsize, d);
1180 w_string = w * cellsize + 2; /* "|%d|%d|...|\n" */
1181 h_string = 2 * h + 1; /* "+--+--+...+\n%s\n+--+--+...+\n" */
1182 n_string = w_string * h_string;
1184 gridline = snewn(w_string + 1, char); /* +1: NUL terminator */
1185 memset(gridline, '-', w_string);
1186 for (c = 0; c <= w; ++c) gridline[c * cellsize] = '+';
1187 gridline[w_string - 1] = '\n';
1188 gridline[w_string - 0] = '\0';
1190 buf = ret = snewn(n_string + 1, char); /* +1: NUL terminator */
1191 for (i = r = 0; r < h; ++r) {
1192 memcpy(buf, gridline, w_string);
1194 for (c = 0; c < w; ++c, ++i) {
1196 switch (state->grid[i]) {
1197 case BLACK: ch = '#'; break;
1198 case WHITE: ch = '.'; break;
1199 case EMPTY: ch = ' '; break;
1201 buf += sprintf(buf, "|%*d", cellsize - 1, state->grid[i]);
1205 memset(buf, ch, cellsize - 1);
1206 buf += cellsize - 1;
1208 buf += sprintf(buf, "|\n");
1210 memcpy(buf, gridline, w_string);
1212 assert (buf - ret == n_string);
1220 /* ----------------------------------------------------------------------
1221 * User interfaces: interactive
1225 puzzle_size r, c; /* cursor position */
1226 unsigned int cursor_show: 1;
1229 static game_ui *new_ui(const game_state *state)
1231 struct game_ui *ui = snew(game_ui);
1233 ui->cursor_show = FALSE;
1237 static void free_ui(game_ui *ui)
1242 static char *encode_ui(const game_ui *ui)
1247 static void decode_ui(game_ui *ui, const char *encoding)
1251 typedef struct drawcell {
1253 unsigned int error: 1;
1254 unsigned int cursor: 1;
1255 unsigned int flash: 1;
1258 struct game_drawstate {
1261 unsigned int started: 1;
1264 #define TILESIZE (ds->tilesize)
1265 #define BORDER (TILESIZE / 2)
1266 #define COORD(x) ((x) * TILESIZE + BORDER)
1267 #define FROMCOORD(x) (((x) - BORDER) / TILESIZE)
1269 static char *interpret_move(const game_state *state, game_ui *ui,
1270 const game_drawstate *ds,
1271 int x, int y, int button)
1273 enum {none, forwards, backwards, hint};
1274 int const w = state->params.w, h = state->params.h;
1275 int r = ui->r, c = ui->c, action = none, cell;
1276 int shift = button & MOD_SHFT;
1279 if (IS_CURSOR_SELECT(button) && !ui->cursor_show) return NULL;
1281 if (IS_MOUSE_DOWN(button)) {
1282 r = FROMCOORD(y + TILESIZE) - 1; /* or (x, y) < TILESIZE) */
1283 c = FROMCOORD(x + TILESIZE) - 1; /* are considered inside */
1284 if (out_of_bounds(r, c, w, h)) return NULL;
1287 ui->cursor_show = FALSE;
1290 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
1292 * Utterly awful hack, exactly analogous to the one in Slant,
1293 * to configure the left and right mouse buttons the opposite
1296 * The original puzzle submitter thought it would be more
1297 * useful to have the left button turn an empty square into a
1298 * dotted one, on the grounds that that was what you did most
1299 * often; I (SGT) felt instinctively that the left button
1300 * ought to place black squares and the right button place
1301 * dots, on the grounds that that was consistent with many
1302 * other puzzles in which the left button fills in the data
1303 * used by the solution checker while the right button places
1304 * pencil marks for the user's convenience.
1306 * My first beta-player wasn't sure either, so I thought I'd
1307 * pre-emptively put in a 'configuration' mechanism just in
1311 static int swap_buttons = -1;
1312 if (swap_buttons < 0) {
1313 char *env = getenv("RANGE_SWAP_BUTTONS");
1314 swap_buttons = (env && (env[0] == 'y' || env[0] == 'Y'));
1317 if (button == LEFT_BUTTON)
1318 button = RIGHT_BUTTON;
1320 button = LEFT_BUTTON;
1326 case CURSOR_SELECT : case LEFT_BUTTON: action = backwards; break;
1327 case CURSOR_SELECT2: case RIGHT_BUTTON: action = forwards; break;
1328 case 'h': case 'H' : action = hint; break;
1329 case CURSOR_UP: case CURSOR_DOWN:
1330 case CURSOR_LEFT: case CURSOR_RIGHT:
1331 if (ui->cursor_show) {
1333 for (i = 0; i < 4 && cursors[i] != button; ++i);
1336 int pre_r = r, pre_c = c, do_pre, do_post;
1337 cell = state->grid[idx(r, c, state->params.w)];
1338 do_pre = (cell == EMPTY);
1340 if (out_of_bounds(ui->r + dr[i], ui->c + dc[i], w, h)) {
1342 return nfmtstr(40, "W,%d,%d", pre_r, pre_c);
1350 cell = state->grid[idx(ui->r, ui->c, state->params.w)];
1351 do_post = (cell == EMPTY);
1353 /* (do_pre ? "..." : "") concat (do_post ? "..." : "") */
1354 if (do_pre && do_post)
1355 return nfmtstr(80, "W,%d,%dW,%d,%d",
1356 pre_r, pre_c, ui->r, ui->c);
1358 return nfmtstr(40, "W,%d,%d", pre_r, pre_c);
1360 return nfmtstr(40, "W,%d,%d", ui->r, ui->c);
1364 } else if (!out_of_bounds(ui->r + dr[i], ui->c + dc[i], w, h)) {
1368 } else ui->cursor_show = TRUE;
1372 if (action == hint) {
1373 move *end, *buf = snewn(state->params.w * state->params.h,
1376 end = solve_internal(state, buf, DIFF_RECURSION);
1377 if (end != NULL && end > buf) {
1378 ret = nfmtstr(40, "%c,%d,%d",
1379 buf->colour == M_BLACK ? 'B' : 'W',
1380 buf->square.r, buf->square.c);
1381 /* We used to set a flag here in the game_ui indicating
1382 * that the player had used the hint function. I (SGT)
1383 * retired it, on grounds of consistency with other games
1384 * (most of these games will still flash to indicate
1385 * completion if you solved and undid it, so why not if
1386 * you got a hint?) and because the flash is as much about
1387 * checking you got it all right than about congratulating
1388 * you on a job well done. */
1394 cell = state->grid[idx(r, c, state->params.w)];
1395 if (cell > 0) return NULL;
1397 if (action == forwards) switch (cell) {
1398 case EMPTY: return nfmtstr(40, "W,%d,%d", r, c);
1399 case WHITE: return nfmtstr(40, "B,%d,%d", r, c);
1400 case BLACK: return nfmtstr(40, "E,%d,%d", r, c);
1403 else if (action == backwards) switch (cell) {
1404 case BLACK: return nfmtstr(40, "W,%d,%d", r, c);
1405 case WHITE: return nfmtstr(40, "E,%d,%d", r, c);
1406 case EMPTY: return nfmtstr(40, "B,%d,%d", r, c);
1412 static int find_errors(const game_state *state, int *report)
1414 int const w = state->params.w, h = state->params.h, n = w * h;
1419 int nblack = 0, any_white_cell = -1;
1420 game_state *dup = dup_game(state);
1422 for (i = r = 0; r < h; ++r)
1423 for (c = 0; c < w; ++c, ++i) {
1424 switch (state->grid[i]) {
1430 for (j = 0; j < 4; ++j) {
1431 int const rr = r + dr[j], cc = c + dc[j];
1432 if (out_of_bounds(rr, cc, w, h)) continue;
1433 if (state->grid[idx(rr, cc, w)] != BLACK) continue;
1434 if (!report) goto found_error;
1443 for (runs = 1, j = 0; j < 4; ++j) {
1444 int const rr = r + dr[j], cc = c + dc[j];
1445 runs += runlength(rr, cc, dr[j], dc[j], state,
1449 if (runs != state->grid[i]) goto found_error;
1450 } else if (runs < state->grid[i]) report[i] = TRUE;
1452 for (runs = 1, j = 0; j < 4; ++j) {
1453 int const rr = r + dr[j], cc = c + dc[j];
1454 runs += runlength(rr, cc, dr[j], dc[j], state,
1455 ~(MASK(BLACK) | MASK(EMPTY)));
1457 if (runs > state->grid[i]) report[i] = TRUE;
1461 /* note: fallthrough _into_ these cases */
1463 case WHITE: any_white_cell = i;
1468 * Check that all the white cells form a single connected component.
1471 for (r = 0; r < h-1; ++r)
1472 for (c = 0; c < w; ++c)
1473 if (state->grid[r*w+c] != BLACK &&
1474 state->grid[(r+1)*w+c] != BLACK)
1475 dsf_merge(dsf, r*w+c, (r+1)*w+c);
1476 for (r = 0; r < h; ++r)
1477 for (c = 0; c < w-1; ++c)
1478 if (state->grid[r*w+c] != BLACK &&
1479 state->grid[r*w+(c+1)] != BLACK)
1480 dsf_merge(dsf, r*w+c, r*w+(c+1));
1481 if (nblack + dsf_size(dsf, any_white_cell) < n) {
1482 int biggest, canonical;
1490 * Report this error by choosing one component to be the
1491 * canonical one (we pick the largest, arbitrarily
1492 * tie-breaking towards lower array indices) and highlighting
1493 * as an error any square in a different component.
1497 for (i = 0; i < n; ++i)
1498 if (state->grid[i] != BLACK) {
1499 int size = dsf_size(dsf, i);
1500 if (size > biggest) {
1502 canonical = dsf_canonify(dsf, i);
1506 for (i = 0; i < n; ++i)
1507 if (state->grid[i] != BLACK && dsf_canonify(dsf, i) != canonical)
1513 return FALSE; /* if report != NULL, this is ignored */
1520 static game_state *execute_move(const game_state *state, const char *move)
1522 signed int r, c, value, nchars, ntok;
1523 signed char what_to_do;
1528 ret = dup_game(state);
1532 ret->has_cheated = ret->was_solved = TRUE;
1535 for (; *move; move += nchars) {
1536 ntok = sscanf(move, "%c,%d,%d%n", &what_to_do, &r, &c, &nchars);
1537 if (ntok < 3) goto failure;
1538 switch (what_to_do) {
1539 case 'W': value = WHITE; break;
1540 case 'E': value = EMPTY; break;
1541 case 'B': value = BLACK; break;
1542 default: goto failure;
1544 if (out_of_bounds(r, c, ret->params.w, ret->params.h)) goto failure;
1545 ret->grid[idx(r, c, ret->params.w)] = value;
1548 if (ret->was_solved == FALSE)
1549 ret->was_solved = !find_errors(ret, NULL);
1558 static void game_changed_state(game_ui *ui, const game_state *oldstate,
1559 const game_state *newstate)
1563 static float game_anim_length(const game_state *oldstate,
1564 const game_state *newstate, int dir, game_ui *ui)
1569 #define FLASH_TIME 0.7F
1571 static float game_flash_length(const game_state *from,
1572 const game_state *to, int dir, game_ui *ui)
1574 if (!from->was_solved && to->was_solved && !to->has_cheated)
1579 static int game_status(const game_state *state)
1581 return state->was_solved ? +1 : 0;
1584 /* ----------------------------------------------------------------------
1588 #define PREFERRED_TILE_SIZE 32
1593 COL_BLACK = COL_GRID,
1594 COL_TEXT = COL_GRID,
1595 COL_USER = COL_GRID,
1598 COL_HIGHLIGHT = COL_ERROR, /* mkhighlight needs it, I don't */
1599 COL_CURSOR = COL_LOWLIGHT,
1603 static void game_compute_size(const game_params *params, int tilesize,
1606 *x = (1 + params->w) * tilesize;
1607 *y = (1 + params->h) * tilesize;
1610 static void game_set_size(drawing *dr, game_drawstate *ds,
1611 const game_params *params, int tilesize)
1613 ds->tilesize = tilesize;
1616 #define COLOUR(ret, i, r, g, b) \
1617 ((ret[3*(i)+0] = (r)), (ret[3*(i)+1] = (g)), (ret[3*(i)+2] = (b)))
1619 static float *game_colours(frontend *fe, int *ncolours)
1621 float *ret = snewn(3 * NCOLOURS, float);
1623 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
1624 COLOUR(ret, COL_GRID, 0.0F, 0.0F, 0.0F);
1625 COLOUR(ret, COL_ERROR, 1.0F, 0.0F, 0.0F);
1627 *ncolours = NCOLOURS;
1631 static drawcell makecell(puzzle_size value, int error, int cursor, int flash)
1634 setmember(ret, value);
1635 setmember(ret, error);
1636 setmember(ret, cursor);
1637 setmember(ret, flash);
1641 static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
1643 int const w = state->params.w, h = state->params.h, n = w * h;
1644 struct game_drawstate *ds = snew(struct game_drawstate);
1648 ds->started = FALSE;
1650 ds->grid = snewn(n, drawcell);
1651 for (i = 0; i < n; ++i)
1652 ds->grid[i] = makecell(w + h, FALSE, FALSE, FALSE);
1657 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1663 #define cmpmember(a, b, field) ((a) . field == (b) . field)
1665 static int cell_eq(drawcell a, drawcell b)
1668 cmpmember(a, b, value) &&
1669 cmpmember(a, b, error) &&
1670 cmpmember(a, b, cursor) &&
1671 cmpmember(a, b, flash);
1674 static void draw_cell(drawing *dr, game_drawstate *ds, int r, int c,
1677 static void game_redraw(drawing *dr, game_drawstate *ds,
1678 const game_state *oldstate, const game_state *state,
1679 int dir, const game_ui *ui,
1680 float animtime, float flashtime)
1682 int const w = state->params.w, h = state->params.h, n = w * h;
1683 int const wpx = (w+1) * ds->tilesize, hpx = (h+1) * ds->tilesize;
1684 int const flash = ((int) (flashtime * 5 / FLASH_TIME)) % 2;
1688 int *errors = snewn(n, int);
1689 memset(errors, FALSE, n * sizeof (int));
1690 find_errors(state, errors);
1692 assert (oldstate == NULL); /* only happens if animating moves */
1696 draw_rect(dr, 0, 0, wpx, hpx, COL_BACKGROUND);
1697 draw_update(dr, 0, 0, wpx, hpx);
1700 for (i = r = 0; r < h; ++r) {
1701 for (c = 0; c < w; ++c, ++i) {
1702 drawcell cell = makecell(state->grid[i], errors[i], FALSE, flash);
1703 if (r == ui->r && c == ui->c && ui->cursor_show)
1705 if (!cell_eq(cell, ds->grid[i])) {
1706 draw_cell(dr, ds, r, c, cell);
1715 static void draw_cell(drawing *draw, game_drawstate *ds, int r, int c,
1718 int const ts = ds->tilesize;
1719 int const y = BORDER + ts * r, x = BORDER + ts * c;
1720 int const tx = x + (ts / 2), ty = y + (ts / 2);
1721 int const dotsz = (ds->tilesize + 9) / 10;
1723 int const colour = (cell.value == BLACK ?
1724 cell.error ? COL_ERROR : COL_BLACK :
1725 cell.flash || cell.cursor ?
1726 COL_LOWLIGHT : COL_BACKGROUND);
1728 draw_rect_outline(draw, x, y, ts + 1, ts + 1, COL_GRID);
1729 draw_rect (draw, x + 1, y + 1, ts - 1, ts - 1, colour);
1731 draw_rect_outline(draw, x + 1, y + 1, ts - 1, ts - 1, COL_ERROR);
1733 switch (cell.value) {
1734 case WHITE: draw_rect(draw, tx - dotsz / 2, ty - dotsz / 2, dotsz, dotsz,
1735 cell.error ? COL_ERROR : COL_USER);
1736 case BLACK: case EMPTY: break;
1739 int const colour = (cell.error ? COL_ERROR : COL_GRID);
1740 char *msg = nfmtstr(10, "%d", cell.value);
1741 draw_text(draw, tx, ty, FONT_VARIABLE, ts * 3 / 5,
1742 ALIGN_VCENTRE | ALIGN_HCENTRE, colour, msg);
1747 draw_update(draw, x, y, ts + 1, ts + 1);
1750 static int game_timing_state(const game_state *state, game_ui *ui)
1752 puts("warning: game_timing_state was called (this shouldn't happen)");
1753 return FALSE; /* the (non-existing) timer should not be running */
1756 /* ----------------------------------------------------------------------
1757 * User interface: print
1760 static void game_print_size(const game_params *params, float *x, float *y)
1762 int print_width, print_height;
1763 game_compute_size(params, 800, &print_width, &print_height);
1764 *x = print_width / 100.0F;
1765 *y = print_height / 100.0F;
1768 static void game_print(drawing *dr, const game_state *state, int tilesize)
1770 int const w = state->params.w, h = state->params.h;
1771 game_drawstate ds_obj, *ds = &ds_obj;
1772 int r, c, i, colour;
1774 ds->tilesize = tilesize;
1776 colour = print_mono_colour(dr, 1); assert(colour == COL_BACKGROUND);
1777 colour = print_mono_colour(dr, 0); assert(colour == COL_GRID);
1778 colour = print_mono_colour(dr, 1); assert(colour == COL_ERROR);
1779 colour = print_mono_colour(dr, 0); assert(colour == COL_LOWLIGHT);
1780 colour = print_mono_colour(dr, 0); assert(colour == NCOLOURS);
1782 for (i = r = 0; r < h; ++r)
1783 for (c = 0; c < w; ++c, ++i)
1784 draw_cell(dr, ds, r, c,
1785 makecell(state->grid[i], FALSE, FALSE, FALSE));
1787 print_line_width(dr, 3 * tilesize / 40);
1788 draw_rect_outline(dr, BORDER, BORDER, w*TILESIZE, h*TILESIZE, COL_GRID);
1791 /* And that's about it ;-) **************************************************/
1794 #define thegame range
1797 struct game const thegame = {
1798 "Range", "games.range", "range",
1805 TRUE, game_configure, custom_params,
1813 TRUE, game_can_format_as_text_now, game_text_format,
1821 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1824 game_free_drawstate,
1829 TRUE, FALSE, game_print_size, game_print,
1830 FALSE, /* wants_statusbar */
1831 FALSE, game_timing_state,