

	ACORN RISC MACHINE (ARM FAMILY DATA MANUAL
	Application Specific Logic Products Division
Prentice Hall, Englewood Cliffs, New Jersey 07632	

The information contained in this document has been carefully checked and is believed to be reliable. However, VLSI Technology, Inc., (VLSI) makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon, it. VLSI does not guarantee that the use of any information contained herein will not infringe upon the patent or other rights of third parties, and no patent or other license is implied hereby.

This document does not in any way extend VLSI's warranty on any product beyond that set forth in its standard terms and conditions of sale. VLSI Technology, Inc., reserves the right to make changes in the products or specifications, or both, presented in this publication at any time and without notice.

LIFE SUPPORT APPLICATIONS

VLSI Technology, Inc., products are not intended for use as critical components in life support appliances, devices, or systems in which the failure of a VLSI Technology product to perform could reasonably be expected to result in personal injury.

•	Copyright © 1990 by VLSI Technology, Inc.
	Published by Prentice-Hall, Inc. A Division of Simon & Schuster Englewood Cliffs, New Jersey 07632
	This book can be made available to businesses and organizations at a special discount when ordered in large quantities. For more information, contact:
	Prentice-Hall, Inc. Special Sales and College Marketing College Technical and Reference Division Englewood Cliffs, N.J. 07632
	All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.
	Printed in the United States of America
	10 9 8 7 6 5 4 3 2 1
	ISBN 0-13-781618-9
	PRENTICE-HALL INTERNATIONAL (UK) LIMITED, London PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney PRENTICE-HALL CANADA INC., Toronio PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi SIMON & SCHUSTER ASIA PTE. LTD., Singapore

EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

VLSI TECHNOLOGY, INC.

CONTENTS

DACE

ACORN RISC	MACHINE (ARM) DATA MANUAL	NUMBER
SECTION 1	INTRODUCTION: THE RISC SYSTEM SOLUTION FOR SMALL COMPUTERS	
SECTION 2	VL86C010 - 32-BIT RISC MICROPROCESSOR	
	Description	
	Signal Description	2-5
	Functional Description	
	Examples of the Instruction Set	
	Instruction Cycle Operations	
	Timing and AC Characteristics	2-21
	RISC PROGRAMMER'S MODEL	
	Byte Significance	
	Registers	2-25
	Exceptions	
	Instruction Set	
	Branch, Branch-and-Link (B, BL)	2-29
	ALU Instructions (AND, EOR, SUB, RSB, ADD, ADC, SBC,	
	RSC, TST, TEQ, CMP, CMN, ORR, MOV, BIC, MVN)	
	Multiply, Multiply-Accumulate (MUL, MLA)	
	Load/Store Value from Memory (LDR, STR)	
	Load/Store Register List (LDM, STM)	
	Software Interrupt (SWI)	
	Coprocessor Data Operations (CPD)	
	Coprocessor Load/Store Data (LDC, STC)	
	Coprocessor Register Transfer (MCR, MRC	
	Undefined (Reserved) Instructions	
	Instruction Set Summary (and Examples)	
	Appendix A	
SECTION 3	VL86C020 - 32-BIT MICROPROCESSOR WITH CACHE MEMORY	
	Description	
	Signal Description	
	RISC PROGRAMMER'S MODEL	
	Byte Significance	
	Registers	
	Exceptions	
	Instruction Set	
	Branch, Branch-and-Link (B, BL)	3-16
	ALU Instructions (AND, EOR, SUB, RSB, ADD, ADC, SBC,	
	RSC, TST, TEQ, CMP, CMN, ORR, MOV, BIC, MVN)	
	Multiply, Multiply-Accumulate (MUL, MLA)	
	Load/Store Value from Memory (LDR, STR)	
	Load/Store Register List from Memory (LDM, STM)	
	Single Data Swap (SWP)	
	Software Interrupt (SWI)	
	Coprocessor Data Operations (CDO)	
	Coprocessor Data Transfers (LDC, STC)	
	Coprocessor Register Transfers (MCR, MRC)	
	Undefined (Reserved) Instructions	
	Instruction Set Summary (and Examples)	
	CACHE OPERATION	
	Read/Write Operations	
	Cache Validity	
	Non-cachable Areas of Memory	
	Doubly Mapped Space	
	Control Registers	
	VL86C020 Memory Timing	

CONTENTS PAGE NUMBER

ACORN RISC MACHINE (ARM) DATA MANUAL

SECTION 4

Сусів Тураз	3-49
Data Transfer	
Byte Addressing	
Locked Operations	
Line Fetch Operations	3-50
Address Timing	3-50
Virtual Memory Systems	3-50
Stretching Access Times	
Coprocessor Interface	
Data Transfer Cycles	
Register Transfer Cycle	
Privileged Instructions	3.53
Repeatability	
Undefined Instruction	2.54
VL86C020 Instruction Cycles	
Instruction Tables	
Software Interrupt and Exception Entry	
Coprocessor Data Operation	
Coprocessor Data Transfer	
Coprocessor Data Transfer (From Coprocessor to Memory)	
Coprocessor Data Transfer (Load from Coprocessor)	
Coprocessor Data Transfer (Store to Coprocessor)	
Undefined Instruction and Coprocessor Absent	
Instruction Speeds	
Cache Off	
Cache On	3-64
Compatibility with Existing Arm Systems	3-66
Test Conditions	3-68
AC Characteristics	3-69
Absolute Maximum Ratings	3-73
DC Characteristics	3-73
VL86C110 - RISC MEMORY CONTROLLER	
Description	
Signal Description	
Functional Description	
Memory Pages	
Master/Slave Configuration	
Memory Map	
Logically Mapped RAM	4-8
Physically Mapped RAM	
VO Controllers	4-9
ROM	
DMA Address Generators	4-9
Logical-Physical Translator	4-9
Effect of Reset	
Access Times	
N-Cycles and S-Cycles	
Processor Interface	
DMA Address Generators	
DMA and Memory Arbitration	
Video Controller (VIDC) Interface	4.20
VO Controller Interface	4.20
Timing and AC Characteristics	
	4*2

.

CONTENTS

ACUMN HIS	C MACHINE (ARM) DATA MANUAL	PAGE NUMBER
SECTION 5	VL86C310 - RISC VIDEO CONTROLLER	
	Description	
	Description	5.3
	Signal Description Functional Description	5.5
	Functional Description Using the VIDC	5.7
	Using the VIDC Display Formats	5.13
	Sound System	5.15
	Sound System Timing and AC Characteristics	
SECTION 6	VL86C410 -RISC VO CONTROL LEP	
	Description	
	Signal Description	
	Functional Description	
	Internal Registers	
	External Peripherals	
	Timing and AC Characteristics	
SECTION 7	Timing and AC Characteristics	
SECTION 8		
	68-Pin Plastic Leaded Chip Carrier (PLCC)	
	84-Pin Plastic Leaded Chip Conter (PLOC)	
	144-PIA Ceramic Pin Grid Arrow	A.A
	144-Pin Ceramic Pin Grid Array 160-Pin Ceramic Pin Grid Array	
SECTION 9	160-Pin Ceramic Pin Grid Array SALES OFFICES, DESIGN CENTERS, AND DISTRIBUTORS	
		Q.3

۷

VLSI TECHNOLOGY, INC.

CONTENTS

VLSI TECHNOLOGY, INC.

CONTENTS

INTRODUCTION - ACORN RISC MACHINE
VL86C010 - 32-BIT RISC MICROPROCESSOR
VL86C020 - 32-BIT RISC MICROPROCESSOR WITH CACHE MEMORY
VL86C110 - RISC MEMORY CONTROLLER
VL86C310 - RISC VIDEO CONTROLLER

VL86C410 - RISC VO CONTROLLER 6

RISC DEVELOPMENT TOOLS OVERVIEW 7

PACKAGING INFORMATION

8

SALES OFFICES, DESIGN CENTERS, AND DISTRIBUTORS 9

VLSI TECHNOLOGY, INC.

This book provides the reader with an in-depth and concise reference on the VLSI Technology, Inc. VL86C010 RISC system product. The RISC microprocessor and three RISC peripherals described in this text are both world-class and international. They were designed in the United Kingdom by Acorn Computer Ltd., using VLSI Technology, Inc. design tools, and are presently manufactured in the United States by VLSI. In addition, under recently signed alternate sourcing agreement, Sanyo, Ltd., will both manufacture the VL86C010 RISC family in Japan and develop derivative product.

In addition to a detailed hardware description of each device, this text extensively examines the software aspect of RISC Architecture. The instruction set is thoroughly explained, with numerous examples shown of programming techniques. Most readers who have some programming experience, whether familiar with existing "standard" microprocessors or not, should quickly understand programming in VLSI RISC system environment.

Except for the cover and VLSI logo, this book was entirely produced using desktop publishing. To maximize the desktop publishing program's usefulness, this text was produced using a preceding minus (-) sign rather than an overbar or asterisk to indicate a complemented signal.

.

SECTION 1
INTRODUCTION -
ACORN RISC
-
-
 -
-
-
<u>-</u>
 -
-
-
•
Application Specific Logic Products Division
Logic Products Division

E

VLSI TECHNOLOGY, INC.

VLSI TECHNOLOGY, INC. INTRODUCTION • ACORN RISC MACHINE

32-BIT RISC MICROPROCESSOR FAMILY

THE RISC SYSTEM SOLUTION FOR SMALL COMPUTERS

INTRODUCTION Perhaps the most important topic in the computer industry the past few years has been the emergence of the Reduced Instruction Set Computer (RISC) touted as the next generation of parformance oriented architectures. Several different suppliers - both component and system - have announced new computers based on the RISC design methodology. All claim that RISC offers much higher performance than more traditional Complex Instruction Set Computers (CISC). The common denominator among these suppliers has been a systems approach to the CPU design problem, in other words, the CPU is considered as a single unit. When multi-chip solutions are involved (as most are), interfaces are defined around performance and bandwidth requirements more than functional blocks, the partitioning found in most commercial microprocessors today. Component suppliers often partition their systems around functions, like scalar processor, memory management unit, and floating point processor, This allows each circuit to be used without the others, meaning that not all components have to be available before sales start. By partitioning around functions, the component suppliers usually sacrifice performance or require other system elements, such as memory, be faster than necessary at a given performance level.

As RISC technology moves from the laboratory into the commercial environment it is important for system designers to understand these new considerations. When new applications arise that cannot be addressed cost-effectively by CISC architectures, this new technology may provide the only solution. By examining the following system, the designer will become familiar with this new, emerging computer technology and learn how systems can be partitioned around parameters other than functional blocks.

Brief Evolution of CISC and RISC Architectures

Most commercially available computers today should be classified as CISC. Many of these machines have existed for more than a decade, and have their foundation in technology that was radically different from today. When most existing machines began, logic and memory were expensive. In addition, software development was limited by the programming ability of assembler language and lack of efficient high-level language compilers. Early system designers were forced to heavily encode their limited instruction sets to minimize memory requirements of the system. Many processors began, with what was then considered as large. address spaces of 64K words/bytes of memory. Of course 64K words of assembler language code did represent a very large programming effort at the time.

Higher integration in semiconductor technology brought down the high cost of logic and memory. Scon, computer architects found they could build an equivalent system cheaper, with lower power requirements, and having more reliability. Also, integration allowed them to add enhancements to the instruction set to improve performance of key customer applications for less cost than before. Assembler language programmers wanted more enriched addressing modes that moved some of the computing functions from software to hardware. In addition, it improved programmer productivity by reducing the number of lines of assembler language necessary to code programs. Less lines per function meant more functions could be coded in the same time - i.e. higher productivity. Highlevel languages were available but generally were too inefficient to use except in the most complex applications level.

Hardware designers began adding new instructions and addressing modes to meet the programmer requests while remaining compatible with previous generations of software. Soon, system architects realized that they could provide more performance if they could sacrifice backwards compatibility and redefine their instruction sets to exploit new technologies. Instruction complexity had increased to the point where decoding multi-word, multi-format instructions was the limiting factor in processor speed. Unfortunately, customers had huge investments in software and were reluctant to change to hardware that could not execute their installed base. New architectures were limited to new customers and applications.

High-level language efficiency and hardware performance improved dramatically and became useful for most applications. This helped two areas of concern in computer systems, programmer productivity and program transportability. High-level languages helped programmers write code that was hardware independent, at least in theory, as compilers stood between the programmer and the execution environment (physical hardware and operating system). Compiler differences and ambiguous language specifications caused some portability problems, but in general it was practical to port programs between machines.

With more high-level language programs being written, hardware suppliers felt pressured to add even more complication to their instruction sets to support compiled code. Many architectures added hardware implementations of high-level constructs like FOR, WHILE, and PROC (procedure calls) directly into the instruction set. The problem arose as to which language to support because each is different, e.g. whether the conditional execution expression is evaluated at the beginning of the loop or the end. As a result, most architectures may support only one language well or are so general that the compiler cannot exploit them efficiently (Wulf, 1981),

In the mid-seventies computer scientists began to investigate new methods to support all high-level languages more efficiently. It was becoming apparent that most problems were too complex to be written in assembler language and no one high-level language was sufficient to support all applications. From these development efforts came the RISC methodology for CPU design. What constitutes a RISC computer is yet another area of debate, but most emerging machines do have some characteristics in common.

VLSI TECHNOLOGY, INC. INTRODUCTION • ACORN RISC MACHINE

First, most RISC machines are based on single-cycle instruction execution. Unlike their Complex Instruction Set Computers (CISC) counterparts that may take up to 100 minor (clock) cycles to complete complex instructions, the **RISC** machines instruction set is limited to primitive functions that can execute in a single or extremely few machine cycles. Compiler writers have suggested that it is more efficient to provide primitives to build solutions rather than solutions in the instruction set. When instructions have too much semantic content, a clash occurs between the language and the instruction set (Wulf, 1981) introducing inefficiency and increasing compiler complexity. In addition, single clock execution helps lower interrupt latency, thus making the system more responsive to the asynchronous environment of today's timeshared and/or networked systems.

Another common trait of RISC machines is a load/store architecture providing larger CPU register files. In a load/store architecture, the data processing instructions (logical and numeric functions) can only operate on the CPU registers. A separate set of instructions are used for memory reference that usually support a limited set of addressing modes. Streamlining the addressing modes helps simplify instruction decode, eliminate specialpurpose address ALUs, and speed pipeline processing that can be slowed by multi-word address operand tetches. Recent improvements in the global register allocation problem faced by compilers have made efficient use of large numbers of registers possible. In response to compiler improvements. most RISC systems have added larger register files to improve performance. Two factors bring about significant performance increases from added registers: (1) register operations execute much faster, and (2) memory references are reduced because registers can hold temporary results.

In general, RISC machines are tightly coupled to their memory. The simple instruction set translates into a higher effective instruction execution rate, meaning the processors demand a high bandwidth from their memory systems to provide peak performance. In order to provide this bandwidth most, but not

all, systems have implemented very sophisticated caching techniques which increase system cost and complexity dramatically.

The VLSI Technology RISC Computer System

VLSI Technology has a full system solution to the design of a costeffective, small computer. This system was designed by Acorn Computers Ltd. of Cambridge, United Kingdom, using the VLSI Technology, Inc. CAD system. What makes this system different is its unique method of partitioning the four circuits. Instead of designing the circuits around self-contained functions, this system is partitioned around basic computer fundamentals such as memory bandwidth, die size of all four components, and low-cost packaging available today. Caroful attention to these fundamentals has yielded a small computer system that can bring excellent performance to the user at significantly lower cost than ever before. An examination of the system and its alternate form of partitioning will highlight the advantages of a top down design approach to the entire problem. not just CPU optimization.

The computer shown in Figure 1 is partitioned into four circuits: the VL86C010 Acorn RISC Machine (ARM) processor, VL86C110 Memory Controllar (MEMC), VL86C310 Video Controllar (VIDC), and VL86C410 VO Controllar (IOC). These four circuits together torm a full 32-bit microcomputer system with performance in the 5 to 6 millioninstructions-per-second (MIPS) range. Somewhat surprising is the fact that the four parts are available in one 84-pin (processor) and three 68-pin packages (JEDEC Type-B or Plastic-Leaded-Chip-Carriers, PLCC) while implementing full 32-bit functions. A more surprising fact is that no part in the system has a die size larger than 230 mils square in VLSI Technology's 2 µm double-layer metal CMOS process which means highly manufacturable circuits are available.

Partitioning The System Traditionally, component dosigners viewed a computer system as "centered" around the CPU. The processor was designed in a vacuum, without concern for other elements in the system. The CPU was optimized to be high-performance and then the system designers found that in order to exploit the performance, they had to resort to expensive memory systems or cache sub-systems, increasing the cost

VLSI TECHNOLOGY, INC. INTRODUCTION • ACORN RISC MACHINE

dramatically. The CPU made such high demands on the memory that I/O transactions were not sufficiently served. This forced the systems designer to implement ever more complex I/O sub-systems, yet another addition to cost, complexity, and decreased reliability. Even today's most popular personal computers uso plug in cards with on-board memory sub-systems for video and data communications.

FIGURE 3. VL86C110 MEMORY CONTROLLER (MEMC) PIN DIAGRAM

The requirements for a small computer today, are very much different than even a few years ago. Now users expect a small computer to have capabilities that were only available in minicomputers. Full color displays at resolutions up to 640 by 480, real memory of 1 Mbyte, and networking support are common features demanded by end-users.

The VLSI Technology, Inc. system is "centered" around the memory, with each element designed to use the bandwidth efficiently without making large demands that require premium memory components. The video display is integrated into the design to utilize the main memory for display area, eliminating the need for expensive add-on video cards. The system operates with a 24 MHz clock that yields a basic processor cycle of 8 MHz (125 ns). Even at this speed, the memory system uses inexpensive 120 ns accoss time page-mode DRAMs.

Memory Controller Functions Since the system is designed around the memory, it is logical that the VL86C110 Memory Controller (MEMC) should be discussed first. Understanding how this part functions provides insight into the other elements and how they are coordinated together.

As the name would indicate, the MEMC generates the timing and control signals required by DRAM. In addition, MEMC acts as the main interface between the other three components by providing the critical timing signals for all elements from a single clock input. Figure 2 shows a block diagram and Figure 3 the functional pin out of the memory controller. It should be noted that MEMC does not have a data bus connection allowing it to be placed in a 68-pin package. To program the internal registers of MEMC, the data is encoded on the address bus during a processor write to the part. While at first this may seem a large overhead. using the simple/fast addressing modes and barrel shifter in the processor, the programmer will find that the address encoding causes very little impact.

The part generates all the timing signals required for interfacing the elements with the memory. High speed timing is generated from a single clock, usually 24 MHz for an 8 MHz processor. All

VLSI TECHNOLOGY, INC. **INTRODUCTION • ACORN RISC MACHINE**

FIGURE 4. CLOCK SKEW TIMING EXAMPLE

Minimim Setup Time - Flop Setup Time + Data Buffer Maximum - Clock Buffer Minimum Minimum Hold Time - Flop Hold Time + Clock Buffer Maximum - Data Buffer Minimum

system timing is generated on the MEMC with minimal buffering on the other devices. This scheme minimizes clock skew in the system allowing slower access time memory devices to be used. Figure 4 shows an example of how clock skew occurs in timing paths. Having all buffers on a single chip allows delays to track more closely than the total process variation. As shown by the example, fewer buffers in the path lower the amount of time that data must be valid on the bus, minimizing setup and hold times. Removing the clock buffer will eliminate the difference between the clock buffer delay minimum and maximum times.

The clock is divided by three and used to generate the processor and main system bus reference clocks. The MEMC drives up to 32 memory parts directly in several different configurations. Various configurations provide for up to 4 Mbytes of real memory in the system. The bandwidth of the low-cost DRAM memory is increased through extensive use of page-mode transfers because many memory references in computer systems are sequential in nature. MEMC also provides memory map decoding for I/O and ROM in the system. In order to optimize bandwidth, MEMC will take the ROM chip select active at the beginning of every nonsequential access and remove it if the cycle is not a ROM access making slower ROM accesses more efficient and once again allowing lower-cost ROMs to used.

MEMC supports several key functions in the system that usually have a tendency to impact performance or require faster components, so that this is not the case in this system. If a small computer is to support networking it must provide for multi-tasking and

process isolation. MEMC provides full virtual memory support with a Logicalto-Physical Address Translator implemented as a 128 entry content addressable memory (CAM). Logical pages can be 4K, BK, 16K, or 32K bytes each. RAM memory is always treated as 128 physical pages, meaning that MEMC contains a CAM entry (descriptor) for each physical page in memory. Having a CAM location for every physical page of memory eliminates descriptor thrashing, thus improving system performance. Thrashing occurs when the MMU system has fewer descriptors than physical pages of memory which introduces another source of address translation misses - the data is resident in memory but a descriptor to translate to that page is not available. A descriptor must be taken from another page to point to the requested page.

Many current memory management units contain only a small sub-sot of the page tables and must retranslate the logical address whenever a new logical page is referenced (descriptor miss). Translation can take up to several microseconds depending on how many memory cycles must be performed. In this system the address translation is not in the critical path and does not require faster memory than a system that uses physical addresses. No translation takes place on the row address values which are required early in the memory cycle. The mapped address bits are placed into the column address field and are therefore not needed until much later in the cycle. This approach can be taken because the memory is usually configured as a single bank meaning all memories are active when the RAS becomes active regardless. Systems that have more than one bank of DRAM and use this

approach would be required to select (bring RAS active) all memory devices on every cycle. Multi-bank memory systems designed in this manner would have much higher power consumption and lose much of the advantage of DRAM technology.

The simple CAM contained in MEMC can support demand paging with some software assistance and it provides a full virtual memory implementation with three levels of access protection efficiently. The goal of virtual memory support in this system was to let programs be written independent of real memory size rather than for multi-user support. Today's most popular PC has suffered recently due to the artificial real memory limitation placed on it by the machine designers.

MEMC contains all the address generators to support DMA activity related to video, cursor, and sound generation. These were placed on this circuit for two reasons. First, it eliminates the need to have the full address bus placed on the video interface circuit. This allows the VIDC to have the full 32-bit data bus and still be packaged in a 68-pin package. Second, this arrangement uses the memory bandwidth more efficiently by reducing synchronization and buffer delays on the memory bus while improving DMA latency. In most systems a DMA operation proceeds as follows: (1) the DMA device requests a transfer, (2) the memory controller synchronizes to the system clock and recognizes the request, (3) processor is signaled to relinquish the bus, (4) processor synchronizes and recognizes the request, (5) processor issues grant to memory controller, (6) memory controller synchronizes and recognizes grant, (7) memory controller issues DMA grant, (8) DMA synchronizes and recognizes grant, (9) DMA device enables address bus drivers, (10) memory controller receives address and multiplexes address to memory devices. (11) memory controller issues data acknowledge, (12) DMA device synchronizes and recognizes acknowledge, and (13) DMA device removes request to end cycle.

MEMC provides the memory arbitration and all address sources in a single

VLSI TECHNOLOGY, INC. **INTRODUCTION · ACORN RISC MACHINE**

device within the system. This eliminates several levels of pulse synchronizers and buffering delays. When the VIDC signals a DMA request, MEMC only has to recognize the request. disable the processor when appropriate, and enable the address from the internal source. The DMA device has a simple interface to latch the data when the acknowledge signal goes inactive. This interface provides a very efficient DMA capability for read-only devices like video and sound generators. In order to optimize bandwidth usage, MEMC performs four memory cycles

TABLE 1. VL86C010 INSTRUCTIONS EINOTION

par DMA request, one full access taking 250 ns and three sequential page-mode accesses of 125 ns each. Four cycle bursts were chosen for all devices to increase bandwidth but keep bus latency to a reasonable value. Long latency introduces other costly problems that are usually solved with expensive FIFO buffers or other interface hardware that is duplicated in every device that connects to the bus.

RISC Processor Functions The VL86C010 RISC processor provides the computational element in the system. The processor has a

radically reduced instruction set containing a total of only 46 different operations. Unlike most others, all instructions occupy one 32-bit word of memory. In keeping with the tradition of RISC methodology, the processor is implemented as with a single-cycle execution unit and a load/store architecture. The basic addressing mode supported is indexed from a base register, with several different methods of index specification. The index can be a 12-bit immediate value contained within the instruction, or another register (optionally shifted in some

<u>FUNCTION</u> Data Processing	MNENOMIC	OPERATION	PROCESSOR CYCLES
Add with Carry Add And Bit Clear Compare Negative Compare Exclusive - OR Multiply with Accumulate Move Multiply Move Negative Inclusive - OR Reverse Subtract Reverse Subtract Reverse Subtract with Carry Subtract with Carry Subtract Test for Equality Tost Masked	ADC ADD AND BIC CMN CMP EOR MLA MOV MUL MVN ORR RSB RSC SBC SUB TEQ TST	Ad:=An + Shift(Am) + C Rd:=An + Shift(Am) Rd:=An • Shift(Am) Rd:=An • Nat Shift(Am) Shift(Am) + An An - Shift(Am) Rd:=An XOR Shift(Am) Rd:=An XOR Shift(Am) An:=Am * As Rd:=NOT Shift(Am) Rd:=Shift(Am) - An Rd:=Shift(Am) - An - 1 + C Rd:=An • Shift(Am) Rd:=An • Shift(Am) Rn > Shift(Am) Rn > Shift(Am) Rn + Shift(Am)	1S 1S 1S 1S 1S 1S 1S 1S 16S max 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S
Data Transfer Load Register Store Register Multiplo Data Transfer Load Multiple	ldr Str LDM	Rd:=Effective address Effective address:= Rd Rlist:=Effective Address	25 + 1N 2N
Storo Multiple Jump Branch Branch and Link Software Interrupt	STM B BL SWI	PC:=PC+Offset R14:=PC, PC:= PC+Offset R14:=PC, PC:= Vector #	(n**+1)S + 1N (n**+1)S + 2N 2S + 1N 2S + 1N 2S + 1N 2S + 1N

*Shift() denotes the output of the 32-bit barrel-shifter. One operand can be shifted in several manners on every data processing

N denotes a non-sequential memory cycle and S a sequential cycle.

manner). The index can be used in a pre or post-indexed fashion for any method of specification.

Table 1 shows the instructions supported by the processor. These instructions operate only on the CPU internal registers. Only the multiply instruction requires more than one cycle to execute (32 x 32 multiply in 16 clocks worst case) and it is not the limiting factor in interrupt response time. All instructions have conditional execution implementing a type of skip architecture. Unexecuted instructions require a single processor cycle and keep the three-stage pipeline intact. This approach was taken as opposed to the delayed branch approach to simplify the virtual memory page fault recovery process. When the branch and delayed instruction are contained on separate physical pages and a fault occurs on the fetch after the taken branch, the recovery process can be extremely expensive in both software and hardware complexity. Studies have shown that compiled code generated on the VAX averaged three instruction executions between every taken branch (Clark and Levy, 1982). While instruction set differences may cause the number of instructions between branches to vary, the conditional execution helps the processor keep its pipeline intact for forward reference branches of short length.

The VL86C010 supports two types of branch instructions, branch and branchwith-link for subroutine calls. Again. both branch types offer conditional execution. For subroutine calls, tho current value of the machine state contained in register 15, program counter and status register, is copied into register 14. Linking subroutine calls through the registers instead of the more traditional memory stack, reduces the call/return overhead. For a singlelevel linkage, the state is saved within the machine in a single clock and can be restored also in a single clock. For multi-level call sequences, full machine state is contained in a single word. requiring only a single memory reference for stacking.

Two types of data transfer instructions are supported for memory references. A single register can be read or written to memory in two clock cycles. In order

to exploit sequential memory access modes, the processor also performs load and store multiple operations. For these instructions more than one register is transferred, taking two clocks for the first register and one clock for each additional one. This instruction greatly enhances the processor's ability to move large blocks of memory and context switches that save the entire machine state. A block transfer instruction of all 16 registers is the longest instruction and therefore is the limiting factor in interrupt response time.

Figure 5 shows a block diagram of the processor. Soveral hardware features are worthy of note. First, by streamlining the instruction set, more silicon area can be dedicated to hardware functions that enhance performance. The VL86C010 contains a full 32-bit barrel shifter that can be used to pre-shift one operand on every processor cycle without additional delay. The barrel shifter increases the performance of shift Intensive applications like graphics manipulations significantly. Second, the addition of a memory interface signal (SEQ) to alert the VL86C110 that the next memory address is sequential to the current address. This extra

status allows the processor and memory controller to exploit the pagemode capability of DRAMs and obtain higher bandwidth without requiring faster memory devices.

The third major hardware feature is the partially overlapped register file containing 27 locations, although only 16 are visible to the program at any one time. Unlike some other RISC processors, the registers in the VLB6C010 overlap across processor modes instead of procedure calls. The processor supports four modes of operation: User, System, Fast Interrupt Request (FIRO), and Normal Interrupt Request (IRQ). In the User mode the program has 16 (R0 to R15) registers. R15 contains the program counter and status register and R14 is used for subroutine linkage. The other 14 registers are general purpose as is R14 when it is not needed for linkage.

Whenever a mode change is performed, new registers are mapped into the visible space. Two new registers (R13 and R14) are available to the System and IRQ modes respectively. Seven additional registers are available in the FIRQ mode which lowers the processor's interrupt latency. The FIRQ

VLSI TECHNOLOGY, INC. **INTRODUCTION • ACORN RISC MACHINE**

mode has a worst case interrupt latency of 22.5 clocks and can be as little as 2.5 clocks. The extra registers can hold DMA pointers and word counts allowing the processor to implement high speed DMA transfers without external controllers, further reducing system cost without significant overhead.

Most other RISC processors overlap the registers across procedure calls, implementing a register stack that is used for local variables and parameter passing. This scheme works well with the C language because C does not allow nested scopes like other languages such as Modula2 and PASCAL. These languages require the program to access variables of all levels that are active at the same time. In addition, the processor must handle the case where the register stack overflows (Hennessy, 1984). Both these problems complicate the processor design and can slow context switching across processor modes. It was determined that the overlap across modes was a more efficient use of chip area for supporting all high-level languages and making the processor more responsive to the asynchronous environment posed by network support. Besides, the large register bank is expensive and can extend processor cycles with extra lavels of decode internally.

Video Support in the System The video support is integrated into the design of the processor system to eliminate add-on video sub-systems and dedicated display memory buffers. The VL86C310 Video Controller (VIDC) provides a highly flaxible choice of display formats in both color and high rosolution monochrome. Horizontal timing is controlled in units of two pixel times and vertical in units of raster times. Besides performing video operations, the VIDC also can generate high quality storeo sound with up to eight channels of separate storeo noition.

Figure 6 shows a block diagram of the video controller. The part accepts video data in a packed pixel format from the memory, serializes the data into pixel information, and presents the data to the color-mapping RAM (video palette) where it is converted to analog values suitable for driving an RGB monitor.

FIGURE 6. VL86C310 VIDEO CONTROLLER (VIDC) BLOCK DIAGRAM

VIDC contains three channels of DMA for interfacing to the video and sound systems but does not generate the addresses directly. For video refresh, the part supports separate DMA channels for video and cursor information. The third DMA channel generates the sound data fatches. Each DMA channel has a dedicated FIFO of four 32-bit words for cursor and sound and 16 words for video. The FIFO depth can be small because of the highly efficient and responsive bus implementation of the system. Each channel uses the four word burst transfers discussed before to exploit the pagemode access mode of DRAMs.

The output of the video FIFO is connected to the video serializer. The pixel rate is programmable at values of 8, 12, 16 or 24 MHz. In addition, the video data format can be selected to be 1, 2, 4, or 8 bits per pixel. Once the video data is serialized, it is presented to the color palette. The palette provides 16 words of 13 bits each.

allowing the part to support 256 simultaneous colors from 4096 possible choices or an external video source. The output of the palette is multiplexed with the cursor information and prosented to the video DACs for conversion to analog RGB formats. The VIDC can support displays of up to 640 by 480 with 16 colors (high-resolution PC type display) directly without any addition logic. The only external components required are a simple circuit to convert the current sink DAC outputs to an appropriate voltage. A suitable circuit is shown in Figure 7.

The cursor is handled as a separate sprite making its manipulation simple and it is allowed pixel level positioning anywhere on the screen. The cursor is defined as 32-bits wide and any number of rasters high. Cursor information is fetched during horizontal retrace on rasters where the cursor will appear. The cursor sprite can contain up to three different colors from the 4096 palette, with a fourth alternative color of

VLSI TECHNOLOGY, INC. INTRODUCTION • ACORN RISC MACHINE

transparent. Each pixel that is transparent allows the video information to be displayed instead of the cursor. The background video color "shows through" the cursor. The transparent attribute allows cursors of various shapes to be defined, allowing each application the option of customizing the display to enhance the manmachine interface. Figure 8 shows an example of how a non-rectangular shaped cursor would be defined. Each bit of the cursor sprite can be specified with no limitations as to the number of color changes or length of color fields found in systems that use run-length encoding for data reduction.

Most small computers support some type of sound output as does this system. The difference here is the support for full-stored sound. Up to eight channels of stereo position are supported vielding very high quality sound. Due to the small die size and large pin count, the addition of stereo sound adds nothing to the cost of the part (perhaps a small test cost increase) if it is not needed. However, the system designers can use this interface to greatly differentiate their machines. Applications programs could be written to exploit the power of the processor to run signal processing algorithms and utilize compressed speech or other sound information to enhance man-machine interfaces or provide other useful functions. This sound capability in conjunction with the VIDC's ability to synchronize to external

FIGURE 8. VL86C310 CURSOR SPRITE EXAMPLE

displays, could provide a highly effective system for the computerbased training market.

Supporting VO Transactions Input/output control is very important in computer systems. Most component vendors concentrate all their design effort and analysis on the CPU, striving to achieve the highest performance. I/O is left as an after-thought at best, or the I/O sub-system is designed as a special-purpose CPU trying to maximize its performance without regard to the other elements in the system. Interfaces grow complex and establish bottlenecks to system performance or even worse, sub-systems become isolated and difficult to control. For example, many graphics processors proposed in the past few years did not allow the host processor access to the display memory. Software engineers proclaimed this as an unmanageable solution and as a result many component designers reworked their interfaces to provide more control. Addressing I/O and CPU designs at the same time is important because many of today's high performance systems are totally I/O bound, forcing the CPU into idle states, and causing the users to pay for performance they cannot obtain in the execution environment.

The last element in the VLSI Technology, Inc. small computer system is the VL86C410 Input/Output Controller (IOC). The circuit provides a unified environment for VO related activities such as interrupts and peripheral controllers. This environment simplifies system software and allows the processor to interface easily with existing low-cost peripheral controllers such as VL16C450 Asynchronous Communications Element and VL1772 Floppy Disk Controller, Using these low-cost, mature devices is a key to providing a cost-effective small computer in today's market.

A block diagram of IOC is shown in Figure 9. The part provides the system with several general VO support functions. The VL86C410 contains four 16-bit counter/timer circuits, two configured as general-purpose timers and two as baud rate generators. One baud rate generator is dedicated to the Keyboard Asynchronous Receiver/ Transmitter (KART) and the other

VLSI TECHNOLOGY, INC. INTRODUCTION • ACORN RISC MACHINE

FIGURE 9. VL88C410 INPUT/OUTPUT CONTROLLER (IOC) BLOCK DIAGRAM

FIGURE 10. VL86C410 INTERRUPTIBLE CYCLE EXAMPLE

controls the BAUD output pin of the device. Timing of external events becomes more important in systems that must support networking and multitasking. Most network protocols require nodes to respond within a certain time (three seconds is common) and the initiator node must detect a timeout and brocke error recovery procedures. Multi-tasking operating systems usually require some type of timing interrupt for task control.

The KART section is a simple fixedformat asynchronous bidirectional serial communications link designed basically for keyboard input. The format is fixed with an eight bit character, one start bit, and two stop bits. The clock rate is a standard 16 times the data rate and the transmit and receive clocks are at the same rate and controlled by Timer 3 within IOC. To improve noise immunity, false start bits of fess than one-half bit duration are ignored. The KART is ideal for interfacing to the low speed character rate (up to 31K characters/ second) from a keyboard but it can be used for other purposes if the format is suitable.

The major task of IOC is the implementation of an efficient interface between the high speed system and the lower speed I/O peripheral controller buses. The system exploits the low-cost peripheral controllers but should not be severely impacted with performance/ latency penaltios for using them. The part contains six programmable bidirectional I/O pins for implementing special processor control. Interrupts are supported with control for both normal (IRQ) and fast (FIRQ) interrupts through mask, request, and status registers. Sixteen interrupt sources are supported, fourteen level and two edgetriggered, meaning the IOC should have the total interrupt status for most system configurations.

Centralizing the interrupts in this manner reduces polling, improves efficiency, and reduces latency within the system. Fast response time allows the processor to replace expensive dedicated logic with software, lowering the system cost accordingly. Many component vendors demand higher prices for their DMA device than for their CPU. Unfortunately, the CPU is usually idled during DMA transfers because they share the address and data buses to the memory. If the CPU was more responsive, it could provide the transfers without any degradation in system performance and eliminate the expensive DMA hardware.

The peripheral controllar cycles are supported with four different lengths for access times. This allows peripheral controllers from various vendors with different bus clocking schemes to be interfaced easily and cheaply without extra logic. Each VL86C410 supports seven peripheral select lines which are independently selectable from the four access cycle times. If more than seven peripheral controllers are needed, multiple IOCs can be used in the system or the select lines can be decoded further externally because the system provides sufficient address set-up time.

In order to maintain low latency on the high speed system bus, the IOC is

designed to allow an I/O cycle to be interrupted by a DMA access on the system bus. Figure 10 shows a timing diagram of this operation. The IORQ is generated by MEMC whenever an I/O access address is detected. The IOC will respond with an IOGT signal when the access is complete. If the MEMC detects a pending DMA request, it removes IORQ and performs the transfer. IOC turns off the buffers that isolate the two buses and continues with the I/O cycle until the MEMC returns the IORQ. Then, the cycle is completed when both the master and slave device parameters have been met. This interruptible I/O cycle eliminates the slower peripheral devices from the system bus latency calculations, improves efficiency, and lowers system cost.

Conclusions

Whenever a system is partitioned, the designers should consider the entire problem as a single coherent entity. optimizing all parts together rather than each separately. The VLSI Technology. Inc. system demonstrates the advantages of partitioning around system bus parameters instead of the more traditional functional, stand-alone blocks. This system exploits low-cost memory and peripheral components while achieving excellent throughput with superior cost/performance ratios. With careful attention, the system designer can eliminate large die sizes and expensive high-pin count packages without sacrificing throughput and achieve superior cost-performance ratios.

Roforences

Clark, D. and H. Levy. "Measurement and analysis of instruction use in the VAX 11/780," in Proceedings of the 9th Annual Symposium on Computer Architecture, ACM/IEEE, Austin, Texas, April 1982.

Hennessy, John L. "VLSI Processor Architecture." IEEE Transactions on Computers, Volume C - 33, Number 12 (December 1984), pp. 1221-1246.

Wulf, William A. "Compilers and Computer Architecture." Computer, July 1981, pp. 41-47.

VLSI TECHNOLOGY, INC.

SECTION 2

VL86C010 32-BIT RISC MICROPROCESSOR

Application Specific Logic Products Division

Notes:

:		CECTION O
	-	SECTION 3
		VL86C020
		32-BIT RISC
- 2.		MICROPROCESSOR
- 4		WITH CACHE
		MEMORY
1		·
(· · · · · · · · · · · · · · · · · · ·	
de la com		
		Application Specific
		Application Specific Logic Products Division
		-
1		

VLSI TECHNOLOGY, INC.

PRELIMINARY VL86C020

32-BIT RISC MICROPROCESSOR WITH CACHE MEMORY

FEATURES

- On-chip 4 Kbyte (1K x 32 bits) cache memory
 - Instructions and data in a single memory
 - 64-way set associative with random replacement
 - Line size of 16 bytes (4 words)
- Compatible with existing support devices
- Upwardly software compatible with VL86C010
- Semaphore instruction added for multiprocessor support
- Full-speed operation up to 20 MHz using typical DRAM devices
- Low interrupt latency for real-time application requirements
- CMOS implementation low power consumption
- 160-pin plastic quad flatpack package (POFP)

BLOCK DIAGRAM

DESCRIPTION

The VL86C020 Acorn RISC Machine (ARM) is a second generation 32-bit general purpose microprocessor system. The device contains both a general purpose CPU and a full cache memory subsystem in the same package. Several benefits are attained by having the CPU and cache within the same device. First, the processor clock is effectively decoupled from the memory system. This lowers the processor bandwidth demands on the memory and allows most memory cycles to remain on-chip where buffer delays are minimized. Second, a high level of integration is maintained as external components are not required to implement the cache subsystem.

Third, package sizes are reduced as bus widths can remain at reasonable widths. Fourth, memory system design is greatly simplified because most critical timings are handled internally to the device. The processor is targeted for use in microcomputer and embedded controllar applications that require high performance and high integration solutions. Applications where the processor is best applied are: laser printers, graphics engines, network protocol adapters, and any other system that requires quick response to external events and high processing throughput.

Since the VL86C020 typically utilizes only about 14% of the available bus bandwidth, it is particularly well suited to applications where the memory is shared with another high bandwidth device, e.g. a graphics system where the screen refresh occurs from the same memory devices. In addition, systems with more than one processor attached to a single memory system become feasible and are supported with the new semaphore instruction. The instruction performs an indivisible readmodify-write cycle to the memory to allow for management of globally allocated resources reliably.

ORDER INFORMATION

Part Number	Clock Frequency	Package
VL86C020-20FC	20 MHz	Plastic Quad Flatpack (PQFP)
VL86C020-20GC	20 MHz	Plastic Pin Grid Array (PGA)

Note: Operating temperature range is 0°C to +70°C.

VLSI TECHNOLOGY, INC.

PRELIMINARY VL86C020

K

PIN DIAGRAM - PLASTIC PIN GRID ARRAY

	PIN	I DIAGR	AM - F	PLAST	IC PI	N GRI	D ARI	RAY								
PIN DIAGRAM - PLASTIC QUAD FLATPACK		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		, 														
VLB6C020	•	GNE			D19	D18		D13	VDD	D11	D10		GND	_	00 	CPD1
	A	©14 D29	¢ (@14 VDD	0 ©136) D23	D21	6 (© 133 GND	-	D15	©125 D12	D8	D6	ور رون ا D4	0116 و D1		4 @111 CPD2	GND
	в	© 3	() 14		0 @137										0 (0107	
	-	-B/W	D28		D25	D22	D17	VDD	-	D9	D5	D2	CPD0		CPD5	
6 5 5 5 5 5 5 6 5 6 5 7 6 5 4 3 2 1 0 9 8 7 6 5 7 6 5 7 7 6 7 7 7 7 7 7 7 7 7 7 7	c	@ 6	@ 2	@14 2	0141	0138	0132	e @127	@126	@ 121	0117	0113	J @109	0106	3 @103	@100
		-TRANS	-		-									-	CPD7	-
D00 = 4 115 D CP03	D	@ \$	@4	-	୍									-	5 @101	-
D31 = 5 114 = C P36 -BW = 6 114 = C P36 113 = NC	_	-M0	-R/₩ ⊚7	D31 () 5		DEX PIN									CPD10 2 (0) 98	
-RW = 7 112 = CPD7 NC = 8 111 = CPD3	E	011 	LOCK	LINE	(IN	ACTIVE)									CPD13	
-TRANS © 110 © CP09 LINE © 10 109 © CP010	F	<u> </u>	-												0 95	
		-FIQ	VDD	GND										-	CPD14	
-MO = 12 to 7 = NC VDD = 13 106 = CPD12	G	@15	@12	@13										@ 91	@ 94	@ 92
NC = 14 105 = CPD13 GND = 15 104 = CPD14		MSE	-IRQ	SEQ											CPD18	
wb0 12 107 P KC VDD 13 106 E CP012 NC E 14 105 E CP013 GND 15 104 E CP014 -A1 E 16 102 E VD14 -RQ E 17 TCP VIEW -RQ E 18 101 E CP014	н	@ 17	-	@18				то	P VIEW					-	@88	-
NSE 19 100 20018		FCLK	GND												CPD22	
SEC [20] 99 (CP017)	J	(©20 MCLK		() 19 CBE										-	CPD24	-
-MREO C 21 23 25 CP018 FCUK C 23 97 C CP019 MCUK C 23 98 C CP029	к	()21	@23											() 81	-	_
		ABE	ALE											CPD26	-	-
VDD C 25 94 D NC CBE C 26 93 D C P02 NC C 27 92 D C P02	L L	@ 25	@ 26	@30										0 77	@ 79	@83
		DBE -	RESET												CPD27	
ABE = 23 B1 = C CD24 ALE = 29 SD = CA02 DBE = 30 69 = C PO25 ABCRT = 31 69 = X PO25 -RESET = 32 69 = X PO25 NC = 33 88 = G K0 -wAIT = 34 85 = C PO24 -TEST = 35 85 = C PO24	M	@ 27	@ෂ	@33											@ 76	
ABG/TI = 31 68 b Kč -AESFT = 32 87 b V00 NC = 33 88 b Rč		ABORT		A2	VDD	A7	-	_		A19	-	-			CPD29	
NC 급 33 88 는 GND 88 는 GND 85 는 GPDR 2011 -	N	@28	() GND	@ 34	@37	-	@ 45	@49	-	0 55	()	066	() () () () () () () () () () () () () (-	0 74	-
	a p	A0 ()32	©35	A4 ()38	A6 ()40	A9 @43	A12	-	A16 (0)52	A22 (0)58	A23 (0)59	GND ()62	-		CPD31 (
AC = 38 A1 = 37 A2 = 33 A2 = 33		A3	A5	AB	A10	A13	A14	-	Ŭ	A20	A21	Ŭ	•	-	-	GND
	_ o	@36	@ 39	@42	@44	-	050				0 57	@ 61	-	-	-	@ 72
				-	_			-	_	-	_	_	-	_	-	-
		<u> </u>												~		
	· ~~		<u> </u>						-5							
34								3								

بب

CPU BLOCK DIAGRAM

PRELIMINARY

VL86C020

3-6

SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK

Signal Name	Pin Numbor	Signal Type	Signal Description	Signal Namo
A0-A25	42-47, 49-52, 56-66, 68, 36, 38-40	OCZ	Processor Address Bus - If ALE (address latch enable) is high, the addresses change while MCLK is high, and remain valid while MCLK is low; their stable period can be modified by using ALE.	CPD0-CPD
ABE	28	ITP	Address Bus Enable - When this input is low, the address bus drivers (A0. A25) are put into a high impedance state (Note 1). ABE may be left unconnected when there is no system requirement to turn off the address drivers (ABE is pulled high internally - see Note 2).	
ABORT	31	п	Memory Abort - This input allows the memory system to signal the proces- sor that a requested access is not allowed. This input is only monitored when the VLB6C020 is accessing external memory.	
ALE	29	Φ	Address Latch Enable - This input is used to control transparent latches on the address outputs. Normally the addresses change while MCLK is high. However, when interfacing directly to ROMs, the address must remain stable throughout the whole cycle; taking ALE low until MCLK goes low will ensure that this happens. If the system does not require address lines to be held in this way, ALE may be left unconnected (it is pulled high internally - see Note 2). The ALE latch is dynamic, and ALE should not be held low indefinitely.	CPE
-B/W	6	ocz	NOT Byte/Word - This is an output signal used by the processor to indicate to the external memory system when a data transfer of a byte length is required. —B/W is high for word transfers and low for byte transfers, and is valid for both read and write operations. The signal changes while MCLK is high, and is valid by the start of the active cycle to which it refers.	-CPI
CBE	26	ITP	Control Bus Enable - When this input is low, the following control bus drivers are put into a high impedance state (Note 1);	
			-BW, LINE, LOCK, -M1, -M0, -RW, -TRANS	CPSPV
			CBE may be left unconnected when there is no system requirement to tun off the control bus drivers (CBE is pulled high internally - see Note 2).	0.314
CPA	76	ſΤΡ	Coprocessor Absent - A coprocessor which is capable of performing the operation which the VL86C020 is requesting (by asserting -CPI) should take CPA low immediately. The VL86C020 samples CPA when CPCLK and -CPI are both low, the VL86C020 will busy-wait until CPB is low and then complete the coprocessor instruction. If no coprocessors are fitted, CPA may be left unconnected (it is pulled high internally - see Note 2).	D0-D31
СРВ	77	ΠP	Coprocessor Busy - A coprocessor which is capable of performing the operation which the VL86C020 is requesting (by asserting –CPI), but cannot commit to starting it immediately, should indicate this by taking CPB, high. When the coprocessor is ready to start it should take CPB low. The VL86C020 samples CPB when CPCLK and –CPI are both low. If no coprocessors are litted, CPB may be left unconnected (it is pulled high internally - see Note 2).	DBE
CPCLK	70	ocz	Coprocessor Clock - This pin provides the clock by which all VL86C020 coprocessor interactions are timed. CPCLK is derived from MCLK or FCUX depending on whether the processor is accessing external memory or the cache; the coprocessors must, therefore, be able to operate at FCLK speeds.	FCLK

PRELIMINARY VL86C020

SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK

Pin Number	Signai Typo	Signal Doscription
PD31 121-117, 1 114, 112-1 106-104, 1 95 93-91	08, 01-	Coprocessor Data Bus - These are bidirectional signal paths which are used for data transfers between the processor and external coprocessors, as follows:
95, 93-91, 89, 85-81, 79		 For processor instruction fetches (when -OPC = 0), the opcode is sent to the coprocessors by driving CPD0-CPD31 while CPCLK is high. Coprocessor instructions are broadcast unaltered, but non coprocessor instructions are replaced by &FFFFFFFF.
		 During data transfers from VL86C020 to a coprocessor, the data is driven onto CPD0-CPD31 while CPCLK is high.
76		 During register and data transfers from the coprocessor to VL86C020, CPD0-CPD31 are inputs, and the data must be setup to the falling edge of CPCLK.
75	ITP	Coprocessor Bus Enable - When this input is low, the following coprocessor bus drivers are put into a high impedance state (see Note 1):
		Crock, Crou-Cru31, -CPI, CPSPV, -OPC
~		CPE is provided to allow the coprocessor outputs to be disabled while testing the VL86C020 in-circuit, and CPE should be left unconnected for normal operation (it is pulled high internally - see Note 2). If no coproces- sor is to be connected to the VL86C020, CPE may be tied low, but CPCLK, CPD0-CPD31, -CPI, CPSPV and -OPC must not be left floating.
72	ocz	NOT Coprocessor Instruction - When VL86CO20 executes a coprocessor instruction, it will take this output low and wait for a response from the appropriate coprocessor. The action taken will depend on this response, which the coprocessor signals on the CPA and CPB inputsCPI changes while CPCLK is low.
71 123-127, 130-	OCZ	Coprocessor Supervisor Mode - As instructions are broadcast to the coprocessors on CPD0-CPD31, this output reflects the mode in which each instruction was fetched by the processor (CPSPV = 1 for supervisor/ IRQ/FIQ mode fetches, CPSPV = 0 for user mode fetches). The coproces- sors may use this information to prevent user-mode programs executing protected coprocessor instructions, CPSPV features while coprocessor
133, 135-138, 142-146, 148,		transfers between the processor and external memory, as follows:
150-152, 154- 158, 1-5		 For read operations (when -R/W = 0), the input data must be valid before the falling edge of MCLK.
30		 For write operations (when -R/W = 1), the output data will become valid while MCLK is low.
22	4TI	Data Bus Enable - When this Input is low, the data bus drivers (D0-D31) are put into a high impedance state (Note 1). The drivers will always be high impedance except during write operations, and DBE may be left unconnected in systems which do not require the data bus for DMA or similar activities (DBE is pulled high internally - see Note 2).
~	IC	Fast Clock Input - When the VL86C020 CPU is accessing the cache, per- forming an internal cycle, or communicating directly with the coprocessor, it is clocked with the fast clock, FCLK. This is a free-running clock which is independent of MCLK; the maximum FCLK frequency is determined by the speed of the processor/coprocessor combination.

SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK (Cont.)

Signal Name	Pin Number	Signal Type	Signal Description
-FIQ	17	π	NOT Fast Interrupt Request - If FIQs are enabled, the processor will respond to a low level on this input by taking the FIQ Interrupt exception. This is an asynchronous, level-sensitive input, and must be held low until a suitable response is received from the processor.
-IRQ	18	п	Not interrupt Request - As -FIQ, but with lower priority. May be taken low asynchronously to interrupt the processor when the -IRQ enable is active.
LINE	10	ocz	Line Fetch Operation - This signal is driven high to signal that the CPU is fetching a line of information for the cache. Line fetch operations always read four words of data (aligned on a quad-word boundary), so the LINE signal may be used to start a fast quad-word read from memory. The signal changes while MCLK is high, and remains high throughout the line fetch operation.
LOCK	11	ocz	Locked Operation - When LOCK is high, the processor is performing a "tocked" memory access, and the memory manager should wait until LOCK goes low before allowing another device to access the memory. LOCK changes while MCLK is high, and remains high for the duration of the locked memory accesses (data swap operation).
-M0,M1	12, 16	ocz	NOT Processor Mode - These cutput signals are the inverses of the internal status bits indicating the processor operation mode (-M0, -M1); 11 = User Mode, 10 = FtQ Mode, 01 = IRQ Mode, 00 = Supervisor Mode), -M0, -M1 change while MCLK is high.
MCLK	23	IC.	Memory Clock Input - This clock times all VL86C020 memory accesses. The low period of MCLK may be stretched when accessing slow peripher- als; alternatively, the -WAIT input may be used with a free-running MCLK to achieve the same effect.
-MREQ	21	OCZ	NOT Memory Request - This is a pipelined signal that changes while MCLK is low to indicate whether the following cycle will be active (proces- sor accessing external memory) or latent (processor not accessing external memory). An active cycle is flagged when -MREQ = 0.
MSE	19	ſſ₽	Memory Request/Sequential Enable - When this input is low, the -MREQ and SEQ cycle control outputs are put into a high impedance state (Note 1). MSE is provided to allow the memory request/sequential outputs to be disabled while testing the VL86C020 in-circuit, and it should be left uncon- nected for normal operation (MSE is pulled high internally - see Note 2).
-OPC	74	ocz	Opcode FetchOPC is driven low to indicate to the coprocessors that an instruction will be broadcast on CPD0-CPD31 when CPCLK goes highOPC is held valid when CPCLK is low, and changes when CPCLK is high.
-RESET	32	Π	NOT Reset - This is a lovel sensitive input signal which is used to start the processor from a known address. A low level will cause the instruction being executed to terminate abnormally, and the cache to be flushed and disabled. When -RESET becomes high, the processor will re-start from address 0RESET must remain low for at least two FCLK clock cycles, and eight MCLK clock cycles. During the low period the processor will perform dummy instruction fetches from external memory with the address incrementing from the point where -RESET was activated. The address value will wrap around to zero if -RESET is held beyond the maximum address limit.

PRELIMINARY VL86C020

SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK (Cont.)

Signal Norre	Pin Number	Signal Type	Signal Description
-RW	7	ocz	NOT Read/Write - When high this signal Indicates a processor write operation; when low, a read operation. The signal changes while MCLK is high, and is valid by the start of the active cycle to which it refers.
SEQ	20	ocz	Sequential Address - This signal is the inverse of -MREQ, and is provider for compatibility with existing ARM memory systems (VL86C020 has a subset of VL86C010 bus operations; see Memory Interface section).
-TEST	35	ITP	NOT Test - When this input is low, the VL86C020 enters a special test mode which is only used for off-board testingTEST must not be drivon low while the VL86C020 is in-circuit, but may be left unconnected as it is putiled high internally (see Note 2).
-TRANS	9	ocz	NOT Memory Translate - When this signal is low it indicates that the processor is in user mode, or that the supervisor is using a single transfer instruction with the force translate bit active. It may be used to tell memory management hardware when translation of the addresses should be turner on, or as an indicator or non-user mode activity.
-WAIT	34	ſΓΡ	NOT Wait - When accessing slow peripherals, the VL86C020 can be made to wait for an integer number of MCLK cycles by drivingWAIT low. Inter- nally,WAIT is ANDed with the MCLK clock, and must only change when MCLK is low. IfWAIT is not used in a system, it may be left unconnected (it is pulled high internally - see Note 2).
00	13, 25, 41, 65, 78, 87, 102, 122, 139, 141, 159		Power supply: +5 V
ND	15, 24, 39, 53, 69, 80, 86, 90, 103, 116, 129, 140, 149, 160		Ground
C	8, 14, 27, 33, 48, 54, 67, 73, 88, 94, 107, 113, 128, 134, 147, 15;	3	No connect
y to Signal			
	IF ITP OCZ	Section CMOS-	with pull-up resistor (Note 2) level output
les:	•	Jan 1999	-state TTL-level output; TTL-level input

When cutput pads are placed in the high impedance state for long periods, care must be taken to ensure that they do not float to an undefined logic level, as this can dissipate a lot of power, especially in the pads.

The "ITP" class of pads incorporate a pull-up resistor which allows signals with normally high inputs to be left unconnected. The value of the pull-up resistor will fall within the range 10 kΩ - 100 kΩ.

PROGRAMMERS' MODEL

The VL86C020 processor has a 32-bit data bus and a 26-bit address bus. The processor supports two data types, eight-bit byte and 32-bit words, where words must be aligned on four byte boundaries. Instructions are exactly one word, and data operations (e.g. ADD) are only performed on word quantities. Load and store operations can transfer either bytes or words. The VL86C020 supports four modes of operation, including protected supervisor and interrupt handling modes.

BYTE SIGNIFICANCE

Some programming techniques may write a 32-bit (word) quantity to memory, but will later retrieve the data as a sequence of byte (8-bit) items. For these purposes, the processor stores word data in least-significant-first (LSB first) order. This means that the least significant bytes of a 32-bit word occupies the lowest byte address. (The VLSI Technology, Inc. assemblers, none the less, display compiled data in MSBs-first order, but for the sake of clarity only. The internal machine representation is preserved as LSBsfirst.)

REGISTERS

The processor has 27 registers (32-bits each), 16 of which are visible to the programmer at any time. The visible subset depends on the current processor mode; special registers are switched in to support interrupt and supervisor processing. The register bank organization is shown in Table 1.

User mode is the normal program execution state; registers R15-R0 are directly accessible. All registers are general purpose and may be used to hold data or address values, except that register R15 contains the Program Counter (PC) and the Processor Status Register (PSR). Special bits in some instructions allow the PC and PSR to be treated together or separately as required. Figure 1 shows the allocation of bits within R15.

R14 is used as the subroutine link register, and receives a copy of R15 when a Branch and Link instruction is executed. It may be troated as a general purpose register at all other times. R14_svc, R14_irq and R14_fig are used similarly to hold the return values of R15 when interrupts and exceptions arise, or when Branch and Link instructions are executed within supervisor or interrupt routines.

Word

VLSI TECHNOLOGY, INC.

FIQ Processing - The FIQ mode (described in the Exceptions section) has seven private registers mapped to R14-R8 (R14_fiq-R8_fiq). Many FIQ programs will not need to save any registers.

IRQ Processing - The IRQ state has two private registers mapped to R14 and R13 (R14_irq and R13_irq),

Supervisor Mode - The SVC mode (entered on SWI instructions and other traps) has two private registers mapped to R14 and R13 (R14_svc and R13 svc).

The two private registers allow the IRQ and Supervisor modes each to have a private stack pointer and line register. Supervisor and IRQ mode programs are expected to save the user state on their respective stacks and then use the user registers, remembering to restore the user state before returning.

In user mode only the N, Z, C and V bits of the PSR may be changed. The I, F and Mode flags will change only when an exception arises. In supervisor and interrupt modes, all flags may be manipulated directly.

EXCEPTIONS

Exceptions arise whenever there is a need for the normal flow of program execution to be broken, so that (for instance) the processor can be diverted to handle an interrupt from a peripheral.

PRELIMINARY VL86C020

PSR (but note that this is not possible from user mode). If the F flag is clear, the processor checks for a low level on the output of the FIQ synchronizer at the end of each instruction.

The impact upon execution of an FIQ interrupt is defined in Table 3. The return-from-interrupt sequence is also defined there. This will resume execution of the interrupted code sequence, and restore the original processor state.

IRO - The IRO (Interrupt Request) exception is a normal interrupt caused by a low level on the -IRO pin. It has a lower priority than FiO, and is masked out when a FiO sequence is entered. Its effect may be masked out at any time by setting the I bit in the PC (but note that this is not possible from user mode). If the I flag is clear, the processor checks for a low level on the output of the IRO synchronizer at the end of each instruction.

The impact upon execution of an IRQ interrupt is defined in Table 3. The return-from-interrupt sequence is also defined there. This will cause execution to resume at the instruction following the interrupted one, restore the original processor state, and re-enable the IRQ interrupt.

Address Exception Trap - An address exception arises whenever a data transfer is attempted with a calculated address above 3FFFFFFH. The VL86C020 address bus is 26-bits wide, and an address calculation will have a 32-bit result. If this result has a logic one in any of the top six bits, it is assumed that the address is an error and the address exception trap is taken.

Note that a branch cannot cause an address exception, and a block data transfer instruction which starts in the legal area but increments into the illegal area will not trap. The check is performed only on the address of the first word to be transferred.

When an address exception is seen, the processor will respond as defined in Table 3. The return-from-interrupt sequence is also defined there. This will resume execution of the interrupted code sequence, and restore the original processor state.

TABLE 1. REGISTER ORGANIZATION

TABLE 2. BYTE ADDRESSING

31	ο_	Value			
Byte Addr. 0003	Byte Addr. 0002	Byto Addr. 0001	Byte Addr. 0000		0000
Byte Addr. 0007	Byte Addr. 0006	Byte Addr. 0005	Byte Addr, 0004	7	0001

The processor state just prior to

handling the exception must be

tions may arise at the same time.

using the banked registers to save

preserved so that the original program

can be resumed when the exception

routine has completed. Many excep-

The processor handles exceptions by

state. The cld PC and PSR are copied

and processor mode bits are forced to a

value which depends on the exception.

nestings of exceptions. In the case of a

re-entrant interrupt handler, R14 should

be saved onto a stack in main memory

before re-enabling the interrupt. When

multiple exceptions arise simultane-

ously, a fixed priority determines the

FIQ - The FIQ (Fast Interrupt Request)

exception is externally generated by

taking the -FIQ pin low. This input can

accept asynchronous transitions, and is

delayed by one clock cycle for synchro-

nization before it can affect the proces-

sor execution flow. It is designed to

register saving in such applications, so

that the overhead of context switching

is minimized. The FIQ exception may

be disabled by setting the F flag in the

support a data transfer or channel

process, and has sufficient private

registers to remove the need for

order in which they are handled.

Interrupt disable flags are set where

required to prevent unmanageable

into the appropriate R14, and the PC

Normally, an address exception is caused by erroneous code, and it is inappropriate to resume execution. If a return is required from this trap, use SUBS PC, R14 svc. 4, as defined in Table 3. This will return to the instruction after the one causing the trap.

Abort - The ABORT signal comes from an external memory management system, and indicates that the current memory access cannot be completed. For instance, in a virtual memory system the data corresponding to the current address may have been moved out of memory onto a disc, and considerable processor activity may be required to recover the data before the access can be performed successfully. The processor checks for an abort at the end of the first phase of each bus cycle. When successfully aborted, the VL86C020 will respond in one of three ways:

- 1. If the abort occurred during an instruction prefetch (a prefetch abort), the prefetched instruction is marked as invalid; when it comes to execution, it is reinterpreted as below. (If the instruction is not executed, for example as a result of a branch being taken while it is in the pipeline, the abort will have no effect.)
- 2. If the abort occurred during a data access (a data abort), the action depends on the instruction type. Data transfer instructions (LDR, STR, SWP) are aborted as though the instruction had not executed. The LDM and STM instructions complete, and if write back is set. the base is updated. If the instruction would normally have overwritten the base with data (i.e. LDM with the base in the transfer list), this overwriting is prevented. All register overwriting is prevented after the abort is indicated, which means in particular that R15 (which is always last to be transferred) is preserved in an aborted LDM instruction.
- 3. If the abort occurred during an internal cycle it is ignored.

Then, in cases (1) and (2), the processor will respond as defined in Table 3.

The return from Prefetch Abort defined in Table 3 will attempt to execute the aborting instruction (which will only be effective if action has been taken to remove the cause of the original abort). A Data Abort requires any autoindexing to be reversed before returning to re-execute the offending instruction. The return is performed as defined in Table 3.

The abort mechanism allows a demand paged virtual memory system to be implemented when a suitable memory management unit (such as the VL86C110) is available. The processor

is allowed to generate arbitrary addresses, and when the data at an address is unavailable the memory manager signals an abort. The processor tracs into system software which must work out the cause of the abort, make the requested data available, and retry the aborted instruction. The application program needs no knowledge of the amount of memory available to it. nor is its state in any way affected by the abort.

Software Interrupt - The software interrupt is used for getting into supervisor mode, usually to request a particular supervisor function. The processor

TABLE 3. EXCEPTION TRAP CONSIDERATIONS

Trap Typo	CPU Trap Activity	Program Return Sequence		
Reset	1. Save R15 in R14 (SVC). 2. Force M1, M0 to SVC mode, and set F & I status bits in PC. 3. Force PC to 0x000000.	(n/a)		
Undefined Instruction	1. Save R15 in R14 (SVC). 2. Force M1, M0 to SVC mode, and set I status bit in the PC. 3. Force PC to 0x000004.	MOVS PC, R14 ; SVC's R14.		
Software Interrupt	1. Save R15 in R14 (SVC). 2. Force M1, M0 to SVC mode, and set I status bit in the PC. 3. Force PC to 0x000008.	MOVS PC. R14 ; SVC's R14.		
Prefetch and Data Aborts	1. Save R15 in R14 (SVC). 2. Force M1, M0 to SVC mode, and set I status bit in the PC. 3. Force PC to 0x000010-data. Force PC to 0x0000C-Pre-	Prefetch Abort: SUBS PC, R14,4 ; SVC's R14, Data Abort:		
Address Exception	Convert Stores to Loads. Complete the instruction (see text for details). Save R15 in R14 (SVC). Force M1, M0 to SVC mode, and set I status bit in the PC. Force PC to 0x000014.	SUBS PC, R14,4 ; SVC's R14 (Returns CPU to address following the one causing the trap.)		
RQ	1. Save R15 in R14 (IRQ). 2. Force M1, M0 to IRQ mode, and set I status bit in the PC. 3. Force PC to 0x000018.	SUBS PC, R14,4 ; IRQ's R14		
FIQ	1. Save R15 in R14 (FIQ). 2. Force M1, M0 to FIQ mode, and set the F and I status bits in the PC. 3. Force PC to 0x00001C.	SUBS PC, R14,4 ; FIO's RI4		

Address

0000000

0000004

0000008

0000000

0000010

0000014

0000018

000001C

2.

5.

6.

tion.

3. FIO

4. (RO

Eunction

Undefined Instruction

Software Interrupt

Address Exception

Abort (Prefetch)

Abort (Data)

Reset

IRO

FIO

contains a branch instruction pointing to

These are byte addresses, and each

the relevant routine. The FIQ routine

might reside at 000001C onwards, and

execution time of) a branch instruction.

Exception Priorities - When multiple

Address Exception, Data Abort

Undefined Instruction, Software

Interrupt (lowest priority)

Note that not all exceptions can occur

at once. Address exception and data

the ABORT input. Undefined instruc-

tion and software interrupt are also

mutually exclusive since they each

correspond to particular (non-overlap-

ping) decodings of the current instruc-

If an address exception or data abort

abort are mutually exclusive, since if an

address is illegal, the processor ignores

exceptions arise at the same time, a

fixed priority system determines the

order in which they will be handled:

1. Reset (highest priority)

Prefetch Abort

thereby avoid the need for (and

response to the (SWI) instruction is defined in Table 3, as is the method of returning. The indicated return method will return to the instruction following the SWI.

Undefined Instruction Trap - When VL86C020 executes a coprocessor instruction or the undefined instruction. it offers it to any coprocessors which may be present. If a coprocessor can perform this instruction but is busy at that moment, the processor will wait until the coprocessor is ready. If no eccrocessor can handle the instruction the VL86C020 will take the undefined instruction trap.

The trap may be used for software emulation of a coprocessor in a system which does not have the coprocessor hardware, or for general purpose instruction set extension by software emulation.

When the undefined instruction trap is taken the VL86C020 will respond as defined in Table 3. The return from this trap (after performing a suitable emulation of the required function). defined in Table 3 will return to the instruction following the undefined instruction

Reset - When -RESET goes high, the processor will stop the currently executing instruction and start executing no-cps. When -RESET goes low again it will respond as defined in Table 3. There is no meaningful return from this condition.

Vector Table - The conventional means of implementing an interrupt dispatch function is to provide a table of imps to the appropriate processing table, as follows:

occurs at the same time as a FIQ, and FIQs are enabled i.e. the F flag in the PSR is clear, the processor will enter the address exception or data abort handler and then immediately proceed to the FIQ vector. A normal return from FIQ will cause the address exception or data abort handler to resume execution. Placing address exception and data

PRELIMINARY VL86C020

abort at a higher priority than FIQ is necessary to ensure that the transfer orror does not escape detection, but the time for this exception entry should be reflected in worst case FIQ latency calculations.

Interrupt Latencies - The worst case latency for FIO, assuming that it is enabled, consists of the longest time the request can take to pass through the synchronizer (Tsyncmax), plus the time for the longest instruction to complete (Tidm, the longest instruction is load multiple registers), plus the time for address exception or data abort entry (Texc), plus the time for FIQ entry (Tlig). At the end of this time the processor will be executing the instruction at 1C.

Tsyncmax is 2.5 processor cycles. Tidm is 18 cycles, Texc is three cycles, and The is two cycles. The total time is, therefore, 25.5 processor cycles, which is just over 2.5 microseconds in a system using a continuous 10 MHz processor clock. In a DRAM based system running at 4 and 8 MHz, for example using the VL86C110, this time becomes 4.5 microseconds, and if bus bandwidth is being used to support video or other DMA activity, the time will increase accordingly.

The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has higher priority and could delay entry into the IRO handling routine for an arbitrary length of time.

The minimum lag for interrupt recognition for FIQ or IRQ consists of the shortost time the request can take through the synchronizer (Tsyncmin) plus Tliq. This is 3.5 processor cycles. The FIQ should be held until the mode bits Indicate FIQ mode. It may be safely held until cleared by an I/O instruction in the FIQ service routine.

3-14

INSTRUCTION SET

All VL86C020 instructions are con tionally executed, which means th their execution may or may not tai place depending on the values of Z. C and V flags in the PSR at the of the preceding Instruction.

If the ALways condition is specifie instruction will be executed irrespondent of the flags, and likewise the Neve condition will cause it not to be ex cuted (it will be a no-op, i.e. taking cycle and having no effect on the essor state).

The other condition codes have meanings as detailed above, for instance, code 0000 (EQual) caus the instruction to be executed only Z flag is set. This would correspon the case where a compare (CMP) instruction had found the two oper were different, the compare instruwould have cleared the Z flag, and instruction would not be executed.

Branch and Branch with Link (B The B, BL instructions are only exe cuted if the condition field is true.

All branches take a 24-bit offset. offset is shifted left two bits and ad to the PC, with overflows being ign The branch can therefore reach an word aligned address within the address space. The branch offset take account of the prefetch operat which causes the PC to be two wo ahead of the current instruction.

Link Bit - Branch with Link writes t old PC and PSR into R14 of the cu bank. The PC value written into the

> **Restoring PSR:** Not Restoring PSR:

Assembler Syntax: B(L){cond}

cond

expression

where L

N SET	FIGURE 2. CONDITION FIELD
uctions are condi- which means that y or may not take in the values of the N, the PSR at the end struction. Itilion is specified, the executed irrespective leavise the Never a it not to be exe- o-op, i.e. taking one o effect on the prec- incodes have led above, for 0 (EQual) causes a executed only if the would correspond to compare (CMP) nd the two operands compare instruction of the 2 flag, and the of be executed.	31 24 23 16 15 8 7 0 Condition Field 0000 = EC - Z set (equal) 0011 = NE - Z clear (not equal) 0011 = CC - C clear (unsigned higher or same) 0010 = CS - C clear (unsigned higher or same) 0100 = MI - N set (negative) 0100 = MI - N set (negative) 0101 = PL - N clear (positive or zero) 0110 = VS - V clear (no overflow) 1000 = HI - C set and Z clear (unsigned higher) 1001 = LS - C clear (unsigned lower or same) 1010 = GE - N set and V clear (N clear and V clear (greater or equal) 1011 = LT - N set and V clear, or N clear and V clear (greater than) 1100 = GI - Z clear, and either N set and V set, or N clear and V clear (greater than) 1101 = LE - Z set, or N set and V clear, or N clear and V set (less than or equal) 1111 = NV - Never
h with Link (B, BL) ns are only exe- n field is true. 24-bit offset. The two bits and added flows being ignored. refore reach any ss within the e branch offset must	FIGURE 3. BRANCH AND BRANCH WITH LINK (B, BL) 31 28 27 24 23 Condx 1 0 1 </th
prefetch operation, C to be two words t instruction. ith Link writes the o R14 of the current a written into the link	register (R14) is adjusted to allow for the prefetch, and contains the address of the instruction following the branch and link instruction. Return from Subroutine - When returning to the caller, there is an option to restore or to not restore the PSR. The following table illustrates the available combinations.
	alid Link Saved to a Stack PC,R14 LDM Rnl, (PC)^ PC,R14 LDM Rnl, (PC)
:	
<expression></expression>	
li absent, R14 wi is a two-characte VS, etc.). Il abse	It the Branch-with-Link form of the Instruction. If not be affected by the instruction. If mnemonic as shown in Condition Code section (EO, NE, int then AL (Always) will be used. In. The assembler calculates the relative (word) offset.

Items in () are optional. Items in <> must be present.

PRELIMINARY VL86C020

Examples: Here

of PC offset)
DI PC Offset)
nch to Fred if kt instruction.
led address.
s on the result. 9 the case unless 9 next instruction.

ALU Instructions - The ALU-type instruction is only executed if the condition is true. The various conditions are defined in Condition Field Section.

The instruction produces a result by performing a specified arithmetic or logical operation on one or two operands. The first operand is always a register (Rn). The second operand may be a shifted register (Rm) or a rotated 8-bit immediate value (Imm) according to the value of the I bit in the instruction. The condition codes in the PSR may be preserved or updated as a result of this instruction, according to the value of the S bit in the instruction. Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used only to perform tests and to set the condition codes on the result, and therefore, should always have the S BI set. (The assembler treats TST, TEQ) CMP and CMN as TSTS, TEOS, CMI22 and CMNS by default.)

DATA PROCESSING OPERATIONS

Assembler		
Mnemonic	Obcode	Action
AND	0000	Bit-wise logical AND of operands
EOR	0001	Bit-wise logical Exclusive Or of operands
SUB	0010	Subtract operand 2 from operand 1
RSB	0011	Subtract operand 1 from operand 2
ADD	0100	Add operands
ADC	0101	Add operands plus carry (PSR C flag)
SBC	0110	Subtract operand 2 from operand 1 plus carry
RSC	0111	Subtract operand 1 from operand 2 plus carry
TST	1000	as AND, but result is not written
TEQ	1001	as EOR, but result is not written
CMP	1010	as SUB, but result is not written
CMN	1011	as ADD, but result is not written
ORR	1100	Bit-wise logical OR of operands
MOV	1101	Move operand 2 (operand 1 is ignored)
BIC	1110	Bit clear (bit-wise AND of operand 1 and NOT operand 2)
MVN	1111	Move NOT operand 2 (operand 1 is ignored)

PSR Flags - The operations may be classified as logical or arithmetic. The logical operations (AND, EOR, TST, TEO, ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand or operands to produce the result. If the S bit is set (and Rd is not R15), the V flag in the PSR will be unaffected, the C flag will be set to the carry cut from the barrel shifter (or proserved when the shift operation is LSL 0), the Z flag will be set if and only if the result is all zeros, and the N flag will be set to the logical value of bit 31 of the result.

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each operand as a 32-bit Integer (either unsigned or 2's complement signed, the two are equivalent). If the S bis set (and Rd is not R15) the V flag In the PSR will be set if an overflow occurs into bit 31 of the result; this may be ignored if the operands were considered unsigned, but warns of a possible error if the operands were 2's complement signed. The C flag will be set to the carry out of bit 31 of the ALU, the Z flag will be set if and only if the tesuit was zero, and the N flag will be set to the value of bit 31 of the result (indicating a negative result if the operands are considered to be 2's complement signed).

Shifts - When the second operand is specified to be a shifted register, the

operation of the barrel shifter is controlled by the shift field in the instruction. This field indicates the type of shift to be performed (logical left or right, arithmetic right or rotate right). The amount by which the register should be shifted may be contained in an immediate field in the instruction, or in the bottom byte of another register as shown in Figure 4.

When the shift amount is specified in the instruction, it is contained in a 5-bit field which may take any value from 0 to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified amount to a more significant position. The least significant bits of the result are filled with zeros, and the high bits of Rm which do not map into the result are discarded, except that the least significant discarded bit becomes the shifter carry output which may be latched into the C bit of the PSR when the ALU operation is in the logical class. (See Data Processing Operations above.) For example, the effect of LSL 5 is:

Example of shifted result in Operand 2 (shifted content of Rm)

Note that LSL 0 is a special case, where the shifter carry out is the old value of the PSR C (lag. The contents of Rm are used directly as the second operand. A Logical Shift Right (LSR) is similar, but the contents of Rm are moved to less significant positions in the result. LSR 5 has the effect shown in Figure 6.

VLSI TECHNOLOGY, INC. PRELIMINARY VL86C020 The form of the shift field which might shifter, rotate right extended (RRX). he expected to give ROR 0 is used to of the 33-bit quantity formed by append-This is a rotate right by one-bit position ancode a special function of the barrel ing the PSR C flag to the most significant end of the contents of Rm: FIGURE 9. ROTATE RIGHT EXTENDED (RRX) 16 15 Carry Contents of Rm, which will appear (shifted) in Operand 2 Redister-Based Shift Counts - Only the second operand, and the old value the least significant byte of the contents that of an instruction specified shift with of the PSR C flag will be passed on as of Rs is used to determine the shift the same value and shift operation. the shifter carry output. emount. If this byte is zero, the un-Shifts of 32 cr More - The result will manged contents of Rm will be used as If the byto has a value between 1 and be a logical extension of the shifting 31, the shifted result will exactly match processes described above: Shift Action LSL by 32 Result zero, carry out equal to bit zero of Rm. LSL by more than 32 Result zero, carry out zero. LSR by 32 Result zero, carry out equal to bit 31 of Rm. LSR by more than 32 Result zero, carry out zero, ASR by 32 or more Result filled with, and carry out equal to, bit 31 of Rm. ROR by 32 Result equal to Rm, and carry out equal to, bit 31 of Rm, ROR by more than 32 Same result and carry out as ROR by n-32. Therefore, repeatedly subtract 32 from count until within the range one to 32. The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit will cause the instruction Nata: immediate Operand Rotation - The corresponding bits in the ALU result, so immediate operand rotate field is a 4-bit apply to VL66C020, but should be bit 31 of the result goes to the N flag, bit insigned integer which specifies a shift adhered to for compatibility. 30 to the Z flag, and 29 to the C flag operation on the 8-bit immediate value. and bit 28 to the V flag. In user mode If the S flag is clear when Rd is R15. The immediate value is zero extended the other flags (I, F, M1, M0) are only the 24 PC bits of R15 will be b 32 bits, and then subject to a rotate protected from direct change, but in

ight by twice the value in the rotate feld. This enables many common constants to be generated, for example d powers of 2. Another example is hat the 8-bit constant may be aligned with the PSR flags (bits 0, 1, and 26 to 31). All the flags can thereby be initialized in one TEOP instruction.

の

Willing to R15 - When Rd is a register other than R15, the condition code flags h the PSR may be updated from the All flags as described above. When Rd is R15 and the S flag in the instrucfon is set, the PSR is overwritten by the

non-user modes these will also be affected, accepting copies of bits 27, 26, 1 and 0 of the result respectively.

When one of these instructions is used to change the processor mode (which is only possible in a non-user mode), the following instruction should not access a banked register (R8-R14) during its first cycle. A no-op should be inserted if the next instruction must access a banked register. Accesses to the unbanked registers (R0-R7 and R15) are safe. This restriction is required for the VL86C010 processor and does not

written. Conversely, if the instruction is of a type which does not normally produce a result (CMP, CMN, TST, TEO) but Rd is R15 and the S bit is set. the result will be used to update those PSR flags which are not protected by virtue of the processor mode.

3

Setting PSR Bits - It is suggested that TEOP be used to set PSR bits in SVC mode. Because these bits are not presented to the ALU input (even when R15 is the operand), the TEQP's operands replace all current PSR bits. For example, to remain in SVC mode but set the interrupt-disable bits, use a "TEOP PC, 0x C000003" instruction.

Example of shifted result in Operand 2 (shifted content of Rm)

R15 as an Operand - If R15 is used as an operand in a data processing instruction it can present different values depending on which operand position it occupies. It will always contain the value of the PC. It may or may not contain the values of the PSR flags as they were at the completion of the previous instruction.

MOV, MVN single operand instructions:

copcode>{cond}{S} Rd,<Op2>

ccpcode>(cond){P} Rn,<Op2>

<cpcode>{cond}{S} Rd, Rn, <Op2>

one bit with extend).

R2, R4, R5

R4, R5, R7 LSR R2

R4.3

R15.0;

PC. LK

PC. R14

Assembler Syntax:

where Op2

Examples:

cond

~shift>

ADDEQ

TEQS

SUB

TEOP

MOV

MOVS

MOVNV RO, RO

Rd. Rn and Rm

If this is impossible, it will give an error.

S

ρ

When R15 appears in the Rm position it will give the value of the PC together with the PSR flags to the barrel shifter.

PRELIMINARY

VL86C020

When R15 appears in either of the Rn or Rs positions it will give the value of the PC alone, with the PSR bits replaced by zeros.

PRELIMINARY VL86C020

ously, R15 must not be used as the destination register (Rd). If it is so used, the instruction will have no effect except possibly to scramble the PSR

R15 As an Operand - R15 may be used as one or more of the operands, though the result will rarely be useful. When used as Rs the PC bits will be used without the PSR flags, and the PC value will be 8 bytes advanced from the address of the multiply instruction. When used as Rn, the PC bits will be used along with the PSR flags, and the PC will again be 8 bytes advanced from the address of the instruction. When used as Rm, the PC bits will be used together with the PSR flags, but the PC will be the address of the instruction

; Equivalent to: PC, PSR = R14. ; Return from subroutine, restoring the status.

Assembler Syntax:

cond

S

where

Notos:

MUL(cond)(S)

MLA (cond){S}

Rd, Rm, Rs and Rn

PRELIMINARY VL86C020

VLSI TECHNOLOGY, INC.

PRELIMINARY VL86C020

Load/Store Value from Memory (LDR,STR) - The register load/store instructions are used to load or store single bytes or words of data. The LDR and STR instructions differ from MOV instructions in that they move data between registers and a specified memory address. In contrast, the MOV instructions move data between registers, or move a constant (conmined in the instruction) into a register.

The memory address used in LDR/STR transfers is calculated by adding an offset to or subtracting an offset from a hase register. Typically, a load of a labeled memory location involves the hading via a (signed) offset from the current PC. Regardless of the base register used, the result of the offset calculation may be written back into the base register if "auto-indexino" is mouired.

Offsets and Auto-Indexing - The offset from the base may be either a 12bit binary immediate value in the instruction, or a second register (possibly shifted in some manner). The offset may be added to (U=1) or subtracted from (U=0) the base register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-indexed, P=0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may be written back into the base (W=1), or the old base value may be kept (W=0). In the case of post-indexed addressing, the write back bit is redundant, since the old base value can be retained by setting the offset to zero. Therefore, post-indexed data transfers always write back the modified base.

Hardware Address Translation - The only use of the W bit in a post-indexed data transfer is in non-user mode code. where setting the W bit forces the -TRANS pin to go low for the transfer, allowing the operating system to generate a user address in a system where the memory management hardware makes suitable use of this pin, as when the MEMC chip is used.

Shifted Register Offset - The eight shift control bits are described in the data processing instructions, but the register specified shift amounts are not available in this instruction class.

3

Bytes and Words - This instruction class may be used to transfer a byte (B=1) or a word (B=0) between a VL86C020 register and memory. In the discussion, remember that the VL86C020 stores words into memory with the Least Significant Byte at the lowest address (i.e., LSB first).

- Shift Amount Shift Type Shift amount is a 5-bit Immediate Value 00 - Logical Left (LSL) shift count, to be applied 01 - Logical Right 1 - Operand 2 is a register. to the Rm register. 0 = Operand 2 is an immediate value. 11 - Rotate Right
 - (LSR) 10 = Arithmetic Right (ASR)
 - RORI

Is a two-character condition code mnemonic Set condition codes if present. Are valid register mnemonics, such as R0-R15, SP, LK, or PC. Rd must not be R15 (PC), and must not be the same as Rm. terns in () are optional. Those in \diamond must be present.

Examples: MUL MLAEQS	R1, R2, R3 R1, R2, R3, R4	; R1 = R2 ° R3. (R1,R2,R3 = Rd,Rm,Rs) ; Equivalent to: If (ZFLAG) R1 = R2°R3 + R4. ; Condition codes are set, based on the result
		the higher precision multiplications.

Rd, Rm, Rs

Rd, Rm, Rs, Rn

; The multiply instruction may be used to synthesize higher precision For instance, multiply two 32-bit integers and generate a 64-bit result: ; R0 (temporary) = top half of R1. R0, R1 LSR 16 ; R4 = top half of R2. MOV R4, R2 LSR 16 : R1 = bottom half of R1. MOV R1, R1, R0 LSL 16 : R2 = bottom half of R2. BIC R2, R2, R4 LSL 16 : Low section of result. BIC R3, R0, R2 : Middle section of result. MUL R2, R0, R2 : Middle section of result. MUL R1, R4, R1 Add middle sections. (MLA not used, as we need R3 correct). ; High soction of result. MUL R4, R0, R4 MUL R1, R2, R1 : Carry from above add. ADDS R4, R4, 0x10000 : R3 is now bottom 32 product bits. ADDCS R3, R3, R1 LSL 16 : R4 is now top 32 bits. ADDS R4, R4, R1 LSR 16 ADC

1. R1, R2 are registers containing the 32-bit integers. R3, R4 are registers for the 64-bit result.

Notes:

2. R0 is a temporary register.

3. R1 and R2 are overwritten during the multiply.

Non-Aligned Addresses - A byte load (LDRB) expects the data on bits D7 to Do if the supplied address is on a word boundary, on bits D15 to D8 if it is a word address plus one byte, and so on. The selected byte is placed in the bottom eight bits of the destination register, and the remaining bits of the register are filled with zeros.

A byte store (STRB) repeats the bottom eight bits of the source register four times across the data bus. The external memory system should activate the appropriate byte subsystem to store the data.

Non-Aligned Accesses - A word load (LDR) should generate a word aligned address. An address offset from a word boundary will cause the data to be rotated into the register so that the addressed byte occupies bits D7 to D0. See the below example.

External hardware could perform a double access to memory to allow nonaligned word loads, but the VL86C110 Memory Controller does not support this function.

Use of R15 - These instructions will never cause the PSR to be modified, even when Rd or Rn is R15.

If R15 is specified as the base register (Rn), the PC is used without the PSR flags. Whon using the PC as the base register one must remember that it

contains an address 8 bytes advanced from the address of the current instructian

If R15 is specified as the register offset (Rm), the value presented will be the PC together with the PSR.

When R15 is the source register (Rd) of a register store (STR) instruction, the value stored will be the PC together with the PSR. The stored value of the PC will be 12 bytes advanced from the address of the instruction. A load register (LDR) with R15 as Rd will change only the PC, and the PSR will be unchanged.

Address Exceptions - If the address used for the transfer (i.e. the unmodified contents of the base register for postindexed addressing, or the base modified by the affset for pre-indexed addressing) has a logic one in any of the bits D31 to D26, the transfer will not take place and the address exception trap will be taken.

Note that only the address actually used for the transfer is checked. A base containing an address outside the legal range may be used in a preindexed transfer if the offset brings the address within the legal range. Likewise, a base within the legal range may be modified by post-indexing to outside the legal range without causing an address exception.

Preliminary VL86C020

Data Aborts - A transfer to or from a legal address may still present special cases for a memory management system. For instance, in a system which uses virtual memory, the roquired data may be absent from main memory. The memory manager can signal a problem by taking the processor ABORT pin high, whereupon the data transfer instruction will be prevented from changing the processor state and the data abort trap will be taken. It is up to the system software to resolve the cause of the problem. The instruction can be restarted and the original program continued.

Cache Interaction - When the cache is turned on, a data load operation (LDR. LDRB) will read data from the cache if it is present. If the cache is turned off, or does not contain the required data, the external memory is accessed.

A data store operation (STR, STRB) wa always cause an immediate external write to allow the external memory manager to abort the access if it is illegal. If the write operation is not aborted, and the cache contains a copy of data from the address being written to, the cache will be automatically updated with the new byte or word of data. This updating occurs even when the cache is turned off (to maintain cache consistency), but can be disabled by programming the updateable control register appropriately. (See Cache Operation.)

Example: Read two 16-bit values from an I/O port, merging into a 32-bit word.

MASK: IO_16 WORD	DW DW DW	0xFFFF 0x3100000 0	: VO port address ; 32-bit result
	LDR LEA LDR LDR AND LDR BIC ORR STR	R3, IO_16 R4, BUF R0, MASK R1, [R3], 2 R1, R1, R0 R2, [R3], 2 R2, R2, R0 R1, R1, R2 R1, [R4], 4	Get word-aligned source address. Get word-aligned destination address. Fetch even half-word from 16-bit port Keep lower 16 bits. Fetch 'add' half-word, rotated. Keep upper 16 bits. Merge even/odd halves. Store 32-bit composit.

Assembler Syntax:

	LDR/STR{conc	J}(B}{T}	Rd, <address></address>
vhere	LDR STR cond B T Rd Address Can b	means is a two if prese ff prese -TRAN indexe is a val	Load from memory into a register. a store from a register into memory. o-character condition mnemonic (see Condition Code section). ent implies byte transfer, else a word transfer. ent, the W bit is set in a post-indexed instruction, causing the VS pin to go low for the transfer cycle. T is not allowed when a pre- d addressing mode is specified or implied. Iid register: R0-R15, SP, LK, or PC. he variations in the following table.
	s Variants: s expression: <expression></expression>	The as as a ba expres	pression evaluating to a relocatable address: isembler will attempt to generate an instruction using the PC ase, and a corrected offset to the location given by the ision. This is a PC-relative pre-indexed address. If out of range sembly or link time), an error message will be given.
Pre-ind	exed address:		is added to base register before using as effective address, and are placed within the [] pair. Rn may be viewed as a pointer:
	(Rn) [Rn, <expression [Rn, Rm][l] (Rn, Rm <shift:< td=""><td>•••</td><td>No offset is added to base address pointer. Signed offset of <i>expression</i> bytes is added to base pointer. Add Rm to Rn before using Rn as an address pointer.) Signed offset of <i>Rm</i> (modified by <i>shift</i>) is added to base pointer.</td></shift:<></expression 	•••	No offset is added to base address pointer. Signed offset of <i>expression</i> bytes is added to base pointer. Add Rm to Rn before using Rn as an address pointer.) Signed offset of <i>Rm</i> (modified by <i>shift</i>) is added to base pointer.
Post-ind	dexed address:		is added to base reg, after using base reg for the effective address. s are placed after the [] pair:
	(Rn), <expressio [Rn], Rm [Rn], Rm <shiit< td=""><td></td><td>Expression is added to Rn, after Rn's usage as a pointer. Rm is added to Rn, after Rn's usage as an address pointer. Shift the offset in Rm by <i>count</i> bits, and add to Rn, after Rn's usage as an address pointer.</td></shiit<></expressio 		Expression is added to Rn, after Rn's usage as a pointer. Rm is added to Rn, after Rn's usage as an address pointer. Shift the offset in Rm by <i>count</i> bits, and add to Rn, after Rn's usage as an address pointer.
where	expression Rm, Rn shift count I	Valid n will sut Any of: Amoun specific If prese	ed 13-bit expression (including the sign). egister names: R0-R15, SP, LK, or PC. If RN – PC, the assembler stract 8 from the expression to allow for processor address read-ahead. : LSL, LSR, ASR, ROR, or RRX. It to shift Rm by. It is a 5-bit constant, and may not be ed as an Rs register (as for some other instruction classes). ant, the I sets the W-bit in the instruction, forcing the re offset to be added to the Rn register, after completion.

heach of these examples, the effective offset is added to the Rn (base pointer) register prior to using the Rn register as the tflective address. Rn is then updated only if the I suffix is supplied.

STR	R1, [R2, R1]!	;*(R2+R1) = R1. Then R2 += R1.
STR	R3, [R2]	;*(R2) = R3.
LDR	A1, [R0, 16]	; R1 = *(R0 + 16). Don't update R0,
LDR	R9 (R5, R0 LSL 2)	; R9 = *(R5 + (R2<<2)). Don't update R5.
LDREOB	R2, [R5, 5]	; if (Zliag) R2 = *(R5 + 5), a zero-filled byte load.

In each of these examples, the effective offset is added to the Rn (base pointer) register after using the Rn register as the effective address. Rn is then updated unconditionally, regardless of any "I" suffix.

AG FOOLOOOL		: *R2 = R1. Then R2 += R1.
str Str LDR LDR LDR	R1. [H2], H1 R3, [R2], R5	• (R2) = R3, Then R0 += 16, R1 = • R0, Then R0 += 16, R1 = • R0, Then R0 += 16 , R1 = • R0, Then R5 += $(R0 / 8)$,

In these examples, the PLACE label is an internal or external PC-relative label, typically created as shown. PC-relative refer-In most examples, me FLACE superior an internation external FLACE reaction reacting transmission as shown in the reaction reacted ences are precompensated for the 8-byte read-ahead done by the processor. PARMx is a register-relative label, typically created vices are precumpensated for the contraction of the LK (R14) register. DATAx is similar, but is presumably defined relative egister, and GENERAL relative to R0. In any case, they may be located up to ±4096 bytes from the associated

to the SP (R13) real base register.		; SP-relative. Same as: LDR R0, [SP+DATA1].
LDR STR LDR	R0, DATA1 R2, PLACE R1, PARM0 R1, GENERAL	SP-relative. Same as: STR R2, [PC+16]. PC-relative. Same as: LDR R1, [LK+DATA1]. R6-relative. Same as: STR R1, [R0+GENERAL]. Skip over the data temporarily.
STR B	Across	Temporary storage area.
PLACE DW	0	Resume execution.

Multi-Register Transfer (LDM, STM) The instruction is only executed if the condition is true. The various conditions are defined in Control Field Section.

Multi-register transfer instructions are used to load (LDM) or store (STM) any subset of the currently visible registers. They support all possible stacking modes (push up/pop down, or push down/pop up). They are very efficient instructions for saving or restoring context, or for moving large blocks of data around main memory.

The Registor List - The Instruction can cause the transfer of any registers in the current bank (and non-user mode programs can also transfer to and from the user bank). The register list is contained in a 16-bit field in the instruction, with each bit corresponding to a register. A logic one in bit zero of the register field will cause R0 to be transferred, a logic zero will cause it not to be transferred; similarly bit 1 controls the transfer of R1, and so on.

Addressing Modes - The transfer addrossos are determined by the contents of the base register (Rn), the pre/post bit (P) and the up/down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the ist) will always be transferred last. The lowest register also gets transferred to/ from the lowest memory address. This is illustrated in Figures 13 and 14.

Transfer of R15 - Whenever R15 is stored to memory, the value transferred Is the PC together with the PSR flags. The stored value of the PC will be 12 bytes advanced from the address of the STM instruction.

IR15 is in the transfer list of a load multiple (LDM) instruction the PC is overwritten, and the effect on the PSR scontrolled by the S bit. If the S bit is zero the PSR is preserved unchanged, but if the S bit is set the PSR will be everwritten by the corresponding bits of the loaded value. In user mode, however, the I. F. M1 and M0 bits are Protected from change, whatever the value of the S bit. The mode at the tart of the instruction determines whether these bits are protected, and the supervisor may return to the user

program, re-enabling interrupts and restoring user mode with one LDM instruction.

Transfers to User Bank - For STM instructions the S bit is redundant as the PSR is always stored with the PC whenever R15 is in the transfer list. In usor mode the S bit is ignored, but in other modes it has a second interpretation. S=1 is used to force transfers to take values from the user registor bank instead of from the current register bank. This is useful for saving the user state on process switches. Note that when it is so used, write back of the base will also be to the user bank, though the base will be fetched from the current bank. Therefore, do not use write back when forcing user bank.

In LDM instructions the S bit is redundant if R15 is not in the transfer list, and again in user mode it is ignored. In non-user mode where R15 is not in the transfer list. S=1 is used to force loaded values in to the user registers instead of the current register bank. When used in this manner, care must be taken not to read from a banked register during the following cycle; if in doubt, insert a no-op. Again, do not use write back when forcing a user bank transfer.

R15 As the Base - When the base is the PC, the PSR bits will be used to form the address as well, so unless all interrupts are enabled and all flags are zero an address exception will occur. Also, write back is never allowed when the base is the PC (setting the W bit will have no effect).

Base within the Register List - When write back is specified, the base is written back at the end of the second cycle of the instruction. During a STM, the first register is written out at the start of the second cycle. A STM which includes storing the base, with the base as the first register to be stored, will therefore store the unchanged value. whereas with the base second or later in the transfer order, will store the modified value. An LDM will always overwrite the updated base if the base is in the list.

Address Exceptions - When the address of the first transfer falls outside the legal address space (i.e. has a logic one somewhere in bits 31 to 26), an

VL86C020 address exception trap will be taken. The instruction will first complete in the usual number of cycles, though an STM

PRELIMINARY

will be prevented from writing to memory. The processor state will be the same as if a data abort had occurred on the first transfer cycle.

Only the address of the first transfer is checked in this way; if subsequent addresses over or under-flow into illegal address space they will be truncated to 26 bits but will not cause an address exception trap.

Data Aborts - Some legal addresses may be unacceptable to a memory management system, and the memory manager can indicate a problem with an address by taking the ABORT pin high. This can happen on any transfer during a multiple register load or store, and must be recoverable if VL86C020 is to be used in a virtual memory system.

Abort during STM - If the abort occurs during a store multiple instruction. VL86C020 takes little action until the instruction completes, whereupon it enters the data abort trap. The memory manager is responsible for preventing erroneous writes to the memory. The only change to the internal state of the processor will be the modification of the base register if write back was specified, and this must be reversed by software (and the cause of the abort resolved) before the instruction may be retried.

To illustrate the various load/store modes, consider the transfer of R1, R5 and R7 in the case where Rn = 1000H and write back of the modified base is required (W=1). These figures show the sequence of register transfers, the addresses used, and the value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W=0). Rn would have retained its initial value of 1000H unless it was also in the transfer list of the load multiple register instruction. Then it would have been overwritten with the loaded value.

Aborts during LDM - When VL86C020 detects a data abort during a load multiple instruction, it modifies the operation of the instruction to ensure that recovery is possible.

The following figures illustrate the impact of various addressing modes. R1, R5, and R7 are moved to/from memory, where Rn=0x1000, and a write back of the modified base is done (W=1). The figures show the sequence of incrementing "pushes", the addresses used, and the final value of Rn.

Without write back, Rn would remain at 0x1000.

Figure 13 illustrates the use of incrementing stack "pushes".

Figure 14 illustrates decrementing "cushes" to the stack based upon Rn.

PRELIMINARY VL86C020

Mode Bits - During LDM and STM

status bits. These may be used by

external hardware to force memory

accesses from an alternative bank.

execution, the two LSBs of the instruc-

tion will contain the (noninverted) mode

VLSI TECHNOLOGY, INC.

PRELIMINARY VL86C020

Overwriting of registers stops when the abort happens. The aborting load will not take place, nor will the preceding one, but registers two or more positions ahead of the abort (if any) will be baded. (This guarantees that the PC will be preserved, since it is always the last register to be overwritten.)

The base register is restored to its modified value if write back was requested. This ensures recoverability

Assembler Syntax:

LDM(STM(cond)<mode> Rn(I), <Rlist>{^}

- Is an optional 2-letter condition code common to all instructions. cond where
 - Is any of: FD, ED, FA, EA, IA, IB, DA, or DB. mode
 - Is a valid register name: R0-R15, SP, LK, or PC. Rn
 - Can be a single register (as described above for Rn), or may be a list of Rlist registers, enclosed in { } (eg {R0,R2,R7-R10,LK}).

occurred.

tion.

been overwritten before the abort

load multiple has completed, and the

system software must undo any base

modification (and resolve the cause of

the abort) before restarting the instruc-

- If present, requests write back (W=1). Otherwise W=0.
- If present, set S bit to load the PSR with the PC, or force transfer of user bank, when in non-user mode.

Addressing Mode Names

Function	Mnemonic	L Bit	<u>P Bit</u>	UЫt	Operation
Pre-increment load	LDMIB	1	1	1	Pop upwards
Post-increment load	LDMIA	1	0	1	Pop upwards
Pro-decrement load	LDMDB	1	1	0	Pop downwards
Post-decrement load	LDMDA	1	0	0	Pop downwards
Pre-increment store	STMIB	0	1	1	Push upwards
Post-increment store	STMIA	0	0	1	Push upwards
Pre-decrement store	STMDB	0	1	0	Push downwards
Post-decrement store	STMDA	0	0	0	Push downwards

A IB, DA, DB allow control when LDM/STM are not being used for stacks and simply mean increment After, increment Before, Decrement After, Decrement Before,

Examples

T

LDMFD	SPI, (R0, R1, R2)	; unstack 3 registers
STMIA	R2, (R0, R15)	; save all registers
These instructions ma	y be used to save state on	subroutine entry, and restore it efficiently on return to the calling routine;

STMED	SP!, {R0-R3, LK}	; Save R0 to R3 for workspace, and R14 for returning.
BL	Subroutine	; This call will overwrite R14.
LDMED	SPI, (R0-R3, PC)	; Restore workspace and return, restoring PSR flags.

3-31

in the case where the base register is With the cache turned on, a block load also in the transfer list, and may have operation (LDM) will read data from the cache where it is present. When the cache does not contain the required data, the external memory is accessed. The data abort trap is taken when the

> A block store operation (STM) always generates immediate external writes to allow the external memory manager to abort the accesses if they are illegal. The cache is automatically updated as the data is written to memory (provided the area being written to is updateable. see Cache Operation Section).

FIGURE 15. SINGLE DATA SWAP (SWP)

Single Data Swap (SWP) - The instruction is only executed if the condition is true. The various conditions are defined in Condition Field Section.

The data swap instruction is used to swap a byte or word quantity between a register and external memory. This instruction is implemented as a memory read followed by a memory write which are locked together (the processor cannot be interrupted until both operations have completed, and the memory manager is warned to treat them as inseparable). This class of instruction is particularly useful for implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The processor first reads the contents of the swap address (the external memory is always accessed, even if the cache contains a copy of the data). The processor then writes the contents of the source register (Rm) to the swap address, and stores the old memory contents in the destination register (Rd). The same register may be specified as both the source and destination.

The LOCK pin goes high for the duration of the read and write operations to signal to the external memory manager that they are locked together, and should be allowed to complete without interruption. This is important in multi-processor systems where the swap instruction is the only indivisible instruction which may be used to

implement semaphores; control of the memory must not be removed from a processor while it is performing a locked operation.

Bytes and Words - This instruction class may be used to swap a byte (B=1) or a word (B=0) between a VL86C020 register and memory.

A byte swap (SWPB) expects the read data on bits 0 to 7, if the supplied address is on a word boundary, on bits 8 to 15 if it is a word address plus one byte, and so on. The selected byte is placed in the bottom eight bits of the destination register, and the remaining bits of the register are filled with zeros. The byte to be written is repeated four times across the data bus. The external memory system should activate the appropriate byte subsystem to store the data (see Memory Interface Section).

A word swap (SWP) should generate a word aligned address. An address offset from a word boundary will cause the data read from memory to be rotated into the register so that the addressed byte occupies bits 0 to 7. The data written to memory are always presented exactly as they appear in the register (i.e. bit 31 of the register appears on D31).

Use of R15 - If R15 is selected as the base, the PC is used together with the PSR. If any of the flags are set, or interrupts are disabled, the data swap

will cause an address exception. If all flags are clear, and interrupts are enabled (so the top six bits of the PSR are clear), the data will be swapped with an address 8 bytes advanced from the swap instruction, although the address will not be word aligned unless the processor is in user mode. (M1 and M0 bits determine the byte address).

When R15 is the source register (Rm). the value stored will be the PC together with the PSR. The stored value of the PC will be 12 bytes advanced from the address of the instruction.

When R15 is the destination register (Rd), the PSR will be unaffected, and only the PC will change.

Address Exceptions - If the base address used for the swap has a lock one in any of the bits 26 to 31, the transfer will not take place and the address exception trap will be taken.

Data Aborts - If the address used to the swap is unacceptable to a memory management system, the memory manager can flag the problem by driving ABORT high. This can happen on either the read or the write cycle (both). In either case, the data swap instruction will be prevented from changing the processor state, and the Data Abort trap will be taken. It is up 10 the system software to resolve the cause of the problem. Then the insula tion can be restarted and the original program continued.

PRELIMINARY VL86C020

Cache Interaction - The swap instruction always reads data from external memory, even if a copy is present in the cache. In multi-processor systems, semaphores may be used to control access to system resources; as the semaphores are accessed by more than one processor, the cache copy of

a semaphore may be out of date (the cache is only updated if the host CPU writes new data to the external memory). It is, therefore, important always to read the semaphore from the shared external memory, and not the private cache.

The write operation of the swap instruction will still update the cache if a copy of the address is present, and updating is enabled (see Cache Operation Section).

Assombler Syntax:

	SWP(cond)(B)	Rd,Rm,[Rn]								
where	cond B Rd,Rm,Rn	Two-character condition mnemonic, see section Condition Field If B is present then byte transfer, otherwise word transfer. Are expressions evaluating to valid register numbers. Rn is required.								

Examples:

SWP	R0, R1, [BASE]
SWPB	
SWPEQ	R2, R3, (BASE)
	RO, RO, [BASE]

- ; Load R0 with the contents of BASE, and store R1 at BASE. Load R2 with the byte at BASE, and store bits 0 to 7 of R3 at BASE.
- ; Conditionally swap the contents of BASE with Ro.

FIGURE 16. SOFTWARE INTERRUPT (SWI)

Note: The machine comments field in bits 23-0 are ignored by the hardware. They are made available for free interpretation by the software executive, and may be found in LSB-first byte order on the stack.

					Information
		ervisor mode in a a	leturn from the Supervisor - The PC nd PSR are saved in R14_svc upon	itself it must first save a copy of the return address.	Coprocessor Number
control causes taken, with ex this add externa ware) f fully pri- constru- Asserr	led manner. the software which effects secution resur- to the software which effects sound ress is suital all memory ma- rom modificat otected opera- inted. while Syntax: SWI(cond) cond expression	The instruction ex- interrupt trap to be the participation of the transformed example, and interrupt trap to be the the mode change, and ming at 0x 08. If A by protected (by re- anagement hard- participation by the user, a ating system may be stick the user, a (expression- Is the two-character b a 24-bit field of a typical scenario is fi	ntering the software Interrupt trap, with ne PC adjusted to point to the word fiter the SWI instruction. MOVS R15, 114_svc will return to the user program, astare the user PSR and return the rocessor to user mode. Note that the link mechanism is not re- ntrant, so if the supervisor code rishes to use software interrupts within r condition code common to all instruction ny format. The processor itself ignores it, at the software executive to specify patter reted in a particular way by the executive,	but the ns in it,	The instruction is only executed if the condition code field is true. The field is described in the Condition Codes Section. This is actually a class of instructions, and is equivalent to the ALU class on the CPU. All instructions in this class are used to direct the coprocessor to perform some internal operation. No result is sent back to the CPU, and the CPU will not wait for the operation to complete. The coprocessor could maintain a queue of such instructions in this rule. The coprocessor could maintain a queue of such instructions in this rule. The coprocessor could maintain a queue of such instructions in this class are used to the CPU, will not wait for the operation to complete. The coprocessor could maintain a queue of such instructions in the coprocessor could maintain a queue of such instructions in the solutely necessary. The above field numbers are used to for program compatiants of the CPU. The sake of future family product introductions, it is encouraged that the above conventions be followed, unless absolutely necessary.
	SWI SWI SWINE	ReadC Writel+"k" 0	; Get next character from read stra ; Output a "K" to the Write stream ; Conditionally call supervisor with	•	
			ervisor code exists. For Instance: 113) points to a suitable stack. e1=2 ; Assembler constants.		Assembler Syntax: CDO{cond} CP#, <expression1>, CRd, CRn, CRm{,<expression2>}</expression2></expression1>
08h	В	Super	; SWI entry paint		is the conditional execution and a new set
Super	STMFD BIC LDR BIC MOV LDR	SPI, (r0, r1, r2, r14) r1, r14, CC_Mask R0, [R1, -4] R0, R0, 0xFF000000 R1, SWI_Table PC, [R1, R0 LSL 2]	; Save working registers. ; Strip condx codes from SWI instr ; Get copy of SWI instruction. ; Get lower 24 bits of SWI, only. ; Get absolute address of PC-relat ; Jump indirect on the table.		CRd, CRn, CRm These are valid coprocessor registers: CR0-CR15. expression 1 Evaluates to a constant, and is placed in the CP Opc field. (Where present) evaluates to a constant, and is placed in the CP field.
SWI_Table dw Zero_Action ; Address of service routines. dw ReadC_Action dw Write1_Action					CDO 1, 10, CR1, CR7, CR2 ; Request coproc #1 to do operation 10 on CR7 and CR2, putting result into CR1. CDOEQ 2, 5, CR1, cr2, Cr3, 2 ; If the Z flag is set, request coproc #2 to do ; operation 5 (type 2) on CR2 and CR3, placing the result into CR1.
Write1_	Action		; Typical service routine.		
		R13,(R0-R2, PC)^	; Restore workspace, and return to	o inst after SWI.	
		·	3-34		

VLSI TECHNOLOGY, INC.

FIGURE 17. COPROCESSOR DATA OPERATIONS (CDO)

Coprocessor Operation Code

20 19

16 15

CRn

12 11

CP#

CRd

1 Coprocessor

Destination

Register

87

543

AUX TOT

Ω

Coprocessor Operand Registers

Coprocesser Auxiliary

CRm

24 23

Condx 1 1 1 0 CP Opc

28 27

31

Condition

Code

PRELIMINARY

VL86C020

FIGURE 18. COPROCESSOR DATA TRANSFERS (LDC, STC)

The LDC and STC instructions are used to load or store single bytes or words of data. They differ from MCR and MRC instructions in that they move data between coprocessor registers and a specified memory address. In contrast, the other instructions move data between registers, or move a constant (contained in the instruction) into a register.

The memory address used in LDC/STC transfers is calculated by adding an offset to or subtracting an offset from a base pointer register, Rn. Typically, a (bad of a labeled memory location involves the loading via a (signed) offset from the current PC. Regardless of the base register used, the result of the offset calculation may be written back into the base register if "auto-indexing" is required.

Coprocessor Flatds - The CP# field identifies which coprocessor shall supply or receive the data. A coprocessor will respond only if its number matches the contents of this lield.

The CRd field and the N bit contain information which may be interpreted in different ways by different coprocessors. By convention, however, CRd is the register to be transferred (or the first register, where more than one is to be transferred). The N bit is used to choose one of two transfer length options. For instance, N=0 could select the transfer of a single register, and N=1 could select the transfer of all the registers for context switching.

Offisets and Indexing - The VL86C020 is responsible for providing the address used by the memory system for the transfer, and the addressing modes available are similar to those used for the VL86C020's LDR/STR instructions.

Only 8-bit offsets are permitted, and the VL86C020 automatically scales them by two bits to form a word offset to the pointer in the Rn register. Of itself, the offset is an 8-bit unsigned value, but a 9-bit signed negative offset may be supplied. The assembler will complement it to an 8-bit (positive) value and will clear the instruction's U bit, forcing a compensating subtract. The result is a ±256 word (1024 byte) offset from Rn. Again, the VL86C020 internally shifts the offset to the Rn register.

The offset modification may be performed either before (pre-indexed, P=1) or after (post-indexed, P=0) the base is used as the transfer address. The modified base value may be written back into the base (W-1), or the cld base value may be kept (W-0). In the case of post-indexed addressing, the write back bit is redundant, since the old base value can be retained by setting the offset to zero. Therefore, post-indexed data transfers always write back the modified base.

For an offset of +1, the value of the Rn base pointer registor (modified, in the

pre-indexed case) is used for the first word transferred. Should the instruction be repeated, the second word will go fromto an address one word (4 bytes) higher than pointed to by the original Rn, and so on.

Use of R15 - If R15 is specified as the base register (Rn), the PC is used without the PSR flags. When using the PC as the base register note that it contains an address 8 bytes advanced from the address of the current instruction. As with the LDR/STR case, the assembler performs this compensation automatically.

Hardware Address Translation - The W bit may be used in non-user mode programs (when post-indexed addressing is used) to force the -TRANS pin low for the transfer cycle. This allows the operating system to generate user addresses when a suitable memory management system is present.

Address Exceptions - if the address used for the first transfer is illegal, the address exception mechanism will be invoked. Instructions which transfer multiple words will only trap if the first address is illegal; subsequent addresses will wrap around inside the 25bit address space.

Note that only the address actually used for the transfer is checked. A base containing an address outside the legal range may be used in a preindexed transfer if the offset brings the

address within the legal range. Likewise, a base within the legal range may be modified by post-indexing to outside the legal range without causing an address exception.

Data Aborts - If the address is legal but the memory manager generates an abort, the data abort trap will be taken. The write back of the modified base will take place, but all other processor state

Assembler Syntax:

data will be preserved. The coprocessor is partly responsible for ensuring restartability. It must either detect the abort, or ensure that any actions consequent from this instruction can be repeated when the instruction is retried after the resolution of the abort.

Cache Interaction - When the cache is on, LDC instructions will attempt to read data from the cache. STC instructions

PRELIMINARY

update the cache data if the address being written to matches a cache entry (see Cache Operation Section).

When an STC instruction is executed with the cache turned off, the VL86C020 will drive data onto D31-D0 (provided DBE is high) in the latent cycle preceding the first write operation (latent+active cycle); therefore, no other device should be driving the bus during this cycle.

		-{cond}{L}{T}{N} cp#, CRd, <address>{I}</address>
where	LDC STC cond L T	means load from memory into a coprocessor register. means store a coprocessor register to memory. is a two-character condition mnemonic (see Condition Code section). If present implies long transfer (N=1), else a short transfer (N=0). If present, the W bit is set in a post-indexed instruction, causing the ~TRANS pin to go low for the transfer cycle. T is not allowed when a pre- indexed addressing mode is specified or implied to implied.
	N cp# CRd <i>Address</i>	indexed addressing mode is specified or implied. Sets the value of bit 22 of instruction. Valid coprocessor number, determined by hardware. Valid coprocessor register number: CR0-CR15. Can be any of the variations in the following table.

3-36

Address Variants:

[Rn]{!}

Rn

STC

LDC

LDCEQ

STC

LDC

STC

В

PLACE DW

Across ...

where

ity.

PRELIMINARY **VL86C020**

PRELIMINARY VL86C020

FIGURE 19. COPROCESSOR REGISTER TRANSFERS (MRC, MCR)

; by hardware), and request coproc #2 to do oper 5 (type 2) on CR2 and CR3.

Preliminary VL86C020

If the condition is true, t instruction trap will be to Note that the undefined mechanism involves of instructions to any copi may be present, and al must refuse to accept i high.	aken. Instruction fering these rocessors which coprocessors	Assemblar Syntax - At present the assembler has no mnemonics for generating these instructions. If they are adopted in the future for some specified use, suitable mnemonics will be added to the assembler. Until such time, these instructions should not be used.	Instruction Set Examples The following examples show ways in which the basic VL86C020 instruction can combine to give efficient code. None of these methods save a great deal of execution time (although they may save some), mostly they just say code.				
Using Conditional Ind (1) Using conditionals CMP BEQ CMP BEQ	structions - for logical OR, this : R1, p Label R2, q Label	sequence: ; if R1=p or R2=q then goto Lat	bel				
can be replaced CMP CMPNE BEQ	by R1, p Rm, q Label	; If condition not satisfied try of	ner test				
(2) Absolute value TEQ RSBMI	R1, 0 R1, R1, 0	; Test sign ; and 2's complement if necess	ary				
(3) Multiplication by 4 MOV CMP ADDCS ADDHI	, 5 cr 6 (run time) R2, R0 LSL 2 R1, 5 R2, R2, R0 R2, R2, R0 R2, R2, R0	; Multiply by 4 ; Test value ; Complete multiply by 5 ; Complete multiply by 6					
(4) Combining discre TEO CMPNE MOVLS	te and range tests R2, 127 R2, "-1 R2, ","	; If (R2⇔127) ; Range test and if (R2<' ') ; Then, R2 ="."					

PRELIMINARY VL86C020

Division and Remaindor

Ent	er with numbers	in R0 and R1
,	MOV	R4, 1
Div1	CMP	R1,0x80000000
	CMPCC	R1, R0
	MOVCC	R1, R1 LSL 1
	BCC	Div1
	MOV	R2, 0
Div2	CMP	R0, R1
_	SUBCS	R0,R0,R1
	ADDCS	R2, R2, R4
	MOVS	R2, R4 LSR 1
	MOVNE	R1, R1 LSR 1
	BNE	Div2
	- to a second to to F	70

; Bit to control the division ; Move R1 until greater than R0

; Test for possible subtraction ; Subtract if ok ; Put relevant bit into result : Shift control bit ; Halve unless finished

; Division result is in R2.

Remainder is in R0.

FIGURE 21. INSTRUCTION SET SUMMARY

3128	27	,		24	23			20	19			16	15	5	_	12	1	1		8	7		_	4	3			0	-
Condx	0	<u>ہ</u>	1	4	$\frac{1}{2}$	i xod	۱ e	s		<u>' R</u>	1 n	1			d	 		۱ 	1	1	1 ₀₅	1 2017	I and	12)	1	1	Data Processing
Condx	0	10	0	0	10	0	A	s		R	d_				n	1		F	l Rs	Г	1	6	0	1		R	Т <u>т</u>	1-	Multiply
Condx	0	0	0	1	0	в	0	0		R	n_	Γ		R	d	l	0	0	0	0	1	0	0	1		R	T m	Γ	Single Data Swap
Condx	0	1	1	Ρ	υ	в	w	L			ก	1-			d	-	I	1-	<u> </u>) Dffs	i iet	l (va	l ria) nts		Г 	Г- 	Г	Load, Store
Condx	0	1	1	x	X	x	' x	x	X	X	x	X	X	X,	x	x	Ιx	x	'x	x	x	x	X	1	x	x	'x	'x	Undefined
Condx	1	0	0	Р	υ	s	w	L		F	łn		R	1 15-		[1	_	Rø	, jist	er i	List	2				►F	10	Multi-Register Transfer
Condx	1	0	1	L										N_	lor	d a	i add	res	1 	lis	et _					1-		1-	Branch, Call
Condx	1	1	0	P	U	Ν	w	L		R	n		Γ	CF	Ы			C	P#					Off	set			Г	Coproc Data Transfer
Condx	1	1	1	0	d	P		6		CF	۰ ۱		_	CF	Ы			C	P#			CP		0		CR	m	Γ	Coproc Data Opr
Condx	1	7	1	0	CF	50		L	7	CF	ا ۱۵			R	Ţ			C	P#			CP		1	-	CF	lm		Coproc Register Transfer
Condx	1	1	1	1							Bit	sp	ao	e ig		rec	Ь	/ p/	00	əss	ior	7							Software Interrupt

3-41

Pseudo Random Binary Sequence Generator - It is often necessary to generate (pseudo-) random numbers and the most efficient algorithms are based on shift register-based generators with exclusive or feedback rather

like a cyclic redundancy check generator. Unfortunately the sequence of a 32-bit generator needs more than one feedback tap to be maximal length (i.e. 2^32-1 cycles before repetition). The basic algorithim is Newbit - bit 33 xor

VLSI TECHNOLOGY, INC.

PRELIMINARY

					VL86C020
cyclic redundancy check genera- nfortunately the sequence of a generator needs more than one ack tap to be maximal length (i.e.	bit_20, shift left the 33-bit number and put in Newbit at the bottom. Then do this for all the Newbits needed, i.e. 32 of them. Luckily, this can be done in 55	Loading a Word with ; Enter with address ; Uses R1, R2; result ; Note R2 must be le	tin Do '		
I cycles before repetition). The algorithim is Newbit - bit_33 xor	Cycles:	BIC LDMIA AND MOVS	H1, R0, 3 R1, {R2,R3} R1, R0, 3	: Get word aligned address. ; Get 64 bits containing answer. ; Correction factor in bytes, not in bits.	
b) ; Top bit into carry ; 33 bit rotate right		MOVNE RSBNE ORRNE	R1, R1 LSL 3 R2, R2, LSR R1 R1, R1, 32 R2, R2, R3 LSL R1	; Test if aligned. ; Product bottom of result word (if not aligned). ; Get other shift amount. ; Combine two halves to get result.	
; Carry into isb of R1 ; (Involvedi) ; (Whewi)		Sign Extension of Par MOV	tial Word R0, R0 LSL 16		
	а 1	MOV	R0, R0, LSR 16	; Move to top ; and back to bottom ; (Use ASR to get sign extended version).	
		Return, Setting Condi BICS ORRCCS	PC, R14, CFLAG	; Returns, clearing C flag ROM to the sector	
		: Above code should a	PC, R14, CFLAG of be used except in user m was set up. This generally	node, since it will reset the Interrupt enable flags to	
; Multiply by 3 ; and then by 2		,	MOV PC,R14 is sa	afert	
; Multiply by 5 ; Multiply by 2 and add in next digit					
istant:					
d, N>1: .n					
. n					
d, n>1: .n					
n Is non-optimality is multiply by 45 whic	ch is done by:				
; Multiply by 3 ; Multiply by 4*3-1 = 11 ; Multiply by 4*11+1 = 45	ch is done by:				
; Multiply by 9 ; Multiply by 5°9 = 45					

; Enter with seed in R0 (32 bits), R1 (1 bit in R1 lsb)

: Uses R2

R1, R1 LSR 1 TST MOVS R2. R0 RRX ADC R1, R1, R1 EOR R2, R2, R0 LSL 12 EOR R0.R2.R2 LSR 20 ; New seed in R0, R1 as before

Multiplication by Constant:

(1) Multiplication by 2ⁿ (1,2,4,8,16,32..) MOV Ro, Ro LSL n

- (2) Multiplication by 2^n+1 (3,5,9,17..) ADD R0, R0, R0 LSL n
- (3) Multiplication by 2^n-1 (3,7,15..) RSB RO, RO, RO LSL n

(4) Multiplication by 6

Ro, Ro, Ro LSL 1 ADD RO, RO LSL 1 ADD

- (5) Multiply by 10 and add in extra number ADD Ro, Ro, Ro LSL 2 MOV R0, R2, R0 LSL 1
- (6) General recursive method for R1 -R0*C,C a constant:

(a) If C even, say C = 2ⁿ*D, D odd:

- D=1: MOV R1, R0 LSL n
- Do1: (R1 =R0*D) MOV R1, R1 LSL n
- (b) If C MOD 4 = 1, say C = 2^n*D+1, D cdd, N>1:
 - D=1: ADD R1, R0, R0 LSL n D-1: (R1 = R0*D) ADD R1, R0, R1 LSL n
- (c) If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:
 - D-1: RSB R1, R0, R0 LSL n Do1: (R1 =R0*D) RSB R1, R0, R1 LSL n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 whi

RSB RSB ADD	R1, R0, R0 LSL 2 R1, R0, R1 LSL 2 R1, R0, R1 LSL 2	; Muhiply by 3 ; Muhiply by 4*3-1 = 11 ; Muhiply by 4*11+1 = 45
rather than by:		
ADD	R1, R0, R0 LSL 3	; Multiply by 9
ADD	R1, R1, R1 LSL 2	: Multiply by 5*9 = 45

CACHIE OPERATION The VLICACO20 contains a 4 Kbyte mixed instruction and data cache; the cache harse 256 lines of 16 bytes (4 words), anganized as four blocks of 64 lines (marking it 64-way set associative), and uses the virtual addresses generated by the CPU core.

Read Operations - When the CPU performe a read operation (instruction fetch or diata read), the cache is searched for the televant data; if found in the cache, the data is fed to the CPU using a fast clock cycle (from FCLK). If the data is not found in the cache, the CPU resynchronizes to the external memory clock, MCLK, reads the appropriate line of data (4 words) from external memory and stores it in a pseudo-randomly chosen entry in the cache (a line fetch operation).

Write Operations - The cache uses a write-through strategy, i.e. all CPU write operations cause an immediate external memory write. This ensures that when the CPU attempts to write to a protected memory location, the memory manager can abort the operation.

If the cache holds a copy of the data from the address being written to, the cache data is normally automatically updated. In certain cases, automatic updated, updated, is not required; for instance, when using the MEMC memory manager, a read operation in the address space between 3400000H-3FFFFFFH accesses the ROMs, but a write operation in the same address space will change a MEMC register, and should not affect the data stored in the cache.

Control Register 4 must be programmed with the addresses of all updateable areas of the processor's memory map (see section Register 4: Updateable Areas Register - Read/Write).

Cache Valldity - The cache works with virtual addresses, and is unaware of the mapping of virtual addresses to physical addresses performed by the external memory manager. If the virtual to physical mapping in the memory manager is altered, the cache still maintains the data from the old mapping which is now invalid. The cache must, therefore, be flushed of its old data whenever the memory manager mapping is changed.

Note that just removing or introducing a new virtual to physical mapping (e.g. page swapping) does not invalidate the cache, but that a total re-ordering of the mapping (e.g. process swap) does.

Two methods of cache flushing are supported:

- 1. Automatic cache flushing. Control Register 5 may be programmed to recognize write operations to certain areas of memory as reprogramming the memory manager address mapping. (e.g. write operations to addresses between 3800000H-3FFFFFH re-program the page mapping in MEMC). When the CPU sees a write operation to one of these disruptive memory locations, the cache is automatically flushed.
- 2. Software cache flushing. Writing to Control Register 1 will flush the cache immediately.

Automatic cache flushing invalidates the cache unnecessarily on page swaps, but allows all existing ARM programs to be run without modification.

Non-cacheable Areas of Memory Certain areas of the processor's memory map may be uncacheable. For instance, when using MEMC, the area

between 3000000H-3400000H corresponds to I/O space, and must be marked as uncacheable to stop the data being stored in the cache. When the processor is polling a hardware flan in I/O space, it is important that the processor is forced to read data from the external peripheral, and not a copy of some data held in the cache.

Control Register 3 must be programmed with the addresses of all cacheable areas of the processor's memory map (see section Register 3; Cacheable Area Register - Read/Write)

Doubly Mapped Space - Since the cache works with virtual addresses, it assumes every virtual address maps to a different physical address. If the same physical location is accessed by more than one virtual address, the cache cannot maintain consistency, as each virtual address will have a separate entry in the cache, and only one entry will be updated on a processor write operation. To avoid any cache inconsistencies, both doubly-mapped virtual addresses should be marked as uncacheable.

If, when using MEMC, the Physically Mapped RAM between 2000000H-2FFFFFFH is used to alter the contents of a cacheable virtual address, the cache must be flushed immediately afterwards. This may be performed automatically by marking the Physically Mapped RAM area as disruptive (see Register 5: Disruptive Areas Register).

VLSI TECHNOLOGY, INC.

PRELIMINARY VL86C020

FIGURE 22. VL86C020 CONTROL REGISTERS

The VL86C020 contains six control registers as shown in Figure 22. These registers are implemented as coprocessor 15, and are accessed using coprocessor register transfer operations, where MRC is a control register read, and MCR is a control register write:

-MCR/MRC>[cond] 15,0,Rd,A3Cn.0

cond	two character condition mnemonic, see section Condition Field.
Rd	is an expression evaluating to a valid ARM register number.
A3Cn	is an expression evaluating to one of the control register numbers

These registers can only be accessed while the processor is in a non-user mode, and only by using coprocessor register transfer operations. The VL86C020 will take the undefined instruction trap if an illegal access is

made to coprocessor 15 (illegal accesses include coprocessor data operations, data transfers and user mode register transfers).

Register 0: Identity Register - Read Only - This is a read-only register that

returns a 32-bit VLSI-specified number which decodes to give the chip's designer, manufacturer, part type and revision number:

(VL86C020 rev. 0)

Designer code

Part type

Manufacturer code

Revision number

Bit 31-Bit 24 Bit 23-Bit 16 Dit 15-Bit 8

ID Example:

Bit 23-Bit 10 Bit 15-Bit 8 Bit 7-Bit 0

Register 1: Cache Flush (Write Only) Writing any value to this register immediately flushes the cache.

Register 2: Cache Control (Read/ Write) - This is a three-bit register that controls some special features of the VL86C020:

 Register Bit(0) - Cache On/Off -If Bit(0) is low, the cache is turned off and all processor read operations will go directly to the external momory. The automatic cache flush and cache update mechanisms operate even when the cache is turned off. This allows the cache to be turned off for a time and then turned on again with no loss of cache consistency.

If Bit(0) is high, the cache is turned on. Care must be taken that the cacheable, updateable and disruptive registers are correctly programmed before turning the cache on.

- Register Bit(1) Separata/Shared User-Supervisor Address Space the CPU can work with two different memory-mapping schemes:
 - schemes. a. Shared Supervisor/User
 - Address Space The memory manager uses the same

(=41H - Acorn Computer Ltd.) (=56H - VLSI Technology Inc.) (=03H - VL86C020) (=00H - Revision 0)

translation tables for User and Supervisor modes, so the same physical memory location is accessed regardless of processor mode (although the user may only have restricted access). If the memory manager uses this translation system (as MEMC does), Bit(1) must be set high.

- b. Separate Supervisor/User Address Space - The memory manager uses different translation tables for user and supervisor modes, and the processor will access completely different physical locations depending on its mode. If the memory manager uses this translation system, Bit(1) must be set low.
- Register Bit(2) Monitor Mode -In normal operation, when the CPU is executing from cache, the external address lines are held static to conserve power, and only coprocessor instructions and data are broadcast on the coprocessor data bus.

In the software selectable monitor mode, the internal addresses are always driven onto the external address bus, and all CPU instruction and data fetches (whether from cache or external memory) are broadcast on the coprocessor data bus; this allows full program tracing with a logic analyzer. To conserve power, monitor mode forces the VL86C020 to synchronize permanently to MCLK (even for cache apcesses).

PRELIMINARY

VL86C020

- Monitor mode is selected by setting Bit(2) high. Normal operation is achieved by setting Bit(2) low (the default on reset).
- Register Bits 31-3 Reserved -These bits are reserved for future expansion. When writing to register 2, bit 31-bit 3 should be set low to guarantee code compatibility with future versions of VL86C020." Reading from register 2 always returns zeros in bits 31-3.
- When the VL86C020 is reset, all three control bits are set low (cache off, separate user/supervisor space, monitor mode off).

Register 3: Cacheable Area (Read/ Write) - This is a 32-bit register that allows any of the 32, 2 Mbyte areas of the 64 Mbyte processor virtual address space to bo marked as cacheable:

and a straight and and an a straight

VLSI TECHNOLOGY, INC.

PRELIMINARY VL86C020

On a cache-miss, if the address is marked as cacheable, a line of data will be fetched from external memory and stored in the cache (when the cache is turned on). If the area is marked as non-cacheable, or the cache is turned off, only the requested byte/word of data will be read from external memory, and it will not be stored in the cache. This register is undefined at power-up, and must be correctly programmed before the cache is turned on. Rogister 4: Updatoable Areas (Read/ Write) - This is a 32-bit register that allows any of the 32, 2 Mbyte areas of the 64 Mbyte processor virtual address space to be marked as updateable:

Updateable Areas Register:

Bit 31=1 Bit 31=0	Data from addresses 3E00000H - 3FFFFFFH is updateable Data from addresses 3E00000H - 3FFFFFFH is NOT updateable
•	•
•	•
Bit 0=1	Data from addresses 0000000H - 01FFFFFH is updateable
Bit 0=0	Data from addresses 0000000H - 01FFFFFH is NOT updateable

Data stored in the cache from areas marked as updateable will be updated when the processor writes new data to that address. This register is undefined at power-up, and must be correctly programmed before the cache is turned on. Register 5: Disruptive Areas (Read/ Write) - This is a 32-bit register that allows any of the thirty-two, 2 Mbyte areas of the 64 Mbyte processor virtual address space to be marked as disruptive: If the processor performs a write operation to an area marked as disruptive, the cache will automatically be flushed. This register is undefined at power-up, and must be correctly programmed before the cache is turned on.

Disruptive Areas Register:

Bit 31=1	Data from addresses 3E00000H - 3FFFFFFH is disruptive
Bit 31=1	Data from addresses 3E00000H - 3FFFFFFH is NOT disruptive
	•
•	•
Bit 0=1	Data from addresses 0000000H - 01FFFFFH is disruptive
Bit 0=0	Data from addresses 0000000H - 01FFFFFH is NOT disruptive

FIGURE 23, VL85C020 MEMORY TIMING

Cacheable Areas Register: Bit 31=1 Data from addresses 3E00000H - 3FFFFFFH is cacheable Bit 31=0 Data from addresses 3E00000H - 3FFFFFFH is NOT cacheable Bit 0=1 Data from addresses 0000000H - 01FFFFFH is cacheable Bit 0=0 Data from addresses 0000000H - 01FFFFFFH is NOT cacheable

MEMORY INTERFACE

The VL86C020 reads instructions and data from, and writes data to, its main memory via a 32-bit data bus. A separate 26-bit address bus specifies the memory location to be used for the transfer, and a 7-bit control bus gives information about the type of transfer (including direction, byte or word quantity and processor mode).

CYCLE TYPES

The memory interface timing is controlled by the memory clock input, MCLK. Each memory cycle (defined as the period between consecutive falling edges of MCLK) may be either active or latent.

- Active cycles (A-cycles) involve the transfer of data between CPU and memory. The address, control and (for write operations) data buses are valid, and the CPU monitors the ABORT input to check that the current operation is valid.
 - Where more than one word of data is to be transferred, consecutive active cycles are used; in this case, each successive transfer will be to/ from an address one word after the previous one. At the end of a multiple transfer, when the CPU wishes to access an address which is unrelated to the one used in the precoding cycle, it will request a latent cycle.
- Latent cycles (L-cycles) are flagged when the CPU does not have to transfer any data to/from memory. Typically, this will be because the CPU is fatching data from the internal cache; the CPU must still be clocked with MCLK during latent cycles, since MCLK is used in the resynchronization process.
 - The address, control and (for write operations) data buses are all valid during the latent cycle preceding an active cycle; this allows the memory system to start the data transfer during the latent cycle as soon as the following active cycle is flagged (by –MREQ going low).

Active and latent cycles are flagged to the memory system using the -MREO output. The SEO output is the inverse of -MREO, and is provided to allow the VL86C020 to work with the current versions of MEMC. The states encoded by --MREQ and SEQ correspond to the internal and sequential cycles used by the VL86C010 processor, and are shown in the following table.

-MREQ	SEQ	Cycle Type
0	0	(Unused)
0	1	Active
1	0	Latent
1	1	(Unused)

The memory interface has been designed to facilitate the use of DRAM page-mode to allow rapid access to sequential data. Figure 23 shows how the DRAM timing might be arranged to allow the CPU to access two consecutive words of memory.

The address and control signals change when MCLK is high, and apply to the following cycle. Both the address and control buses are valid during the Lcycle preceding the first A-cycle, so the memory system can start the DRAM access by driving --RAS low once the Acycle has been flagged (by --MREQ being low on the rising edge of MCLK). Since -MREQ remains low during the first A-cycle, the memory system knows that the next cycle will be an access to the consecutive word of memory, and so may leave -- RAS low and fetch the next word from the same page of DRAM. Note that the memory system must check that the consecutive access will be in the same page of DRAM before committing to a page-mode access; if it is not, the memory system must stop the CPU while the new row address is strobed into the DRAM.

The end of the consecutive accesses is denoted when an L-cycle is flagged (by -MREQ being high on the rising edge of MCLK).

When interfacing the VL86C020 to static RAM, L-cycles may be ignored, and RAM accessed only when A-cycles are flagged. The address bus timing may have to be modified (see section on Address timing).

DATA TRANSFER The direction of data transfer is determined by the state of -R/W.

When --R/W is low, the CPU is reading data from memory, and the appropriate data must be setup on the data bus before the falling edge of MCLK in the active cycle.

VL86C020

PRELIMINARY

When --R/W is high, the CPU is writing data to memory. The data bus becomes valid during the first half of the Lcycle preceding the A-cycle, and remains valid until the A-cycle has completed. In consecutive write operations, the data bus changes during the first half of each A-cycle.

In systems where the VL86C020 is not the only device using the data bus, DBE must be driven low when the CPU is not the bus master. This will prevent the CPU from driving data onto the bus unexpectedly during L-cycles.

BYTE ADDRESSING

The processor addross bus provides byte addresses, but instructions are always words (where a word is four bytes) and data quantifies are usually words. Single data transfers (LDR,STR,SWP) can, however, specify that a byte quantity is required. The -BAW control line is used to request a byte from the memory system; normally it is high, signifying a request for a word quantity, but it goes low when the addresses change to request a byte transfer.

When a byte is requested in a read transfer, the memory system can safely ignore the fact that the request is for a byte quantity and present the whole word. The CPU will perform the byte extraction internally. Alternatively, the memory system may activate only the addressed byte of the memory. (This may be desirable in order to save power, or to enable the use of a common decoding system for both read and write cycles.)

If a byte write is requested, the CPU will broadcast the byte value across the data bus, presenting it at each byte location within the word. The memory, system must decode address bits Al-A0 to determine which byte is to be written.

One way of implementing the byte decode in a DRAM system is to separate the 32-bit wide block of DRAM into four byte wide banks, and generally

FIGURE 24. BYTE ADDRESSING

PRELIMINARY

the column address strobes independently. (See Figure 24.)

-CASO drives the DRAM bank which is connected to D7-D0, -CAS1 drives the bank connected to D15-D8, and so on. This has the added advantage of reducing the toad on each column strobe driver, which improves the precision of this time critical signal.

LOCKED OPERATIONS

The VL86C020 includes a data swap (SWP) instruction that allows the contents of a memory location to be swapped with the contents of a processor register. This instruction is implemented as an uninterruptable pair of accesses as shown in Figure 25; the first access reads the contents of the memory, and the second writes the register data to the memory. These accesses must be treated as a contiguous operation by the memory manager to prevent another device from changing the affected memory location before the swap is completed. The CPU drives the LOCK signal high for the duration of the swap operation to warn the memory manager not to give the memory to another device.

FIGURE 25. DATA SWAP OPERATION

FIGURE 26. LINE FETCH OPERATION

LINE FETCH OPERATIONS

A line fetch operation involves reading exactly four words of data from the memory system into the on-chip cache. The access always starts on a quadword aligned address (i.e. xx..x0H. xx.,x4H or xx.,xCH), and consists of one L-cycle followed by four consecutive A-cycles as shown in Figure 26. Line fetch operations may only be aborted during the first access (to address xx..x0H); it is assumed that if the first word of a line is readable, the whole line is readable. The VL86C020 signals a line fetch by driving LINE high for the duration of the five cycle operation.

ADDRESS TIMING

Normally the processor address changes when MCLK is high to the value which the memory system should use during the following cycle. This gives maximum time for driving the address to large memory arrays, and for address translation where required. Dynamic memories usually latch the address on chip, and if the latch is timed correctly, they will work even though the address changes before the access has completed. Static RAMs and ROMs will not work under such circumstances, as they require the address transition must be delayed until

MCLK goes low. An on chip address latch, controlled by ALE, allows the address timing to be modified in this way.

In a system with a mixture of dynamic and static memories (which for these purposes means a mixture of devices with and without address latches), the use of ALE may change dynamically from one cycle to the next, at the discretion of the memory system.

VIRTUAL MEMORY SYSTEMS

The CPU is capable of running a virtual memory system, and the address bus may be processed by an address translation unit before being presented to the memory. The ABORT input to the processor is used by the memory manager to inform the processor of addressing faults.

The minimum page size allowed by the VL86C020 is four words (the length of a cache line). Various page protection levels can be suported using the VL86C020 control signals:

- - -R/W can be used by the memory manager to protect pages from baing written to.
- -TRANS indicates whether the processor is in a user or non-user mode, and may be used to protect

system pages from the user, or to support completely separate mappings for the system and the user. In the latter case, the T bit h LDR and STR instructions can be used to offer the supervisor the user's view of the memory.

-M1-M0 can present the memory manager with full information on the processor mode.

The cache control register must be programmed to implement the appropriate cache consistency mechanism depending on whether the memory manager uses a shared or separate user/non-user translation system (see) Cache Operation Section).

STRETCHING ACCESS TIMES All memory timing is defined by MCLK and long access times can be accom modated by stretching this clock. It is usual to stretch the low period of MCL as this allows the memory manager (2) abort the operation if the access is eventually unsuccessful (ABORT make be setup to the rising edge of MCUKIN A-cycles).

Either MCLK can be stretched before is applied to the CPU, or the -WAIT input can be used together with a tree running MCLK. Taking -WAIT IN

the same effect as stretching the low ceriod of MCLK, and -WAIT must only change when MCLK is low.

The VL86C020 contains dynamic logic. and relies upon regular clocking to maintain its internal state. For this reason, a limit is set upon the maximum ceriod for which MCLK may be stretched, or -WAIT held low (see AC parameters).

COPROCESSOR INTERFACE The functionality of the CPU instruction set may be extended by the addition of up to 15 external coprocessors. When a particular coprocessor is not present. instructions intended for it will trap, and suitable software may be installed to emulate its functions. Adding the relevant coprocessor hardware will then increase the system performance in a software compatible way.

Interface Signals - The coprocessor interface timing is specified by CPCLK. a clock generated by the VL86C020. CPCLK is derived from either MCLK or FCLK depending on whether the CPU is accessing external memory or the cache; the coprocessors must, therefore, be able to operate at FCLK speeds. A coprocessor cycle is defined to be the period between consecutive falling edges of CPCLK. Three

ROURE 27. COPROCESSOR DATA OPERATION

dedicated signals control the coprocessor interface, coprocessor instruction (-CPI), coprocessor absent (CPA) and coprocessor busy (CPB).

Coprocessor Present/Absent - The

CPU takes -CPI low whenever it starts to execute a coprocessor (or undefined) instruction (this will not happen if the instruction fails to be executed because of the condition codes). Each coprocessor will have a copy of the instruction, and can inspect the CP# field to see which coprocessor it is for. Every coprocessor in a system must have a unique number, and if that number matches the contents of the CP# field, the coprocessor should pull the CPA (coprocessor absent) line low, If no coprocessor has a number which matches the CP# field, CPA will float high, and the CPU will take the undefined instruction trap. Otherwise, the VL86C020 observes the CPA line going low, and waits until the coprocessor flags that it is not busy (using CPB).

Busy-Walting - If CPA goes low, the CPU will watch the CPB (coprocessor busy) line. Only the coprocessor which is pulling CPA low is allowed to drive CPB low, and it should do so when it is ready to complete the instruction. The VL86C020 will busy-wait while CPB is high, unless an enabled interrupt

PRELIMINARY VL86C020

occurs, in which case it will break off from the coprocessor handshake to process the interrupt. Normally the CPU will return from processing the interrupt to retry the coprocessor instruction

When CPB goes low, the instruction continues to completion; in the case of register transfer or data transfer instructions, this will involve data transfers taking place along the coprocessor data bus (CPD31-CPD0) between the coprocessor and CPU. Data operations do not transfer any data, and complete as soon as the coprocessor ceases to be busy.

All three interface signals are sampled by both CPU and the coprocessor(s) on the rising edge of CPCLK. If all three are low, the instruction is committed to execution, and where transfors are involved they will start in the next CPCLK cycle. If -CPI has gone high after being low, and before the instruction is committed, the VL86C020 has broken off from the busy-wait state to service an interrupt. The instruction may be restarted later, but other coprocessor instructions may come sooner, and the instruction should be discarded. An external pull-up resistor is normally required on both CPA and

Pipeline Following - In order to respond correctly when a coprocessor instruction arises, each coprocessor must have a copy of the instruction. This is achieved by having each coprocessor maintain a copy of the processor's instruction pipeline. If -OPC is low when CPCLK is low, then the CPU will broadcast a processor instruction that cycle. The coprocessors should latch the instruction off CPD31-CPD0 at the end of the cycle (as CPCLK falls) and clock it into their instruction pipelines.

To reduce the number of transitions on CPD31-CPD0, the VL86C020 inspects the instruction stream and replaces all non coprocessor instructions with **&FFFFFFFF** (which still decodes as a non coprocessor instruction); all corrocessor instructions are broadcast unstiered.

This scheme is disabled when monitor mode is solected, and all CPU instructions and data fetches are broadcast unattered (see Cache OperationSection).

DATA TRANSFER CYCLES - Once the coprocessor has gone no-busy in a data transfer instruction, it must supply or accept data at the VL86C020 bus rate (delined by CPCLK). The direction of transfer is defined by the L bit in the instruction being executed. The coprocessor is responsible for determining the number of words to be transferred; VL86C020 will continue to increment the address by one word per transfer until the coprocessor tells it to stop. The termination condition is

VLSI TECHNOLOGY, INC.

indicated by the coprocessor releasing CPA and CPB to float high.

The data being transferred to/from memory is pipelined by one cycle within the CPU. In the case of a coprocessor bad from memory, this means that the CPU is one word ahead of the corocessor, and always fetches one extra word of data. This extra fetch will not adversely affect the CPU or the coprecessor, but may cause unexpected faults in the memory system (e.g. if the extra fetch accesses a readsensitive peripheral).

There is no limit in principle to the number of words which one coprocessor data transfer can move, but by convention no coprocessor should allow more than 16 words in one instruction. More than this would worsen the worst case CPU interrupt latency, since the instruction is not interruptable once the transfers have commenced. At 16 words, this instruction is comparable with a block transfer of 16 registers, and therefore does not affect the worst case

PRELIMINARY VL86C020

REGISTER TRANSFER CYCLE Register transfer operations involve the transfer of a single word between the CPU and the appropriate coprocessor along CPD31-CPD0. The transfer takes place in the cycle after the one in which the CPU and the coprocessor committed to the instruction.

PRIVILEGED INSTRUCTIONS The coprocessor may restrict certain Instructions for use in a privileged (nonuser) mode only. To do this, the coprocessor may use the CPSPV

ROURE 31. COPROCESSOR REGISTER TRANSFER (STORE TO COPROCESSOR)

latency.

output of the VL86C020; this signal is valid while CPCLK is low, and applies to the instruction being broadcast during that cycle. When CPSPV is high, the broadcast instruction is privileged.

As an example of the use of this facility, consider the case of a floating point coprocessor (FPU) in a multi-tasking system. The operating system could save all the floating point registers on every task switch, but this is inefficient in a typical system where only one or two tasks will use floating point operations. Instead, there could be a privileged instruction which turns the FPU on or off. When a task switch happens, the operating system can turn the FPU off without saving its registers. If the new task attempts an FPU operation, the FPU will appear to be absent, causing an undefined instruction trap. The operating system will then realize that the new task requires the FPU, so it will re-enable it and save FPU registers. The task can then use the FPU as normal. If, however, the new task never attempts an FPU operation (as will be the case for most tasks), the state saving overhead will have been avoided.

REPEATABILITY

A consequence of the implementation of the coprocessor interface, with the interruptable busy-wait state, is that all instructions may be interrupted at any point up to the time when the coprocessor goes not-busy. If so interrupted, the instruction will normally be restarted from the beginning after the interrupt has been processed. It is, therefore, essential that any action taken by the coprecessor before it goes not-busy must be repeatable, i.e. must be repeatable with identical results.

For example, consider a FIX operation in a floating point coprocessor which returns the integer result to a CPU register. The coprocessor must stay busy while it performs the floating point to fixed point conversion, as the CPU will expect to receive the integer value on the cycle immediately following that where it goes not-busy. The coprocessor must, therefore, preserve the original floating point value and not corrupt it during the conversion because it will be required again if an interrupt occurred during the busy period.

The coprocessor data operation class of instruction is not generally subject to repeatablity considerations, as the processing activity can take place after the coprocessor goes not-busy. There is no need for the CPU to be held up until the result is generated, because the result is confined to stay within the coprocessor.

UNDEFINED INSTRUCTION

The undefined instruction is treated by the CPU as a coprocessor instruction. All coprocessors must be absent (i.e. let CPA float high) when the undefined instruction is presented. The CPU will then take the undefined instruction tran Note that the coprocessor need only look at bit 27 of the instruction to differentiate the undefined instruction (which has 0 in bit 27) from coprocessor instructions (which all have 1 in bit 27)

VL86C020 INSTRUCTION CYCLES

This section shows the cycles performed by the VL86C020's CPU and coprocessor for all possible instructions. Each class of instruction is taken in turn, and its operation is broken down into constituent cycles.

swap instructions allow byte quantities to be specified; this is indicated by the symbol "(B/W)" in the type column.

The coprocessor register transfer 3. instruction may either transfer data into ("I") or out from ("O") the CPU.

The address and data columns show the contents of VL86C020's internal address and data busses. Note that in normal mode, the internal data bus cannot be observed directly, and the address bus is only observable when the CPU is synchronized to MCLK.

The -OPC, CPD31-CPD0, -CPI, CPA and CPB columns (where shown) indicate the state of the external coprocessor interface. Note that in normal mode CPD31-CPD0 only

de Cl	PD31-CF	D0 only		Ponorinin	on in the fin ng a prefetc i prefetch is	h france at	
	Cycle	OPRTN	Туре	Address	Data	-OPC	
1		Read		PC+8	(PC+8)	-OPC	CPD31-CPD0
	2	Read	N	ALU	(ALU)	0	
	з	Read	S	ALU+4			(PC+8)
		Read	S		(ALU+4)	0	(ALU)
		- Totala	3	ALU+8		0	(ALU+4)

PRELIMINARY VL86C020

since by the time the decision to take the branch has been reached it is already too late to prevent the prefetch.

During the second cycle a fetch is performed from the branch destination, and the return address is stored in register 14 if the link bit is set. The first cycle's prefetch data is broadcast on the external coprocessor data bus (there is a one cycle delay between the coprocessor and CPU).

The third cycle performs a fetch from the destination +4, refilling the instruction pipeline, and if the branch is with link, R14 is modified (4 is subtracted from it) to simplify return from SUB PC<R14,#4 to MOV PC,R14. This makes the STM .. [R14] LDM .. [PC] type of subroutine work correctly.

EXPLANATION OF INSTRUCTION TABLES Example:

Cycle	OPRTN	Туре	Address Data	-OPC	CPD31-CPD0	-CPI	CPA	CPB
1	Read		PC+8 (PC+8)			1	×	×
2	Intal	-	PC+8 -	0	(PC+8)	0	0	0
3	Intal	-	< = not clocked =	> 1	DI (1)	1	1	1
4	Write	N	ALU DI(1)	<= 0	ot clocked =>			
	Read	N	PC+12	1	-	1\)		

Each row in the table represents a single CPU or coprocessor cycle. The cycles which constitute the instruction are numbered from 1 to n.

C

The OPRTN column shows the CPU operation being performed in each cycle. There are four types of CPU operation as follows:

- 1. Read: A CPU read operation; the data will be read from the cache if it is present, otherwise an external read or line fetch operation will be necessary.
- 2. Write: A CPU write operation; VLB6C020 always writes data immediately to the main memory.
- 3. Intril: An internal operation where the CPU is not transferring data.
- 4. Trnsf: A coprocessor register transfer where data passes between the CPU and a coproces-

The type column gives extra information about the type of operation being performed:

1. Read and write operations may be one of two types, Sequential ('S') or Non-sequential ("N"). A sequential access involves the CPU transferring data with an address that is one word after the preceding access. A nonsequential access is flagged when the current CPU address is unrelated to the one used in the preceding access.

2. Read and write operations normally work on word quantities. but the single data load, store and

broadcasts coprocessor instructions

and data (see section Pipeline Follow-

ing). By selecting monitor mode, the

A25-A0, and all data will be broadcast

The final, un-numbered operation in an

instruction shows what will happen in

Note that the first cycle of an instruction

the first cycle of the next instruction.

is always an instruction fetch (word

read operation), but may be either an

N-type or S-type read depending on the

Branch and Branch with Link - A branch

on CPD31-CPD0.

previous instruction.

INSTRUCTION TABLES

instruction calculates the branch

destination in the first cycle, while

internal address bus can be viewed on

(PC is the address of the branch instruction, ALU is an address calculated by the CPU, (ALU) is the contents of the address,

Data Operations - A data operation executes in a single datapath cycle except where the shift is determined by the contents of a register. A register is read onto the A bus, and a second register or the immediate field onto the Bbus. The ALU combines the A bus source and the shifted B bus source according to the operation specified in the instruction, and the result (when required) is written to the destination register. (Compares and tests do not

produce results, only the ALU status

lags are affected.)

An instruction prefetch occurs at the same time as the above operation, and the program counter is incremented.

When the shift length is specified by a register, an additional datapath cycle occurs before the above operation to copy the bottom 8 bits of that register into a holding latch in the barrel shifter. The instruction prefetch will occur during this first cycle, and the operation cycle will be internal (i.e. will not perform a data transfer).

The PC may be any (or all!) of the register operands. When read onto the A bus it appears without the PSR bits, on the B bus it appears with them. Neither will affect external bus activitiy. When it is the destination, however, the contents of the instruction pipeline are invalidated, and the address for the next instruction prefetch is taken from the ALU rather than the address incrementer. The instruction pipeline is refilled before any further execution takes place, and during this time exceptions are locked out.

prevented.

overwritten.

When the PC is in the list of registers to

be loaded, and assuming that no abort

takes place, the current instruction

Note that the PC is always the last

point will prevent the PC from being

register to be loaded, so an abort at any

pipeline must be invalidated.

Store Multiple Registera - Store multiple proceeds very much as load as next section), without the

no wholesale overwriting of registers to final cycle. The restart problem is much contend with. more straightforward here, as there is

multiple (see r				Address	Data	-OPC	CPD31-CPD0
1 Register	Cycle 1 2	OPRTN Read Write Read	Type N N	PC+8 ALU PC+12	(PC+8) R(A)	0 1	(PC+8) R(A)
n Registers (n>1)	1 2 3 • n+1	Read Write Write Write Read	NS. SN	PC+8 ALU ALU+4 ALU+. PC+12	(PC+8) R(A) R(A+1) • R(A+n)	0 1 1 1	(PC+8) R(A) • R(A+n-1) R(A+n)
					a third cycle is	repeated	if the PC is the base, write back is

Load Multiple Registers - The first cycle of LDM is used to calculate the address of the first word to be transferred, while performing a prefetch. The second cycle fetches the first word, and performs the base modifications. During the third cycle, the first word is moved to the appropriate destination register while the second word is tetched, and the modification base is moved to the ALU A bus input latch for holding in case it is needed to patch up after abort. The third cycle is repeated for subsequent fetches until the last data word has been accessed, then the final (internal) cycle moves the last word to its destination register.

If an abort occurs, the instruction continues to completion, but all register writing after the abort is prevented. The final cycle is altered to restore the modified base register (which may have been overwritten by the load activity before the abort occurred).

nowing	Cuelo	OPRTN	Туре	Address	Data	-OPC	CPD31-CPD0
1 Register	Cycle 1 2 3	Read Read Intnl Read	N - N	PC+8 ALU PC+12 PC+12	(PC+8) (ALU) _	0 1 1	(PC+8) (ALU) —
1 Register DEST-PC	1 2 3 4 5	Read Read Intni Read Read Read	N N - N S S	PC+8 ALU PC+12 PC' PC'+4 PC'+8	(PC+8) PC (PC') (PC'+4) (PC'+8)	0 1 1 0 0	(PC+8) PC _ (PC') (PC'+8)
n Registers (n>1)	1 2 • n+1 n+2	Read Read Read Read Intni Read	N S S - N	PC+8 ALU ALU+. ALU+. PC+12 PC+12	(PC+8) (ALU) (ALU+.) (ALU+.) –	0 1 1 1	(PC+8) (ALU) (ALU+.) (ALU+.) –
n Registers (n>1) incl. PC	1 2 • n+1 n+2 n+3 n+4	Read Read Read Intnl Read	N S S - N S S	PC+8 ALU ALU+. ALU+. PC+12 PC PC+4 PC+8	(PC+8) (ALU) (ALU+.) PC (PC) (PC'+4) (PC'+8)	0 1 1 1 1 0 0	(PC+8) (ALU) (ALU+.) PC' - (PC') (PC'+8)

PRELIMINARY VL86C020

Data Swap - This is similar to the load and store register instructions, but the actual swap takes place in cycles two and three. In the second cycle, the data is fetched from external memory (it is always read from the external memory, even if the data is available in the cache). In the third cycle, the contents of the source register are written out to the external memory. The data read in cycle two is written into the destination register during the fourth cycle.

The LOCK cutput of the VL86C020 is driven high for the duration of the swap operation (cycles two and three) to indicate that both cycles should be allowed to complete without interruption.

The data swapped may be a byte or word quantity (B/W).

The prefetch sequence will be changed If the PC is specified as the destination register.

When R15 is selected as the base, the PC is used together with the PSR. If any of the flags are set, or interrupts are disabled, the data swap will cause an

address exception. If all flags are clear, and interrupts are enabled (so the top six bits of the PSR are clear), the data will be swapped with an address eight bytes advanced from the swap instruction (PC+8), although the address will not be word aligned unless the processor is in user mode (as the M1 and M0 bits determine the byte address).

The swap operation may be aborted in either the read or write cycle, and in both cases the destination register will not be affected.

	Cycle	OPRTN	Туре	Lock	Address	Data	-OPC	CPD31-CPD0
Normal	1	Read		0	PC+8	(PC+8)		
	2	Read	N (B/W)	1	RN	(RN)	0	(PC+8)
	3	Write	N (B/W)	1	RN	R M	1	(RN)
	4	Intol	_` ·	0	PC+12	-	1	ŘM
		Read	N	0	PC+12		1	-
DEST=PC	1	Read		0	PC+8	(PC+8)		
	2	Read	N (B/W)	1	RN	PC'	0	(PC+8)
	3	Write	N (BAV)		RN	RM	1	PC'
	4	Intnl		0	PC+12	-	1	RM
	5	Read	N	0	PC'	(PC)	1	-
1 <u>1</u>	6	Read	S	0	PC'+4	(PC+4)	0	(PC)
		Read	S	0	PC'+8	• •	0	(PC+4)

Software Interrupt and Exception Entry - Exceptions (and software Interrupts) force the PC to a particular value and refill the instruction pipeline from there. During the first cycle the bred address is constructed, and the processor enters supervisor mode. The return address is moved to register 14.

During the second cycle the return address is modified to facilitate return, though this modification is less useful

than in the case of branch with link.
The third cycle is required only to complete the refilling of the instruction
olocline

Cycle	OPRTN	Туре	Mode	Address	Data	-OPC	CPD31-CPD0
1	Read			PC+8	(PC+8)		
2	Read	N	SPV	XN	(XN)	0	(PC+8)
3	Read	S	SPV	XN+4	(XN+4)	0	(XN)
	Read	S	SPV	XN+8		0	(XN+4)

For software interrupt PC is the address of the SWI instruction, for Interrupts and reset PC is the address d the instruction following the last one be executed before entering the

exception, for prefetch abort PC is the address of the aborting instruction, for data abort PC is the address of the instruction following the one which

attempted the aborted data transfer. Xn is the appropriate trap address.)

If the coprocessor can never do the The coprocessor interface normally **Coprocessor Data Operation - A** request task, it should leave CPA and operates one cycle behind the CPU to coprocessor data operation is a request CPB to float high. If it can do the task, allow time for the instructions to be from the CPU for the coprocessor to initiate some action. The action need but can't commit right now, it should pull broadcast. When the CPU starts not be completed for some time, but the CPA low but leave CPB high until it can executing a coprocessor instruction, it coprocessor must commit to doing it commit. The CPU will busy-wait until busy-waits for one cycle (Cycle 2) while before pulling CPB low. CPB goes low. the coprocessor catches up. CPD31-CPD0 Cycle OPRTN Туре Address Data -OPC ~CPI CPA CPB PC+8 (PC+8) Ready Read 1 1 x X (PC+8) 2 Intri PC+8 0 0 0 0 Ν Read PC+12 1 1 Not Ready Read PC+8 (PC+8) 1 1 x X 2 Intnl PC+8 0 (PC+8) 0 0 1 Intri -PC+8 0 0 1 1 Intri -PC+8 0 0 1 ۵ n Read N PC+12 1 1

Coprocessor Data Transfer - Here. the coprocessor should commit to the transfer only when it is ready to accept the data. When CPB goes low, the CPU will read the appropriate data and broadcast it to the coprocessor (if the data is read from the cache, it will be broadcast at FCLK rates). Note that the coprocessor is not clocked while the

data is broadcast to the coprocessor in the next cycle. During the data transfer, the VL86C020 operates one cycle ahead of the coprocessor, and so always fetches one word more than the coprocessor wants. This extra data is simply discarded.

CPU fetches the first word of data; the

The coprocessor is responsible for determining the number of words to be transferred, and indicates the last transfer cycle by allowing CPA and CPB to float high. The CPU spends the first cycle (and

any busy-wait cycles) generating the transfer address, and performs the wrea back of the address base during the transfer cycles.

	Cycle	OPRTN	Тура	Addres	s Data	-OPC	CPD31-CPD0	-CPI	CPA	CPB	et el en
1 Register	1	Read		PC+8	(PC+8)			1	x	x	ten ku
Ready	2	Intni	-	PC+8	· - ·	0	(PC+8)	0	0	0	
	3	Read	N	ALU	DO(1)	<= not	clocked = >		1	1	202
		Read	N	PC+12		1	DO(1)	1			
1 Register	1	Read		PC+B	(PC+8)			1	x	x	
Not Ready	2	Intol	-	PC+8	` _ `	0	(PC+8)	0	0	1	
-	•	Intri	-	PC+8	-	1	-	0	0	1	202
	n	Intri	-	PC+8	-	1	-	0	0	0	
	n+1	Read	N	ALU	DO(1)	<= not	clocked =>		1	1	
m Registers	1	Read		PC+8	(PC+8)			1	x	x	
(m>1)	2	Intni		PC+8	· _ ·	0	(PC+8)	0	0	0	-06 -
Ready	3	Read	Ν	ALU	DO(1)	< = not (colcked =>		0	Ó	
•	4	Read	S	ALU+4	DO(2)	1	DO(1)	1	0	Ō	
	•	•	•	•	•	•	•	•	•	•	
	m+3	Read	S	ALU+.	DO(m+1)	1	DO(m)	1	1	1	- 112
		Read	N	PC+12		1	DO(m+1)	1			

VLSI TECHNOLOGY, INC.

m Registe	ers	1 Bo	ad							<u>VL8</u>	<u>6C02</u>
(m>1)		2 Intr		PC+8	(PC+8)						
Not Rea		• Intr		PC+8	- '	0	(PC+	0 \	1	x	x
	ŕ	n Intr	-1	PC+8	-	1		~o)	0	0	Ö
		n+1 Rea		1 040	-	1			0	0	1
		n+2 Rea			DI(1)	<.	not clocked		0		0
	•	- nea	0	ALU+4	DI(2)	1	DI(1)		-	0 (0
	n	1+m+2 Rea	•	•	•	•	0(1)		1		õ
		Rea		ALU+.	DI(m+1)	1	DI(m)			•	
		1.04	ad N	PC+12	• •	i	Di(m) Di(m+			1 1	1
	·						B 1(11)+	-1)	1		
Coprocess Coprocess	sor Data	Transfer (fr emory) - Thi	rom	cycle behind data transfe	d the conr		1				
struction is	eimilar te	o the memory	s in-					the transfer	r while th		
000000330	Silling in The second	Ine memor	y to					A A A A A A A A A A A A A A A A A A A			
however, th		ansfer. In thi	is case,	CPU is halte	od for a ru		ce. The				
1000000, 80		2020 cperate	15 009		10 101 a vy.	CIO at the	start of				
	Cyc							writes the k	ast word	willio dig : of data to	CPU
	•		ГК Туре	Address	Data	-OPC	CPD 31-0	1000 00		JI Gata to r	memory.
1 Register	1	Read				-		PD0 -CP	I CPA	CPB	
Ready	2	Intol		PC+8 ((PC+8)						
-	3	intni	-	PC+8		0	(PC+8)	1	x	x	
	4	Write	-	< = not dr	locked =>	> 1	(PC+8) DI(1)	0	0	Ő	
	-	Read	N	ALU D	DI(1)		t clocked = ;	1	1	1	
		1.00	N	PC+12		1			1	1	
1 Register	1	Read		_		•	-	1			
Not Ready	2	intni		PC+8 (P	PC+8)			_			
-		intni	-	PC+8	- '	0	(PC+8)	1	x	x	
	n	intri	-	PC+8	-	1	(1040)	0	0	î	
	n+1	intni	-	PC+8	-	i	-	0	0	i	
	n+2	Write	-	<= not clo	ccked =>		DHAL	0	0	o o	
		Read	N	ALU DI	l(1)	•	DI(1)	1	1	ĩ	
		rieau	N	PC+12		1	clocked =>		1	i	
m Registers	1	Dead				•	-	1		•	
(m>1)	2	Read		PC+8 (PC	C+8)						
Ready	3	Intel	-	PC+8 -	-	0		1	x	x	
1	3	Intri	-	< = not cloc	kod	1	(PC+8)	0	õ	Ô	
	4	Write	N	ALU DI	1)	1	DI(1)	1	ō	0	
		•	•	• •	.,		DI(2)	1	ō	ŏ	
	m+2	Write	S	ALU+. Dite	m-1)	•	•	•	•	•	
	m+3	Write	S	ALU+, DIG	`	•	DI(m)	1	1	•	
		Read	N	PC+12		< = notcl 1	locked =>		i	1	
n Registors		- .			•	1	-	1	•	•	
(///))	1	Road		PC+8 (PC+	- 81						
Not Ready	2	Intni	-	PC+8		_		1	x		
not neady	•	Intol	-	PC+8 _	0		(PC+8)	ò	ô	X	
	n	Intni	-	PC+8 _	1	•	-	ŏ	ŏ	1	
	n+1	Intal	-	ro+b	1		-	ő	0	1	
	n+2	Write	N				DI(1)	1	0	0	
	•	•	•	ALU DI(1)) 1		DI(2)	1	-	0	
	m+n	Write	S				•		0	0	
	m+n+1	Write	<u> </u>	ALU+. DI(m-	• •		DI(m)	-	:	•	
		- ·		ALU+. DI(m)	/ </td <td>= not clos</td> <td>cked</td> <td>1</td> <td>1</td> <td>1</td> <td></td>	= not clos	cked	1	1	1	
			· · · ·	PC+12	1				1	1	

PRELIMINARY

vait cycles are	similar to	the previou	ĴS	the word in the third cy	to the destin	VL86C020 nation regi	3401	001	СРА	CPB
	Ouclo	OPRTN	Тура	Address	Data	-OPC	CPD31-CPD0	-CPI	UPA	
	Cyc!e	0,						1	x	×
		Read		PC+8	(PC+8)	_	(PC+8)	0	0	0
Ready	1		_	PC+8	-	0		1	1	1
•	2	Intol	-		clocked =	> 1	Di	•	1	1
	3	Intal	-	PC+12	้อเ	<= 8	ot clocked =>	1	1	1
	4	Tmsf	1	PC+12		1	-		•	
	5	Intol	-			1	-			
		Read	N	PC+12						x
					(00.0)			1	×	- î
	4	Read		PC+8	(PC+8)	0	(PC+8)	0	0	
Not Ready		Intal	-	PC+8	-		-	0	0	1
	2	tntnl	-	PC+8	-		_	0	0	0
	•	Intol	_	PC+8	-	1	DI	1	1	1
	n		_	< = 0	ot clocked	-> 1			1	1
	n+1	Intri	-	PC+1	2 DI	< = 1	not clocked =>	1	1	1
	n+2		•	PC+1		1	-	-	•	
	n+3	Intri	-			1	-	1		
		Read	N	PC+1	6					

Coprocessor Register Transfer

(Store to Coprocessor) - This instruction is similar to a single word coproces-

Read

sor data transfer.

		OPRTN	Туре	Address	Data	-OPC	CPD31-CPD0	-CPI	CPA	СРВ	14
Ready	Cycle 1 2 3	Read Intni Trnsf Read	- 0 N	PC+8 PC+8 PC+12 PC+12		0 <= n0 1	(PC+8) ot clocked = > DO	1 0 1	x 0 1	x 0 1	
Not Ready	1 2 • n n+1	Read Intnl Intnl Intnl Trnsf Read	- - - N	PC+8 PC+8 PC+8 PC+8 PC+12 PC+12		0 1 1 <= ⁿ 1	(PC+8) _ DO DO	1 0 0 1	x 0 0 1	1 1 0 1	

Undefined sor Absent	- Wheels C	0000003201		-11	erform, and t ed instruction or CPB. Th	ng, it musi i		high, causing the trap to be taken.	undefin	ed inst	ruction .
detects a C			Туре	Mode	Address	Data	-OPC	CPD31-CPD0	-CPI	CPA	CPB,
Ready	Cyclə 1 2 3 4	OPRTN Read Intel Read Read Read	- N S	SPV SPV SPV	PC+8 PC+8 Xn Xn+4 Xn+8	(PC+8) (Xn) (Xn+4)	0 0 0 0	(PC+8) (PC+8) (Xn) (Xn+4)	1 0 1 1	x 1 1 1	x 1 1 1

VLSI TECHNOLOGY, INC.

PRELIMINARY VL86C020

Unexecuted Instructions - Any instruction whose condition code is not met will fail to execute. It will add one cycle to the execution time of the code segment in which it is embedded.

Cycle	OPRTN	Туре	Address	Data	-OPC	CPD31-CPD0
1	Read Read	S		(PC+8) -	O	(PC+8)

Instruction Speeds - In order to determine the time taken to execute any given instruction, it is necessary to relate the CPU read, write, internal and transfer operations to F-cycles (FCLK cycles), L-cycles (Latent MCLK cycles) and A-cycles (Active MCLK cycles).

The relationship between the CPU operations and external clock cycles depends primarily upon whether the cache is turned off or on.

Cache Off - When the cache is turned off, CPU read and write cycles always access external memory. To avoid unnecessary synchronization delay VL86C020 remains synchronized to the external memory when the cache is turned off, so all operations are timed

Operation	Time
N-type Read	L+A
S-type Read	A
N-type Write	L+A
S-type Write	A

of CBI Logaration is an Ioliow

by MCLK. The time taken for each type

Transfer In L **Transfer Out** L Internal

Key:

L - Latent memory cycle period A - Active memory cycle period

Due to the pipelined architecture of the CPU, instructions overlap considerably. In a typical cycle one instruction may be using the datapath while the next is being decoded and the one after that is being fetched. For this reason the following table presents the incremental number of cycles required by an instruction, rather than the total number of cycles for which the instruction uses part of the processor. Elapsed time (in cycles) for a routine may be calculated from these figures.

Note: This table only applies when the cache is turned off.

if the condition is met the instructions take:

B,BL	1L+3A		
Data Processing	1A	+2L	for SHIFT(Rs)
		+1L+2A	if R15 written
MUL, MLA	(m+1) L + 1 A		
ldr	3L+2A	+2A	if R15 loaded/written back
STR	2L+2A	+2A	if R15 written-back
LDM	3 L + (n+1)A	+ 2 A	if R15 loaded
STM	2 L + (n+1)A		
SWP	4L+3A	+2A	if R15 loaded
SWI, trap	1L+3A		
CDO	(b+2) L + 1 A		
LDC	(b+3) L + (n+1)A	+1A	if (n>1)
STC	(b+4) L + (n+1)A		
MRC	(b+4) L + 1 A		
KCR	(b+3) L + 1 A		

his the number of words transferred.

ⁿ is the number of cycles required by the multiply algorithm, which is determined by the contents of Rs. Multiplicaton by any number between 2*(2m-3) and 2*(2m-1)-1 inclusive takes m cycles tor mol. Multiplication by zero or one

takes one cycle. The maximum value m can take is 16.

b is the number of cycles spent in the coprocessor busy-wait loop.

If the condition is not met all instructions take one A-cycle.

(A)

Cache On - When the cache is turned on, the CPU will synchronize to FCLK. and attempt to fetch instructions and data from the cache (using FCLK Fcycles). When the read data is not available, or the CPU performs a write operation, the VL86C020 resynchronizes to MCLK and accesses the external memory (using L & A-cycles). The CPU operations are dealt with as follows:

1. Read operations. The CPU will normally be able to read the relevant data from the cache, in which case the read will complete in a single F-cycle.

If the data is not present in the cache, but is cacheable, the CPU will synchronize to MCLK and perform a line fetch to read the appropriate line (four words) of data into the cache. The CPU will be clocked when the appropriate word is fetched, and subsequently during the line fetch if it is requesting S-type reads or internal operations.

If the data is not cacheable, the CPU will synchronize to MCLK and perform an external read. If the CPU requests S-type reads, the CPU will remain synchronized to MCLK and use A-cycles to read the appropriate data. The CPU only resynchronizes back to FCLK when the CPU stops requesting S-type reads.

Note that the swap instruction bypasses the cache, and always performs an external read to fetch the data from external memory.

- 2. Write operations, The VL86C020 synchronizes to MCLK and performs external writes. When the CPU stops requesting S-type writes, VL86C020 resynchronizes to FCLK.
- 3. Internal operation. These complete in a single F-cycle (although some are absorbed during line letches).
- 4. Transfer operation. These complete in a single F-cycle.

It is not possible to give a table of instruction speeds, as the time taken to execute a program depends on its

FIGURE 33. WORST-CASE VL86C020 TIMING FLOWCHART

Line Fetch Operation

off.

The CPU is clocked as soon as the requested word of data is available. The CPU will also be clocked if it subsequently requests S-type Read or Internal operations during the remainder of the line fetch.

interaction with the cache (which includes factors such as code position. previous cache state, etc.). In general, programs will execute much faster with the cache turned on than with it turned

To calculate the worst-case delay for a particular piece of code, the routine should be written out in terms of CPU cycles. Figure 33 can then be used to calculate the worst-case VL86C020 operation for each CPU cycle.

When using this technique, the follow ing conditions must be assumed:

1.1:

1.2:

2.1:

3.1:

41:

- 1. No instructions or data are present in the cache when VL86C020 starts executing the code.
- 2. A line fetch operation will oversite any data already present in the cache (i.e., the cache only has one line).
- 3. All synchronization cycles take maximum time.

PRELIMINARY VL86C020

EXAMPLE:

Consider the following piece of code:

; Asssume	ecode runs in a cachea	ble area of memory, and that
; Code, Ar	ea1 and Area2 are all q	uad-word aligned addresses.
Code MOV LDR LDMIA End	R0,Area1 R1,Area2 R7, R0,4 R1, {R8-R9)	R0 points to data in a cacheable area of memory R1 points to data in an uncacheable area of memory Read data from cacheable area into R7 Read data from uncacheable area into R8 and R9

Converting the code into CPU cycles gives;

		Cycle	OPR	TN Турө	Address	Data
Branc	h to Code	1.0 1.1 1.2	Read Read Read		PC+8 Code Code +4	(PC+8) (see Note) (Code) (Code+4)
MOV	R0,Area1	2.1	Read	S	Code+8	(Code+8)
MOV	R1,Area2	3.1	Read	S	Code+12	(Code+12)
LDR	R7,[R0,4]	4.1 4.2 4.3	Read Read Intni	S N 	Code+16 Area1+⊲ Code+20	(Code+16) (Area1+4)
LDMIA	RI, (R8-R9)	5.1 5.2 5.3 5.4	Road Road Road Intni	N N S	Code+20 Area2 Area2+4 Code+24	(Code+20) (Area2) (Area2+4)

Note: Cycle 1.0 is the last cycle before the routine is entered, and is not counted as part of the code.

Using the worst-case VL86C020 timing flowchart, the required CPU operations can be converted into CPU operations, and as-

CPU Operation	VL86C020 Operation	-
<wait> Road N (Code) Read S (Code+4) Read S (Code+8) Read S (Codo+12) <wait></wait></wait>	Synchronize to MCLK Line Fetch: (Code) (Code+4) (Code+8) (Code+12)	Time (F+2L) (L+A) (A) (A) (A)
Read S (Code+16) <waits <waits <waits< td=""><td>Synchronize to MCLK Line Fetch: (Code+16) (Code+20) (Code+24) (Code+28)</td><td>(F+2L) (L+A) (A) (A) (A)</td></waits<></waits </waits 	Synchronize to MCLK Line Fetch: (Code+16) (Code+20) (Code+24) (Code+28)	(F+2L) (L+A) (A) (A) (A)

4.2: 4.3:	<wait> Read N (Area1+4) Int∩l <wait></wait></wait>	Line Fetch:	(Area1) (Area1+4) (Area1+8) (Area1+12)	(L+A) (A) (A) (A)
5.1:	<wait> Read N (Code+20) <wait> <wait></wait></wait></wait>	Line Fetch:	(Code+16) (Code+20) (Code+24) (Code+28)	(L+A) (A) (A) (A)
5.2: 5.3:	Read N (Area2) Read N (Area2+4)	Extnl Accs Extnl Accs	(Area2) (Area2+4)	(L+A) (A)
5.4;	<wait> Intnl</wait>	Synchronize Internal Ope		(F) (F)

Adding together the execution times taken for each of the VL86C020 operations gives a worst-case elapsed time for the code:

Maximum execution time = 4 F-cycles + 9 L-cycles + 18 A-cycles

Assuming that MCLK and FCLK both run at 8 MHz:

Maximum execution time = 31*125 ns = 3.875 µs.

COMPATIBILITY WITH EXISTING ARM SYSTEMS

Compatibility with VL86C010 -The VL86C020 has been designed to be code compatible with the VL86C010 processor. The external memory and coprocessor interfaces are also designed to be usable with existing memory systems and coprocessors. The detailed changes are;

Software changes

- VL86C020 now contains a single data swap (SWP) instruction. This takes the place of one of the undefined instructions in VL86C010.
- VL86C020 has a 4 Kbyte mixed instruction and data cache on-chip. This cache should be transparent to most existing programs, although some system software (particularly that dealing with memory management) could be modified slightly to make more efficient use of the cache (see Cache Operation Section).
- VL86C020 contains a set of control registers that govern operation of the on-chip cache (see Cache Operation Section). These registers must be programmed after VL86C020 is reset in order to enable the cache.

- 4. The internal timing associated with mode changes has been improved on VL86C020, and a banked register may now be accessed immediately after a mode change (see Data Processing/Writing to R15). However, for compatibility with VL86C010, it is recommended that the earlier restrictions are observed.
- The implementation of the CDO instruction on VL86C010 causes a software interrupt (SWI) to take the undefined instruction trap if the SWI was the next instruction after the CDO. This is no longer the case on VL86C020 but the sequence
- CDO
- SWI

should be avoided for program compatibility.

- Hardware changes
- VL86C020 is packaged in a 160pin quad flatpack; VL86C010 uses an 84-pin plastic leaded chip carrier (PLCC) package.
- VL86C020 does not require nonoverlapping clocks for timing memory accesses. When using VL86C020 with MEMC, the PH2

clock output of MEMC should be connected to the MCLK input of VL86C020; the PH1 clock output of MEMC is not used.

- VL86C020 requires a free-running CMOS-level clock input (FCLK) to time cache accesses and internal operations. FCLK is entirely independent of MCLK.
- VL86C020 includes two new control signals, LINE and LOCK. These warn of cache line fetch operations and locked swap (SWP) operations respectively.
- The -TRANS and -M1, -M0 outputs on VL86C010 could change in either (PH2) clock phase. In VL86C020, these outputs only ever change when MCLK is high.
- The coprocessor interface remains the same, but now operates independently of the external memory using a dedicated bus (CPD31-CPD0). Coprocessors must be able to operate at cache speeds (determined by FCLK).
- The -OPC cutput of VL86C020 now applies exclusively to the coprocessor interface, and should not be used in the memory interface.

- VL86C020 includes pull-up resistors on various control inputs (see Coprocessor Interface Section).
- To facilitate board level testing, all outputs on VL86C020 can be put into a high impedance state by using the appropriate enable controls (see Coprocessor Interface Section).

PRELIMINARY VL86C020

Compatibility with MEMC (VL88C110) The memory interface on VL86C020 is compatible with that used for VL86C010 and the existing MEMC memory controller is suitable. Figure 33 shows how VL86C020 may be connected to MEMC.

FIGURE 33. CONNECTING VL86C020 TO VL86C110 (MEMC)

TEST CONDITIONS

The AC timing diagrams presented in this section assume that the outputs of VL86C020 have been loaded with the capacitive loads shown in the "Test Load" column of Table 4; these loads have been chosen as typical of the system in which the CPU might be employed.

The output pads of the VL86C020 are CMOS drivers which exhibit a propagation delay that increases linearly with

the increase in load capacitance. An "output derating" figure is given for each output pad, showing the approximate increase in load capacitance necessary to increase the total output time by one nanosecond.

TABLE 4: AC TEST LOADS

TABLE 4: AC	Test Load (pF)	Output Derating (pF/ns)
Output Signal		8
-MREQ	50	
SEQ	50	8
	50	8
B/W	50	8
LINE	50	в
LOCK		8
-M0, -M1	50	8
-RW	50	
_TRANS	50	8
	50	8
A0-A25	100	8
D0-D31		8
CPCLK	30	
CPSPV	30	
	30	8
	30	8
-OPC	30	8
CPD0-CPD31		

General note on AC parameters:

 Output times are to CMOS levels except for the memory and coprocessor data buses (D31-D0 and CPD31-CPD-0), which are to TTL levels.

PRELIMINAR VL86C020

AC CHARACTERISTICS: TA = 0°C to +70°C, VDD = 5 V ±5%

Symbol	Parameter	Min	Max	Unit	Conditions
tWS	-WAIT Setup to MCLK High	15		ns	
tWH	-WAIT Held from MCLK High	5		ns	
WAIT1	-WAIT Low Time		10000	ns	
tABE	Address Bus Enable		30	ns	
IABZ	Address Bus Disable		25	nş	
IALE	Address Latch Open		12_	<u>ns</u>	
tALEL	ALE Low Time		10000	<u>ns</u>	Note
ADDR	MCLK High to Address Valid		55	ns	
tAH	Address Hold Time	5		ns	
DBE	Data Bus Enable		35	ns	(TTL Level)
tDBZ	Data Bus Disable		25	ns	
DOUT	Data Out Delay		30	ns	(TTL Level)
1DOH	Data Out Hold	5		ns	
tDE	MCLK Low to Data Enable		45	ns	(TTL Lavel)
IDZ	MCLK Low to Data Disable		40	ns	
DIS	Data in Setup	8		ns	
IDIH	Data in Hold	8		<u>ns</u>	
ABTS	ABORT Setup Time	40		ns	
ABTH	ABORT Hold Time	5		ns	
IMSE	-MREQ and SEQ Enable		_20	ns	
tMSZ	-MREQ and SEQ Disable		_15	NS	
MSD	MCLK Low to -MREQ and SEQ		55	ns_	
tMSH	-MREQ and SEQ Hold Time	5		 	
tCBE	Centrel Bus Enable		20	ns	
tCBZ	Control Bus Disable		15	ńs	
IRWD	MCLK High toR/W Valid			ňs_	
RWH	-R/W Hold Time	_5		ns	
tELD	MCLK High to -B/W and LOCK		_30	ns	
BLH	-B/W and LOCK Hold	5		ns	
<u>UND</u>	MCLK High to LINE Valid		50	ns	
<u>tlnh</u>	LINE Hold Time	5		ńs	
MDD	MCLK High to -TRANS/-M1, -MO		30	ńs	
MOH	-TRANS/-M1, -M0 Hold	5		ns	

Note: To avoid A25-A0 changing when MCLK is high, ALE must be driven low within 5 ns of the rising edge of MCLK.

AC CHARACTERISTICS FOR COPROCESSOR INTERFACE:

Symbol	Parameter	Min	Max	Unit	Conditions
ICPCKL	Clock Low Time		10000		Note 1
ICPCKH	Clock High Time		10000	ns	
TOPCD	CPCLK High to -OPC Valid		15	<u>ns</u>	
TOPCH	-OPC Hold Time	5		ns	
ISPD	CPCLK High to CPSPV Valid		15	ns	
ISPH	CPSPV Hold Time	5		<u>ns</u>	
ICPI	CPCLK High to -CPI Valid		15	<u></u>	
tCPIH	-CPI Hold Time	5		กร	
ICPS	CPA/CPB Setup	45		ńs	
tCPH	CPA/CPB Hold	_5		ns	
ICPDE	Data Out Enable		10	ns	Note 2, 3
1CPDOH	Data Out Hold	10		ns	
ICPDBZ	Data Out Disable		5	_ns	
tCPDS	Data In Setup	10		ns	
1CPDH	Data in Hold	5			
tCPE	Coprocessor Bus Enable		30	ns	
ICPZ	Coprocessor Bus Disable		30	ns	

Notes: 1. CPCLK timings measured between clock edges at 50% of VDD. 2. CPD31-CPD0 outputs are specified to TTL levels.

3. The data from VL86C020 is always valid when enabled onto CPD31-CPD0.

4. These timings allow for a skew of 30 pF between capacitive loadings on the coprocessor bus outputs (CPCLK, -OPC, CPSPV, --CPI, CPD31-CPD0).

AC CHARACTERISTICS FOR CLOCKS:

Symbol	Parameter	MIn	Max	Unit	Conditions
	Memory Clock Period	80	L	ns	Note
	Memory Clock Low Time	25		ns	
IMCLKH	Memory Clock High Time	25		ns	
FCLK	Processor Clock Period	50		ns	
FCLKL	Processor Clock Low Time	23		ns	
FCLKH	Processor Clock High Time	23		ns	

PRELIMINARY VL86C020

FIGURE 34. MEMORY INTERFACE TIMING

FIGURE 36. FCLK INTERFACE TIMING

PRELIMINARY VL86C020

ABSOLUTE MAXIMUM RATINGS

Ambient Operating	3
remperature	-10°C to +80°C
Storage Temperat	ure -65°C to +150°C
Supply Voltage to Ground Potential	-0.5 V to VDD +0.3 V
Applied Output /oltage	-0.5 V to VDD +0.3 V
Applied Input /ottage	–0.5 V to +7,0 V
Power Dissipation	2.0 W

Stresses above those listed may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in this data sheet is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS: TA = 0°C to +70°C, VDD = 5 V ±5%

Symbol	Parameter	Min	Тур	Max	Units	Conditions
VDD	Supply Voltage	4.75	5.0	5.25	v	
VIHC	IC Input High Voltage	3.5		VDD	v	Notes 1, 2
	IC Input Low Voltage	0.0		1.5	v	Notes 1, 2
VIHT	IT/ITP Input High Voltage	2.4		VDD	v	Notes 1, 3, 4
VILT	IT/IPT Input Low Voltage	0.0		0.8	v	Notes 1, 3, 4
IDD	Supply Current		200		mA	
ISC	Output Short Circuit Current		160		mA	Note 5
LU	D.C. Latch-up Current		>200		mA	Note 6
0N	IT Input Leakage Current		10	_	μA	Nates 7, 11
INP	ITP Input Leakage Current		-500		μ Α	Notes 8, 12
юн	Output High Current (VOUT=VDD -0.4 V)		7		mA	Note 9
IOL .	Output Low Current (VOUT=GND +0.4 V)		-11		mA	Note 9
VIHTK	IC Input High Voltage Threshold		2.8		v	Note 10
VILTT	IC Input Low Voltage Threshold		1.9		v	Note 10
VIHTT	IT/ITP Input High Voltage Threshold		2.1		v	Notes 11, 12
VILTT	IT/ITP Input Low Voltage Threshold		1.4		v	Notes 11, 12
CIN	Input Capacitance		5		pF	

Notes: 1. Voltages measured with respect to GND.

2. IC - CMOS-level inputs.

3. IT - TTL-level inputs (includes IT and ITOTZ pin types).

4. ITP - TTL-level inputs with pull-ups.

5. Not more than one output should be shorted to either rail at any time, and for as short a time as possible.

6. This value represents the DC current that the input/output pins can tolerate before the chip latches up.

7. Input leakage current for the IT, and ITOTZ pins.

8. Input leakage current for an ITP pin connected to GND. These pins incorporate a pull-up resistor in the range of 10 k Ω - 100 k Ω .

9. Output current characteristics apply to all output pads (OCZ and ITOTZ).

10. ICk - CMOS-level inputs.

11. IT - TTL-level inputs (includes IT and ITOTZ pin types).

12. TIP - TTL-level inputs with pull-ups.

7

VL86C410

APPENDIX A - 8.

CYCLE TYPE 3 WRITE		
		SECTION 7
-IORQ (See Note 1) -IOGT		RISC DEVELOPMENT TOOLS OVERVIEW
ська		
-\$7\$1		
-WE		
-BL		
D7-D0 X	<	
-R/W (See Note 1)		
Noto: 1. This illustrates the four different sychronization delays represented by the possible –IORQ timings.		
		l
		Application Specific Logic Products Division
6-30		

VLSI TECHNOLOGY, INC.

RISC DEVELOPMENT TOOLS OVERVIEW

BLUE STREAK DEVELOPMENT BOARD

FEATURES

- Hardware and software prototyping vehicle
- 1 MByte or 4 MByte memory
- IBM PC/AT drop-in card
- PC bus-master code
- RISC can access PC memory or PC I/O space
- RS-232C serial port
- Single bootstrap EPROM
- On-board memory manager (MEMC chip)
- Spare socket for 53C90-type SCSI adapter
- Fully supports OC disk and I/O operations
- Includes full source code for RISC monitor programs

DESCRIPTION

The Blue Streak is a PC/AT[®] add-in card that contains a VL86C010, VL86C110, and VL86C410 all operating at 8 MHz. The board is intended as a hardware/software development platform for the processor. The hardware architecture is such that the board is a bus master on the PC expansion bus and therefore the RISC has direct access to the PC memory and I/O space. For PC-to-board communication a simple mail box register is used. The VL86C010 accesses the PC bus under programmed I/O to simulate a DMA channel. An expansion bus is available on a 96-pin DIN connector to allow custom hardware to be attached for prototype development. The VL86C410 provides a full-duplex RS-232 port for downloading code into other target systems. Also on the board (but not supported in beta site versions) is a SCSI Interface directly into the RISC system. Full schematics of the board are available to assist customers in interface issues with slower buses. The board is available 1 Mbyte and 4 Mbyte configurations or without memory for customers who can supply their own memory devices.

DEVELOPMENT SUPPORT

Included with the Blue Streak are all programs necessary for interface to the PC and several software development tools such as: debuggers, assemblers, and linkers. Programs are downloaded into the Blue Streak from the PC via the parallel bus. Monitor programs operating in both systems coordinate all VO activity between the two systems.

Programs can be written in assembler language using the Compiling Assembler™ (CASM™) or the Super-C ANSI C Compiler. CASM is included with the Blue Streak system utilities; Super-C is an additional-cost item. CASM - CASM supports high-level features like run-time expression evaluation in addition to the traditional macro capability. Structured constructs are also provided.

Super-C - Super-C is a full ANSI standard implementation of the C language for the VL86C010. The VLSI Technology, Inc. developed compiler generates code that is easily placed into ROMs.

LIBR - The object files created by the compiler or assembler may be merged into one or more libraries by the LIBR (librarian) utility program. LIBR is included with CASM.

CLINK - The CLINK linker is compatible with output files from either language. It links modules from both languages together into an executable format, and is included with the CASM assembler.

For beta site releases, CASM, Super-C, LIBR, and CLINK all execute on the PC. Full production releases will support execution on either the PC or Blue Streak.

VBUG - Programs running on the Blue Streak can be debugged using the VBUG Machine Debugger. The VBUG program allows for totally non-intrusive debugging in all processor modes. VBUG supports debug functions such as break pointing, single step, instruction tracing, register manipulation, and memory manipulation.

7

ORDER INFORMATION

Part Rumber	Description
VL86C010-SB (No memory version) VL86C010-SB3 (1 mog version) VL86C010-SB4 (4 meg version)	Blue Streak Board
VL86C010 - DB1	Arm-3 Daughter Card
VL86C010-SW1-CASMPC VL86C010-SW1-CASMRS	Compiling Assembler (CASM)™
VL86C010-SW1-SUPCPC VL86C010-SW1-SUPCRS	Super-C ANSI C Compiler
MESCO10-VBUG	VBUG Machine Level Debugger

PC/AT[®] is a registered trademark of IBM Corporation.

CASM™ and Compiling Assembler™ are trademarks of NIKOS Corporation of Phoenix, Arizona.

RISC DEVELOPMENT TOOLS OVERVIEW

VLSI TECHNOLOGY, INC.

RISC DEVELOPMENT TOOLS OVERVIEW

DESCRIPTION

This is a daughter card that connects to the Blue Streak board. It contains a VL86C020 processor with 4 Kbytes of instruction and data cache on-chip. This card contains a PLCC adapter that lets it replace the processor chip on the Blue Streak. The new processor runs at 20 MHz, but uses the same 8 MHz memory subsystem of the unmodified Blue Streak. Most programs then run 2.5 - 3.0 times faster than the original processor, when the cache is enabled. The new board is fully software compatible with the original processor.

ARM-3 DAUGHTER CARD

DESCRIPTION

The CASM Assembler provides the ability to program at the machine level effectively and efficiently. Since the processor has fully interlocked pipelines and very simple parallelism, programming in assembler for the VL86C010 is very similar to the more traditional CISC architectures. Performance from the processor does not depend on highly optimized compilers, so the assembly programmer is not required to manage pipeline flows and optimal scheduling strategy as in other RISC processors.

CASM can be used as an ordinary macro assembler or in a compiling mode that generates machine code similar to high-level language statements. Support for listing indentation and structured flow control statements improve programmer productivity.

CASM creates relocatable object modules.

Included with CASM is the CLINK linker. It allows modules to be assembled or compiled independently, and combined into one module for execution. CLINK supports 16 location counters and allows programs to be partitioned for different classes of memory (ROM, RAM, stack, common memory, etc.).

Also included is the LIBR program librarian. This utility merges commonlyused program modules together into a single file. The finker can then automatically search that (library) file for any modules that it needs to complete the construction of a program. This eliminates the requirement to tell the linker the detailed names for common utility modules often used by programs.

DEVELOPMENT ENVIRONMENT

COMPILING ASSEMBLER (CASM)

Two versions are available. One that executes on the IBM PC and the other directly on the IBue Streak board. The Blue Streak includes both CASM and CLINK in the basic system. Users who wish to develop code on the IBM PC and download into their target hardware may purchase a cross assembler copy that executes on the PC and produces VL86C010 code.

7

Modules created on the Blue Streak board may be freely mixed with those created on the PC environment, and vice versa, during the program linking process.

7-5

RISC DEVELOPMENT TOOLS OVERVIEW

DESCRIPTION

The SUPER-C ANSI C Compiler implements the full ANSI specification of the C language for the VL86C010 family processors. The instruction set architecture of the VL86C010 lends itself to efficient compiler implementations and optimization. The compiler uses the conditional execution and condition code control provided by the instruction set to produce optimized code. In addition, efficient register allocation minimizes the number of load/store instructions.

The object code modules produced by SUPER-C are compatible with the CASM and CLINK programs to allow modules written in the high-level language and assembler to be combined.

The runtime libraries follow the ANSI definitions, and support the Blue Streak hardware environment. Source code may be purchased for the libraries so that they may be ported to alternative hardware configurations.

SUPER-C ANSI C COMPILER

DEVELOPMENT ENVIRONMENT Two versions are available. One that executes on the IBM PC and the other directly on the Blue Streak board. Users who wish to develop code on the IBM PC and download into their target hardware may purchase a cross compiler copy that executes on the PC and generates VL86C010 code.

Modules created on the Blue Streak board may be freely mixed with those created on the PC environment, and vice versa, during the program linking process.

VLSI TECHNOLOGY, INC.

RISC DEVELOPMENT TOOLS OVERVIEW

DESCRIPTION

The VBUG program is a machine-level debugger for the VL86C010. It supports software development at the object code level. VBUG allows programs to be loaded into the Blue Streak and controlled via the keyboard, Functions supported include trace, single-step, register examination, and register/memory modification.

Both Step and Step-Over modes are supported for the Single-Step and the Trace commands. Step-Over mode does not perform tracing inside a subroutine that may be called. During both Single Step and Tracing.

options may be selected such that each instruction, all 16 registers are displayed. Alternatively, only the registers referenced by the instruction, or only the registers changed by the instruction, may be automatically displayed.

It is possible to trace or single-step in any of the four processor modes, and through transitions from one such mode to another. It is possible, therefore, to trace from User mode into an SWI call (if not using Step-Over tracing).

At all times that VBUG is in control of the keyboard, the user's memory is as it

The monitor is a single-tasking program

ment for the user code. It supports both

character and disk I/O through DOS, via

the PC/AT shell program. Because of

the DMA-like bus Interface on the Blue

An interface shell program runs on the

PC, and provides I/O services to the

RISC's monitor. Both keyboard and

Streak card, transfers between the

monitor and the shell are very fast.

that maintains an operating environ-

was left. That is, no code is left in the memory after a trace or a Step has been completed. This means that program crashes will not cause debugger code to be left in the user memory areas.

Separate copies are kept of the register environments for each of the possible processor machine states.

ROM areas cannot be traced.

VBUG MACHINE LEVEL DEBUGGER

DEVELOPMENT ENVIRONMENT VBUG is provided with the Blue Streak development board. It is currently only available on Blue Streak as a disk based debugger.

LIBR LIBRARIAN UTILITY (INCLUDED WITH CASM)

DESCRIPTION

LIBR is a librarian utility that merces software object modules into a single file. The resulting library file is used by the CLINK linker. Placing commonly used functions and modules into a library file minimizes the effort needed to link programs. It also allows programs to be grouped conveniently, such as a different library for different hardware configurations.

DEVELOPMENT ENVIRONMENT Two versions are available. One that executes on the IBM PC and the other directly on the Blue Streak board. Modules created on the Blue Streak board may be freely mixed with those created on the PC environment, and vice versa, during the library merging process.

DESCRIPTION

The Blue Streak support firmware is comprised of four sections: Bootstrap ROM code, Blue Streak Initializer, the **RISC-resident monitor, and the PC/AT** resident VO support shell.

gram to set up the initial state of the Blue Streak card and to load a (monitor) program from the PC/AT. The initializor program operating in the PC/AT loads the RISC's monitor program from a disk file.

BLUE STREAK FIRMWARE AND PC/AT SHELL (INCLUDED WITH BLUE STREAK BOARD)

disk I/Os are handled, using standard DOS indirection facilities.

The monitor does not support the SCSI adaptor device on the Blue Streak card. Source code is available for all of these programs.

7

DEVELOPMENT ENVIRONMENT

The bootstrap and the monitor programs execute on the Blue Streak board itself, while the initializer and shell operate on the PC/AT.

ODUMP OBJECT DUMP UTILITY (INCLUDED WITH CASM)

DESCRIPTION

ODUMP is a utility program that extracts and dumps information on an object module to the screen. It may be used to inspect data such as the object file header containing dates, times,

source environment, and the like. It is also used to inspect relocation records. displaying them in an easy-to-read manner.

7-6

DEVELOPMENT ENVIRONMENT Only one version is provided, it executes on the PC. It may dump data from modules created on either the PC or on the Blue Streak environments.

The ROM code contains a short pro-

PACKAGE OUTLINES 68-PIN PLASTIC LEADED CHIP CARRIER (PLCC)

8

PACKAGING

PACKAGE OUTLINES (Cont.) 34-PIN PLASTIC LEADED CHIP CARRIER (PLCC)

PACKAGING

1

8

PACKAGE OUTLINES (Cont.) 144-PIN CERAMIC PIN GRID ARRAY

 Pin		Matrix Cavity Position	A		D (E)		D1 (E1)		Q	L
Count	Matrix		Min	Max	Min	Max	Min	Max	Ref	Ref
. 144	15 x 15	Up	.0780 (1.981)	.1020 (2.591)	1.559 (39.60)	1.591 (40.41)	1.388 (35.26)	1.412 (35.86)	0.050 (1.270)	0.130 (3.302)

Notes: 1. All dimensions are in inches (mm).

2. Material: At203

3. Lead Material: Kovar

4. Lead Finish: Gold plating 60 micro-inches min, thickness over 100 micro-inches nominal thickness of nickel

8-5

9

PACKAGING

PACKAGE OUTLINES (Cont.) 160-PIN CERAMIC FIN GRID ARRAY

VLSI TECHNOLOGY, INC.

SALES OFFICES, DESIGN CENTERS, AND DISTRIBUTORS

VLSI CORPORATE OFFICES

CORPORATE HEADQUARTERS - ASIC AND MEMORY PRODUCTS - VLSI Technology, Inc. - 1109 McKay Drive - San Jose, CA 95131 - 408-434-3100 +602-752-8574

AND TREAT COUNT INSTITUTED D-2000 Materials Description De	Britizen, 61-7-375 AUSTRIA TRAKSISTOR Gmb BEL GUVIA AND L MCATYON ANGEY, 61-674703 CERNIAARN MTREELO KITTERLEN UMARDON ELLETT BOTHON FLUCTT DETY, 332-32531 FRILAND OY COMDAX HEIRIG AND
Direst, 24, 8204 Language Language <thlanguage< th=""> Language <thlanguage< th=""></thlanguage<></thlanguage<>	TAXESISTOR Guns Viena, 222-823401 BEL CALLA AND L MCAtrock Angeur, et al 74203 CENHARK MTREALO Kartakinde, 3-1407C EIRHI AND U.K. HAWKE COMPONE Schbury-on-Thame CLIAR/DON ELECT Derby, 332-32251 FTNLAND OY COMMAK
C22-732-6400 FXX 52/52505-35 MAINET Matter	Vena, 222-8240 BELGIUM AND L MCArocax Angeur, 41-37403 CENEMARK INTERELKO Kartsunda, 3-14070 EIREI AND UJK, HANKE COMPONET Schbury-on-Thump CLARKDON ELECTI Derby, 332-32651 FORLAND OY COMMAX
FAX 602 732-0001 HONRON DUAL Control PERCENT 2215 Grand D Suicib Reveal Zanza	KCArocia Angent, 41-674203 CERNARK MTERELKO Katakunés, 3-14070 EIRRI AND U.X. HANNE COMPORE Schoury-on-Thames CUARIDON ELECTI Derby, 332-32651 FURLAND OY COMPAK
CALLFORMA FUND ALMA 2012 South Partiest 2012 - 2014 - 224 Times 502-431 - 0000 San Jose, LA 93131 Hong Keng MIEGNATED COLT SYSTELS, INC. CALLFORMA CALLFORMA CALLFORMA CALLFORMA CALLFORMA CALLFORMA Database Database Database CALLFORMA CALLFORMA CALLFORMA CALLFORMA Database Database Database CALLFORMA CALLFORMA CALLFORMA Database Database Database CALLFORMA CALLFORMA Database CALLFORMA Database CALLFORMA Database CALLFORMA CALLFORMA Database CALLFORMA CALLFO	Angeut, 41-674203 CERNAARK KITERELKO Karslunda, 3-14070 EIRTE AND U.K. HAWKE COMPONEN Sunbury-on-Thame CUARKDON ELECTI Derby, 332-32631 FUNLAND OY COMMAK
2225 Gung D PENNSTY, VANIA CALIFORMIA 2225 Gung D Bittor Radi Pennsty, VANIA CALIFORMIA Kard S, 44, 5972 Bittor Radi Pennsty, VANIA CALIFORMIA Kard S, 44, 5972 San Ase, CA 855-553 Comp P Fusial, 215-555-550 Comp P Fusial, 215-555-550 Mall Bittor Robits, Bittor Robits, Bittor Robits, Bittor, California Comp P Fusial, 215-555-550 San Depo, 619-455-0015 Mall Bittor Robits, Bittor, California San Depo, 619-455-0015 San Depo, 619-455-0015 Mall Bittor Robits, Bittor, California San Depo, 619-455-0015 San Depo, 619-455-0015 Kards A, San Depo, 619-455-0015 Bittor Robits, Bittor Robits, Bittor Robits, Bittor, California Colifornia Sittor Robits, San Depo, 619-455-0015 Bittor Robits, Bittor Robits, Bittor, California Colifornia Sittor Robits, Bittor Robits, Bittor, California Colifornia Colifornia Sittor Robits, Bittor, California Colifornia Colifornia Sittor Robits, Bittor, California Sittor Robits, Bittor, California Colifornia Sittor Robits, Bittor Robits, Bittor, California Colifornia Colifornia Sittor	CENMARK INTERELKO Kartskog, 3-14070 EIRIE AND U.K. HAWKE COMPORT SUNDARY ON-TRUME CUARKDON ELECT Derby, 322-32651 FINLAND OY COMDAK
San Jase, QL 85/31 Hong Kong INTEGRATEO CRQUT SYSTELS, IRC. Distasse in 18-820-8685 (AK 48) 494-9102 FAX 852-5685-3159 Big et Phasu, 215-355-850 Sacrameth, 916-354-0022 (AK 48) 494-9102 FAX 852-5685-3159 Big et Phasu, 215-355-850 Sacrameth, 916-354-0022 (AM 48) 494-9102 (AK 802-5685-3159 Big et Phasu, 215-355-850 Sacrameth, 916-354-0022 (AM 48) 494-9102 (AM 802-5685-1159 Big at 215-200 Sacrameth, 916-354-0022 (AM 48) 494-9102 (AM 801-362-320-3215) (AM 801-322) Sacrameth, 916-354-0025 Sacrameth, 926-3427-171 (AM 801-3620-633) (AM 81-322)-5215 (CM 800-634) (CM 800-634) (CM 800-634) (CM 800-634) (AM 81-3220-5215) (CM 800-634) (CM 800-634) (CM 800-634) (CM 800-634) (CM 800-634) (AM 81-620-635) (CM 800-634) (CM 800-634) <td>INTERELIKO Karislande, 3-14070 EIRIE AND U.K. HAWKE COMPORE Sunbury-on-Thame: CUARKDON ELECTI Derby, 332-32551 FINLAND OY COMDAX</td>	INTERELIKO Karislande, 3-14070 EIRIE AND U.K. HAWKE COMPORE Sunbury-on-Thame: CUARKDON ELECTI Derby, 332-32551 FINLAND OY COMDAX
FAX (35):404-5972 FAX (35):4685-1139 Data Data <thdata< th=""></thdata<>	Kariskinda, 3-14070 EIRIE AND U.K. HAWKE COMPONEN Sunbury-on-Thame CUARI/DON ELECTI Derby, 332-32651 FORLAND OY COMDAK
FILEX 278807 JAPAN PICE AVO UR. Sat Data	EIRE AND U.K. HAWKE COMPONEN Sunbury-on-Themes CUARKDON ELECTI Derby, 332-32651 FINLAND OY COMDAK
MAIL Distancia (Control 108) Distanci (Control 108) <thdistancia (control="" 108)<="" th=""></thdistancia>	HAWKE COMPONEL Sunbury-on-Themer QUARKDON ELECTI Derby, 332-32651 FUNLAND OY COMDAK
TIOS MORPY Units 5-7 Kajmazh, Chydatsku FRANCE CDL GRADO GAS BLABA (A B131) Topo, Jasan 102 GETA Engwend, 20, 799-0253 GAS BLABA (A B131) Topo, Jasan 102 GETA Engwend, 20, 799-0253 GAS BLABA (A B150) HIJST 2239-5215 Touth Code, 242-12005 COLLGRADO GENERAL (A B131) UNITED KUMDOM Chattahour, 19-423555 FLOREDA AK 818-609-0555 GELORUS Statahour, 19-423555 FLOREDA MC GROWER Pert, Stas, 100-102 Samo Dask Netzl Centru Muton KORWAY Attender Springt, 407-331-7355 MC GROWER Pert, Stas, 100-102 Samo Dask Netzl Centru Muton KORWAY Attender Springt, 407-331-7355 MC GROWER Pert, Stas, 100-102 Samo Dask Netzl Centru Muton KORWAY Attender Springt, 407-331-7355 MC GROWER Pert, Stas, 100-102 Baron Dask RCD PFICES WEDEM GEORGIA Baron Dask, 1355 Z00 Pipt Centru R, Sa 500 TLLE Webar, 813-335 KURSISK ARAVETBORK, ABAVETBORK, AB Bottom, 517-510 Z00 Pipt Centru R, Sa 135 CENTRAL CORP. VLSI SALES OFFICES VLSI SALES OFFICES FLOREDA Z00 Postant H3 RG, Sa 250<	CUARMOON ELECTI Derby, 332-32651 FINLAND OY COMDAX
San Jan, All Str. 102 Totyo, Japan 102 CETL Water England (30:700-423) CASK Bathas BMA, Sur. 102 BI-3-223-5211 Touton Coder, 9-42-12005 CDINECTCUT CASK Bathas BMA, Sur. 102 BI-3-223-52115 Touton Coder, 9-42-12005 CDINECTCUT CASK Bathas BMA, Sur. 102 Bi-607-8211 Mathematic Sur. 102 CDINECTCUT Data (20:700-4213) CASK Bathas BMA, Sur. 102 San Data (20:700-4214) Data (20:700-4214) Data (20:700-4214) CASK Bathas BMA, Sur. 102 San Data (20:700-4214) Data (20:700-4214) Data (20:700-4214) CASK Bathas BMA, Sur. 102 San Data (20:700-4214) Data (20:700-4214) Data (20:700-4214) CASK BAthas BMA, Sur. 103 Data (20:700-4214) Data (20:700-4214) Data (20:700-4214) CASK BAthas BMA, Sur. 103 Data (20:700-7016) Temp, 13:73-1417 Temp, 13:74-543-350 CASK BAthas BMA, Sur 20:77 San	Derby, 332-32651 FINLAND OY COMDAX
Oxy Bit 2019 2011 Toxino Cests, 9-42-12005 CONNECTIONT B1-9/2-09-2011 FAX 817-3223-5215 SOREP Dom, 203-264-4700 B1-9/2-09-2011 UNTED KINGDOM SOREP Dom, 203-264-4700 B1-9/2-09-2011 Uncod Region Ort. 4/-230077/6 Temp, 313-541-4100 B1-9/2-09-2011 Uncod Region Ort. 4/-230077/6 Temp, 313-541-4100 B1-9/2-09-2011 Uncod Region Ort. 4/-230077/6 Temp, 313-541-4100 B200 Pipt Central N, Sta. 50 FAX 69 200 57 Temp, 313-541-4100 BLINCID B1-9/2-09-2011 Uncod Region 077 Sore, 9-734-933 BLINCID BLINCID B1-9/2-09-2011 VLSI SALES OFFICES VLSI SALES KWA Cestration 17, 9-320-311 B1-9/2-09-201 VLSI SALES OFFICES VLSI SALES KWA Cestration 17, 9-320-311 B1-9/2-09-201 VLSI SALES OFFICES	OY COMDAX
618-629-6201 (XX 189-627-6035) UNTED KINGDOM (XX 189-676-6035) SOREP (XX 189-676-6035) DOTED (XX 189-676-6035) <th< td=""><td>OY COMDAX</td></th<>	OY COMDAX
IAX 81603-0035 462-453 Micromore Bod Chilliabourg, 194-021305 FLORDA Inne, CA 82714 Sam Gan Wett, Central Micron NORWAY Attending Springs, 407-331-7555 Inne, CA 82714 Kaya, Kila 320 Octavers Program Death, 125-41-6100 Tamp, 13-541-6100 Inne, CA 82714 Control 50 (006 75.56) Other, 47-230677/8 Tamp, 13-541-6100 Interpret Program Death, 125-60-3056 TLLS Vetica 825 135 BORDISK ADAVTECOX AB Buttonia 50 (00, 27) Score, A 774 004 TLLS Vetica 825 135 BORDISK ADAVTECOX AB Buttonia 50 (00, 27) Bordisk Control 40-449-9170 Score, A 74 004 TLLS Vetica 825 135 BORDISK ADAVTECOX AB Buttonia 50 (00, 27) Bordisk Control 40-449-9170 Score, A 74 004 TLLS Vetica 825 135 BORDISK ADAVTECOX AB Buttonia 50 (00, 27) Bordisk Control 40-49 200 Protocard N, Sac Control 40 (00, 27) Score, A 74 69 35 Buttonia 50 (00, 27) Bordisk Control 40-49 200 Protocard N, Sac Control 40 (00, 27) Score, A 74 69 35 Buttonia 50 (00, 27) Bordisk Control 40-49 200 Protocard N, Sac Control 40 (00, 27) Score, A 74 69 35 Buttonia 50 (00, 27) Bordisk Control 40-49 200 Protocard N, Sac Contrepase 200 Matton 200	
30 Corporate Part, Site, 100-102 Saxon Glas Wetz, Cartzer Marcon NORMWAY Additional Spring, 04/33117353 714-250-500 United Ringson Oct., 47-230077/6 Tamp, 513-541-5100 714-250-500 United Ringson Oct., 47-230077/6 Tamp, 513-541-5100 714-250-500 United Ringson Oct., 47-230077/6 Tamp, 513-541-5100 710-7004 VLSI SALES OFFICES VLSI SALES Bull Morits, 20-27-7511 714-70-641 VLSI SALES OFFICES VLSI SALES Kowa 716-71-664 Kates-71-7500 Counterman, 714-781-7123 MARYLAND 716-71-7500 Counterman, 71-781-7530 Marylan Coop Betran, 51-775-5100 716-717-7570 Counterman, 71-781-7530 Marylan Coop Balaran, 61-775-5100	
Trans. Biol. Math. Digits, Blagdom Dist. Math. Dist. Math. Dist. Math. TAX 174-526-0201 DI DIG 75 56 DI DIG 75 56 DI DIG 75 56 DI DIG 75 56 FLORIDA TILD V Math. M25 1135 MAX 174-526-0201 DI DIG 75 56 DI DIG 75 56 Z00 Pipt Centre R, Sa. 600 FAX 19 0357 10 77 Sora, 8-734 89 35 BL DODS DI DIG 75 550 Z00 Pipt Centre R, Sa. 500 FAX 195 0357 16 VLSI SALES OFFICES VLSI SALES KWA Z00 Pipt Centre R, Sa. 200 Matter S, Sa. 30 Centre Report, 319-373-1417 Contre Report, 319-373-1417 GEORGIA Z00 Pipt Centre R, Sa. 200 Matter S, Sa. 30 Centre Report, 319-373-1417 GEORGIA Z04 476-3720 Contre Report, 319-373-1417 Contre Report, 319-373-1417 GEORGIA Z04 476-3720 Centre Report, 319-373-1417 Contre Report, 319-373-1417 GEORGIA Z04 476-3720 Contre Report, 319-373-1417 Contre Report, 319-373-1417 GEORGIA Z04 476-3720 Centre Report, 319-373-1417 Contre Report, 319-373-1417 GEORGIA X123-255-3530 Centre Report, 319-373-1417 Contre Report, 31	FRANCE
FAX 571-520-5001 OT 00.053 75.36 OWEDEN GEORGIA FLOPIDA TLLS Veske 453 135 BUTCHEN BU	ASAP 1.1
PLOPEDA TILDS value #25 135 DETECTION	Montagny to Bretory
Z00 Pprocessent H, Sa. 600 FAX 59 CBX 70 27 Sona, 8-734 89 33 ELLEOUS Purcesse Resch, R 33064 VLSI SALES OFFICES VLSI SALES OFFICES VLSI SALES OFFICES REPRESENTATIVES Court Resch, 319-373-1417 RAX 09-201-2005 ALABAMA REPRESENTATIVES Court Resch, 319-373-1417 KAMSAS R00 Pbastert HS RC, S2 200 Master KA SL, 355 Court Resch, 319-373-1417 KAMSAS Overand Part, 613-122 MARYLAND R04, F0-37100 Contract, AL 35055 Court Resch, 319-373-1417 KAMSAS Overand Part, 613-422-3201 R04, F0-37100 Contract, AL 35055 Contract, AL 35055 Contract, AL 35055 Contract, AL 370-300 Contract, AL 370-300 R1LBODS Contract, CT 04422 Central, COP Gestratistica, 319-704-1635 MASSACRUSETTS R100 Hogen R4, SS 1, SS Yoberda, Part, SS 1, SS San Dare, 819-728-530 MCOFECAN R00 Hogen R4, SS 24-6035 FAX 002-728-5623 San Dare, 819-728-530 MCOFECAN R00 Hogen R4, SS 24-6035 FAX 002-6633 San Dare, 819-728-530 MCOFECAN R00 Hogen R4, SS 24-6035 FAX 007-240-6603 Liver, 81-823-737 MSSQU	GERMANY
Primise Beach, R. 3304 VLSI SALES OFFICES VLSI SALES Bit Grave VCapp. 312-353-3550 Stor71-005 ALABAMA REPRESENTATIVES Cott Report, 312-373-1417 GEORGIA 2514 Arts S. 58.35 Call FORMA Cott Report, 312-373-1417 GEORGIA 2514 Arts S. 58.35 Call FORMA Cott Report, 142 Rd, 59-200 Dates, G. 3 3713 255-373-313 Cott Report, 142 Rd, 59-200 Cott Report, 142 Rd, 152-2221 MARMAR 255-373-4313 Cott Report, 142 Rd, 157-200 Cott Report, 142 Rd, 157-200 Ava 470-6371 FAX 205-356-563 Son Dare, 16, 167-275-3100 MASSACRUSETTS 3100 Higgs Rd, San 155 Yobenda, CT 0642 Call FORMA CORP. Betterid, 517-275-3100 MARTILARD Store, Son 365-5250 Son Dare, 167-275-3100 MASSACRUSETTS Store, Son 3700 FAX 205-7653 Son Dare, 167-275-3100 MASSACRUSETTS MARTILARD Store, Coll Son 3700 MASSACRUSETTS MASSACRUSETTS MARTILARD FLORIDA Son Jass. 403-523-3000 MIDNESOTA MARTILARD FLORIDA Son Jass. 405-523-3000 MIDNESOTA MARTILARD	DATA MODUL Greek
FAX 102-5011-2035 ALABAMA REPRESENT ATIVES Court Report, 319-373-1417 GEORGIA 2014 Arts 55, 30, 36 Court Report, 319-373-1417 Court Report, 319-373-1417 GEORGIA 2014 Arts 55, 30, 36 Call FORMER Court Report, 319-373-1417 GEORGIA 205-373-4513 Call FORMER Court Report, 319-373-1417 DACD, (A 30118) 205-373-4513 MARYLAND Court Report, 311-353-700 DACD, (A 470-5770) COURRECTICUT CITILUIT CORP. Galment, 301-359-700 TOLLARDS 50 Darth, S., 5a, 16 Call Strate, 319-704-1055 MASSACRUSETTS 3100 Higgens RJ, Sa, 155 Yobenda, CT 0642 Citil All CORP. Batterit, 617-275-3100 Martingene RJ, Sa, 155 Yobenda, CT 0642 Citil All CORP. Batterit, 617-275-3100 Martingene RJ, Sa, 154 Yobenda, CT 0642 Citil All CORP. Batterit, 617-275-3100 Martingene RJ, Sa, 154 Yobenda, CT 0642 Citil All CORP. Batterit, 713-324-3310 Martingene RJ, Sa, 155 Yobenda, CT 0642 Citil All CORP. Batterit, 714-741-5200 Martingene RJ, Sa, 154 Fatterit, 716-24-2322 Direspresenda, 518-2	Munuch, 89-415007
NAX 30-071-0305 ALABAMA REPRESENTATIVES Coder Report, 310-372-1117 RECORCLA 2014 Arts SJ, Sta. 35 CALIFORDIAL KAMSAS 2000 PREAM NTA 10, SJ, Sta. 35 CALIFORDIAL KAMSAS 2000 PREAM NTA 10, SJ, Sta. 35 CALIFORDIAL KAMSAS 2000 PREAM NTA 201-54313 CHTALIN CORP. Overland Park, 913-422-2211 404-17-6574 FAX 205-535-6022 Invex, 114-381-2123 MANTLAND ACK 104-475-3700 COUNTERT CUT CHTALIN CORP. Gatternizer, 311-535-7000 ILLINDOIS 50 Daumh SL, Sta. 14 Catternizer, 818-704-1635 MASSLACHUSERTTS 3100 Ngcms RL, Sta. 155 Yoberok, CT 04492 Catternizer, 818-726-530 MacCental Northard State, R. CO185 700-255-6653 Sta. Data, 405-253-2008 MDNESOTA Northard State, R. CO185 FAX 207-655-563 Sta. Data, 405-253-2008 MDNESOTA MARYLAND Setter, R.	SPEZIAL-ELECTROS Bueckeburg, \$722-2
2000 Procession HD Rd, SS 200 Hummed, AL Stells CALL DOUBLD Develop (AL Stells) Call Formation 0.00 Acto, CA 3013 205-513-6131 CERTAUR CORP. Develop (AL Stells)	HONG KONG
Dates, Gal 20138 205-557-553 DET MUR, 714-251-223 MARTYLAND Out-04-076-5770 FAX 200-476-57720 CENTAUR COCP. Galbert, 512-223 MARTYLAND CLUBIOS GO Damin, 52, 553-552 CENTAUR COCP. Galbert, 512-223 MARTYLAND CLUBIOS GO Damin, 52, 553-552 CENTAUR COCP. Galbert, 517-275-5100 MASSACHUSETTS Diol hgtts, 61, 253-562-523 Stal 56 CENTAUR COCP. Bettind, 617-275-5100 MASSACHUSETTS Matther Stal, Sa, 10, 522-552-5623 San Dazo, 819-276-4230 MCORDECAL MASSACHUSETTS MASSACHUSETTS MARYLAND 5535-5623 San Dazo, 819-276-4230 MCORDECAL MARYLAND MARYLAND 5535-5623 San Dazo, 819-276-4230 MCORDECAL MASSACHUSETTS MARYLAND 5535-5623 San Jazo, 819-276-4230 MCORDECAL MARYLAND MARYLAND 5535-5623 San Jazo, 819-276-4230 MCORDECAL MARYLAND MARYLAND 5535-5623 San Jazo, 819-276-5635 MCORDECAL MCORDECAL MARYLAND 5535-5623 CENTAUR COCOLOGY Long, 313-3525-6100	LESTICIA DITERMAT
404-17-8574 FAX 205-535-622 DTM, TH-38 (74.23) MATTURID 404-17-8574 CONDECTICUT CIRTURI COP, GETERIZED, 201-535 MASSACRUSETTS 100 INGER R4, Sa. 155 SD Dawth SL, Sa. 14 CIRTURI COP, GETERIZED, 201-535 MASSACRUSETTS 100 INGER R4, Sa. 155 Yobook, CT 0M92 CIRTURI COP, Betterd, 51-725-5100 MassacRUSETTS 100 INGER R4, Sa. 155 Yobook, CT 0M92 CIRTURI COP, Betterd, 51-725-5100 Martuality, 32-25-6655 San Dare, 019-726-300 MCORELAN 105-624-6350 FAX 203-665-553 Balanda, 20-25-6653 Martuality, 32-25-7000 Moreland, 32-25-7000 Moreland, 32-25-7000 MARTUARD 5953 T. G. Lie Del, Sa. 170 EMERGING TECHNOLOGY form Pran, 612-41-5200 Moreland, 32-25-7000 MARTUARD 5953 T. G. Lie Del, Sa. 170 EMERGING TECHNOLOGY form Pran, 612-41-5200 MARTUARD 5953 T. G. Lie Del, Sa. 170 EMERGING TECHNOLOGY form Pran, 612-41-5200 MARTUARD 5935 T. G. Lie Del, Sa. 170 EMERGING TECHNOLOGY form Pran, 612-41-5200 MARTUARD 5937 T. G. Lie Del, Sa. 170 CUSCINAE ERGINETRING MISSACHURB	Termetation, 852-3-
Instruction DORMECTICUT Critistra, 818-704-1035 MASSACRUSETTS 3100 Higgers Rd, Sa. 155 GOLAND, C.G. 0642 CINTUIL CORP. Bettinn, 617-275-4100 3100 Higgers Rd, Sa. 155 Yatenica, C.G. 0642 CINTUIL CORP. Bettinn, 617-275-4100 3100 Higgers Rd, Sa. 155 Yatenica, C.G. 0642 CINTUIL CORP. Bettinn, 617-275-4100 ACCRECAN TOB-424-0500 FAX 303-265-253.0 ELERGING TECHNOLOGY Lonca, 313-253-8100 MARYLAND 5955 T, 6, Lie Evel, Sa. 170 ELERGING TECHNOLOGY Edmin Prazin, 612-241-5280 MARYLAND 5955 T, 6, Lie Evel, Sa. 170 ELERGING TECHNOLOGY Edmin Prazin, 612-241-5280 MARYLAND 5955 T, 6, Lie Evel, Sa. 170 ELERGING TECHNOLOGY Edmin Prazin, 612-241-5280 MARYLAND 647-240-9603 COLORIADO Errit (xy, 314-737-6326 MARYLAND 647-240-9603 CUSCINZE EricimeEricus New MARPSHORE MARSACHUSETTS 5971 Codur Lake Rd, Sa. 9 New MARPSHORE New MARPSHORE MARSACHUSETTS Strater, 214-247-260 SELTC SALES Fartend, 214-247-260 MARSACHUSETTS Strater, 214-247-261 New	ITALY
LLDRUSS B00 Laberti SL, Ski 16 CENTAU/I CORP. Bettind, 617-275-5100 Matting Estaw, IL (2016) 203-255-6623 San Darg, 119-276-4230 MCCPELAN Matting Estaw, IL (2016) 203-255-6623 San Darg, 119-276-4230 MCCPELAN Matting Estaw, IL (2016) 203-255-6623 San Darg, 119-276-4230 MCCPELAN MATTLAND 5505 L.G. Les Evel, San 170 EURROLIG TECKNOLOGY Long, 313-525-4100 MATVLAND 5505 L.G. Les Evel, San 170 EURROLIG TECKNOLOGY Edm Para, 612-411-320 MATVLAND 5505 L.G. Les Evel, San 170 EURROLIG TECKNOLOGY Edm Para, 612-441-320 J01-857-8777 FAX 407-240-6005 COLORIADO Edm Para, 612-441-320 J01-857-8777 FAX 407-240-6005 LUSCOME ExcludErando NEW MARPSouthE J01-857-8777 MAX 407-240-6005 LUSCOME ExcludErando NEW MARPSouthE J01-857-8777 MAX 407-240-6005 LUSCOME ExcludErando NEW MARPSouthE J01-807-4779 MMANDAR Rel, San 9 GMW NEW MARPSouthE J01-807-4779 MMANDAR Rel, San 9 GMW NEW MERSEY J01-807-4779	INTER-FEP \$ P.A.
Stort Publication Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Tonno, 11-2165901
Tota 428-6500 FAX 200-265-263 ELERCIS TECHNOLOGY Loncal, 315-255-100 MAX 705-264-2630 FLORDA San Joss, 405-263-3636 MDNDESOTA MARTYLAND 5935 T. G. Lue Ebid, Sa, 170 ELERCIS TECHNOLOGY Edm Franc, 612-241-5280 MARTYLAND 5935 T. G. Lue Ebid, Sa, 170 ELERCIS TECHNOLOGY Edm Franc, 612-241-5280 MARTYLAND 9135 T. G. Lue Ebid, Sa, 170 ELERCIS TECHNOLOGY Emm Franc, 612-241-5280 MARTYLAND 0772-241-6003 COLDRADO Eutr Cory, 114-739-0528 MARSACHUGETTS 5071 Codur Lake Rd, Sa, 9 Lingmont, 203-772-342 Mambrastr, 603-655-2256 MARSACHUGETTS 5071 Codur Lake Rd, Sa, 9 EVM A NEW HAMDPSHITE Withington, MA 01897 612-545-1480 SEL Ling Codur, 203-772-342 Mambrastr, 603-655-2256 Withington, MA 01897 612-545-1480 SEL Ling Codur, 203-772-380 NEW JERSEY MEW JERSEY Withington, MA 01897 612-545-1480 SEL Ling Codur, 203-772-380 NEW JERSEY NEW JERSEY MICH Property District IF, NEW JERSEY 1000 Park fory Plaz, SE, 300 Codurnbia, 301-720-4700 NEW HAM202-524-747 NEW J	JAPAN
FAX 703-2834-49394 FLORIDA San Jans, 403-283-4936 MIDDIESCOTA MANTULAND Stot Jans, 403-283-4936 MIDDIESCOTA Edmontalistics (03-283-4936 MIDDIESCOTA 174 Manytuch Ro 3 N Ortsman, R. 20220 Dimmentalistics (TCO:00.000 // Edmontalistics) Edmontalistics (03-283-4937 MISSOURR 174 Manytuch Ro 3 N Ortsman, R. 20220 Dimmentalistics (TCO:00.000 // Edmontalistics) Edmontalistics) 174 Manytuch Ro 3 N Ortsman, R. 20220 Dimmentalistics (TCO:00.000 // Edmontalistics) MISSOURR 201-827-8777 MAX 607-8040 COLORIADO Entri Cay, 314-739-0626 NEW MARPSHITE MARSALCHUSETTS S671 Codin Lake Rd, Ss. 9 IoWA IoWA NEW MARPSHITE 201-827-484 MARSALCHUSETTS S571 Codin Lake Rd, Ss. 9 IoWA NEW MARPSHITE 201-826-443 NEW MARPHAND REW VORK REW VORK REW VORK 201-826-443 NGRTH CAROLINA MARYLAND Robertsr, 716-64-2222 201-826-443 NGRTH CAROLINA MARYLAND Robertsr, 716-64-2222 201-826-443 NGRTH CAROLINA NGRTH CAROLINA NGRTH CAROLINA <td>ASAHI GLASS CO. L Tokyo, 81-3-218-58</td>	ASAHI GLASS CO. L Tokyo, 81-3-218-58
MARTLAND 5955 T. G. Lie Ewi, Sia. 170 EL/ERGISCI TECHCIDOY Em Psize, 612-941-5280 MARTLAND 5955 T. G. Lie Ewi, Sia. 170 EL/ERGISCI TECHCIDOY Em Psize, 612-941-5280 Märerhön, KD 21108 407-205-9603 Dragmaża, 915-828-4337 MISSOURI Märerhön, KD 21108 407-205-9603 COLDRADO Eurit Cix, 314-739-6528 Joinest-9777 FAX 407-240-9603 LUSCINZE ErGINETERING NEW HAMPSKIRE MARSACKUGETTS 5971 Codur Laks R.L., Sia. 9 NOW A NEW JERSEY SIB Buitrokia SL SL Lico's Part, MISSA153 SEI TEC SALES Farticit, 201-227-7860 Wähningen, MA 01987 612-545-1490 SEI TEC SALES Farticit, 201-227-7860 SIB Buitrokia SL SL Lico's Part, MISSA154 SEI TEC SALES Farticit, 201-227-7860 Väll Buitrokia SL SL Lico's Part, MISSA154 Codur Ray BL NEW JERSEY 1000 Part fort Plaz, SL: 300 DEITA III Witrony, SI-534-7474 ILE Einstein Dr. Dubram, RC 27713 NEW JERSEY 1000 Part fort Plaz, SL: 300 DEITA III Witrony, SI-534-7474 ILE Einstein Dr. Dubram, RC 27713 NEW YORK Rasgn, 9	TEKSEL COMPARY.
Mittervice, KD 21103 407-205-9603 COLDFLADO Extr Co.y. 314-739-6528 S01-637-6777 FAX 201-260-9603 CUSCRUEE EXDINEERING NEW HAMPSHITE FAX 201-697-6777 FAX 201-260-9603 CUSCRUEE EXDINEERING NEW HAMPSHITE MASSACHUGETTS S671 Codur Law R4, 55x 9 Lungmont, 203 772, 3342 Manneescore MASSACHUGETTS S671 Codur Law R4, 55x 9 DOWA NEW JERGEV Manneescore S18 Edureticus S1. S1 Locus Park, MI S4116 SEI IFC S4LES Farticut, 201-227-7860 NEW JERGEV Withington, MA 61887 612-545-1489 Codar Rapht, NI 5-341-650 NEW VORK NEW JERGEV MEW JERGEV 1000 Park Forty Pizza, Str. 300 DE1TA III Wettery, 316-347-674 NEW VORK NEW JERGESY 1000 Park Forty Pizza, Str. 300 DE1TA III Wettery, 316-347-674 NEW YORK VEITIG Entryptics D7. Durbarn, NC 27713 NEW WORK Rabon, 316-326-700 NCHTH CAROLINA PUITION, 81/ 05355 S19-544-1691 X82 NEW WORK Rabon, 316-347-670 NCHTH CAROLINA PUITION, 82/795-700 FAX 199-544-6677 Dod ELECTROLICS <td< td=""><td>Totyo, 81-3-481-53</td></td<>	Totyo, 81-3-481-53
301-857.77 FAX 407-240-9005 CDUCHADD Eliticity, 147-35400 X01-857.77 FAX 407-240-9005 CDUCHADD Eliticity, 147-35400 X01-857.77 MCINNESOTA LUSCIMAE Eliticity, 240 Interfester, 503-655-2250 X01-857.78 MCINNESOTA Longmont, 300-772-3342 Manchester, 503-655-2250 201 Eblorhouts SL SL 1000 Fint, MI 55115 SET EC SALES Fathod, 201-227-7860 X01-857.76 SET ALL SET EC SALES Fathod, 201-227-7860 X01-857.64 SET EC SALES Fathod, 201-227-7860 X01-856.74/20 NEW VORK SET EC SALES Fathod, 201-227-7860 X01-856.74/20 NORTH CAROLINA MARTLAND Robert, 71.6424-2222 X01-856.74/20 NORTH CAROLINA MEW VORK Robert, 71.6424-2222 X012 Eliteriste In. Durban, KC 27713 Octomata, 201-700-4700 NORTH CAROLINA X02 S636 S18-544-6807 Mol el LETROLICS OHIO X03 S0556 S18-544-6807 Mol el LETROLICS OHIO X04 S057705 FAX 105-544-6807 Mol el LETROLICS OHIO X	TOKYO ELECTRON.
FAX 301-927-9779 MEXINVESIOT A LUSUIDSE Ending Links Net With AMPSkinte MARSACHUGETTS 5971 Codu Lake Rd, 5% Longmont, 300 772-3342 Manthesist, 603-655-2560 Stil Bultricks SL, SL Locar Park, MI SA115 How A NOW JERSEY Manthesist, 603-655-2560 Winnington, MA 01887 612-545-1480 SL HEC Stulies Ending Links, 603-655-2560 Restrick, 201-227-7860 Winnington, MA 01887 612-545-34389 Cedar Rapids, 310-364-7660 NEW YORK NWW JERSEY 1000 Print forty Puzz, Str. 300 Celtra Rill Winnington, 10, 553-6700 NEW YORK Durham, KC 27713 PUmboro, 11, 005356 S19-544-1681 M/A MARYLAND Nothertic, 716-424-2222 Strington, 10, 005356 S19-544-1681 M/A MARYLAND Nothertic, 716-424-2222 Strington, 10, 005356 S19-544-1681 M/A MEW YORK Neight, 916-976-0000 Strington, 10, 005356 S19-544-1681 M/A NEW YORK Neight, 916-976-0000 Strington, 10, 005356 S19-544-1681 M/A NetW YORK Neight, 916-976-0000 Strington, 10, 005356 S19-544-1681 M/A NetW YORK Neight, 916-976-0000	Totyo, 81-423-33-0
MASSACCHUSETTS S071 Codur Lake Rd, Ste. 9 DOWA MOMENTAL MOMENTAL SID BLithrobit SL. SL. Loss Part, LMI SS115 DOWA NEW JERSEY NEW JERSEY SID BLithrobit SL. SL. Loss Part, LMI SS115 DOWA SEL TC SULES Faithed, 201-227-7860 SID BLithrobit SL. SL. Loss Part, LMI SS115 DOWA SEL TC SULES Faithed, 201-227-7860 SID BLIthrobit SL. SL. Loss Part, LMI SS115 DOWA MEW JERSEY NEW YORK NEW JERSEY 1000 Park Forty Plaza, SL. S00 DEITA III Westign, 918-534-7474 Nettry YORK NEW JERSEY 1000 Park Forty Plaza, SL. S00 Delta III Westbury, 518-534-7474 Nettry YORK NEW JERSEY 1000 Park Forty Plaza, SL. S00 Cotume, 301-730-4700 NORTH CARDLINA NORTH CARDLINA Plaza Monton, NJ (05356 918-544-6677 Dod ELETRUCKS OHOD NEW JERSEY Favorabor, NJ (05356 918-544-6677 Dod ELETRUCKS OHIOD Netword, 518-452-700 FAX (09-795-5720 OHID Robritzit, 716-423-4101 Betatheout, 216-453-700 Dotton, 513-453-1600 Dotton, 513-453-1600	KOREA
Call Biological Science Control Science Still Science Fartheric Science	ANAM VLSI DESIGN
Manufact, and vision 012-95-94-80 Cests Rapids, 310-364-7660 NEW VORK 0x84556-9501 FAX 812-545-3483 MARYLAND Robertstr, 716-424-2222 FAX 503-568-9423 NCRTH CARPOLINA Columbia, 301-730-4700 NCRTH CARPOLINA Fax 503-5703 Durbam, RC 27113 PLITA III Witstury, 515-347-767 New YORK 502-759-5700 FAX 503-544667 New YORK Robertstr, 716-424-101 Heathmood, 216-454-2970 FXA 503-779-5720 CHD Robertstr, 716-423-1000 Batthmood, 216-454-2970 Datomarca Fart 54 GREEOCN Datomarca Fart 54 CHEADON Datomarca Fart 54 CHEADON Datomarca Fart 54 CHEADON CHALHOSAA 502-623-5141 Carpan 64, 514 500 LICEOR 544L5 CHLAHOSAA CHALHOSAA CHALHOSAA	Secul, 82-2-553-210
SUCESS/1423 NORTH CARGLINA MARTYLAND REFY URK NEW JERSEY 1000 Park Forty Plaza, SS. 300 DE1/A III Visibury, 516-534-7474 NEW JERSEY 1000 Park Forty Plaza, SS. 300 DE1/A III Visibury, 516-534-7474 NEW JERSEY 1000 Park Forty Plaza, SS. 300 DE1/A III Visibury, 516-534-7474 NEW JERSEY 1000 Park Forty Plaza, SS. 300 DE1/A III Visibury, 516-534-7474 NEW JERSEY 1000 Park Forty Plaza, SS. 300 DE1/A III Visibury, 516-534-7474 Plantborn, NJ 05355 919-546-1931 A22 NEW VORK Ratego, 919-476-0000 Soft Forty Forty Dorthorn, S44, 5637 Ded ELCETROLICS OHIO FAX 059-795-5720 OHID Robritter, 716-425-4101 Destimatod, 216-464-5970 Soft A results RL, Sta 2770 22200 Oragin Eval, Sta 600 LIDERD SALES OHLOD Soft A results RL, Sta 2770 22200 Oragin Eval, Sta 600 LIDERD SALES OHLAHOMA 214-521-4715 214-526-6225 UTAM Total, 918-622-6000 214-521-4715 214-524-7070 UTAM OHEGOEN <td>EASTERN ELECTRO Scoul, 82-2-464-033</td>	EASTERN ELECTRO Scoul, 82-2-464-033
Notestient Next In CARTOLINA DEITA III Wetter, S16-334-7474 New JERSEY 1000 Park Countails, 301-730-4700 Next Inc., S16-334-7474 311C Enterprise Dr. Durham, KC 27113 Countails, 301-730-4700 Next Inc., S16-334-7474 Structure, NC 27113 NEW YORK Rates, 919-476-0000 Editary 19-476-0000 Scharbor, RJ, OS355 S19-544-168172 NEW YORK Rates, 919-476-0000 Scharbor, RJ, OS355 S19-544-168172 New YORK Rates, 919-476-0000 Scharbor, RJ, OS355 S19-544-168172 New YORK Rates, 919-476-0000 Scharbor, RJ, OS355 S19-544-16817 Hod ElETRONICS OHIO TEXA3 4 Commerce Park Sq. GREEON Dayton, 514-435-1000 SS5 E. Angato Rd., Sta. 270 2200 Chapter Bark, Sta 600 LIDERD SALLS OHLAHOSHA Statebrinson, TX 5001 Cheverson, 500-545-28411 Tata, 918-622-6000 214-231-4718 215-232-8225 UTAN OHEACH X1 2455-1411 Fata, 916-642-7070 OHEACH	NETHERLANDS
Number Contrast, 02, 703-700 Contrast, 02, 703-700 NCRTH CAROLINA Plantborn, 02, 00336 SIP-544-1631.02 NEW YORK Restor, 91-976-0000 Plantborn, 02, 703-5700 PKD Robinster, 716-423-4101 Betathmood, 216-464-2970 TEXLAS 4 Commerce Part Sq. GREEQCM Datomatic Part Sq. ORLAHOSALS 850 E. Angatio RL, Sta, 270 2200 Graph Revi, Sta 600 LICRO SALLS ORLAHOSAL ORLAHOSAL 71-423-4111 Commerce Part Sq. Betweeton, 17, 75031 ORLAHOSAL ORLAHOSAL 71-423-4715 216-920-8225 UTAM S0.445-2841 Tota, 016-822-6000 71-423-4715 216-920-8225 UTAM OREGON OREGON	DIODE
Paration, 1/J 05336 919-54/-1631/02 NEW YORK Paration, 1/J 05336 Sol7-799-5700 FAX 019-544-6687 bid ELECTRONICS OHIO FAX 009-799-5720 DHID Rodnesster, 716-425-4101 Bachwood, 216-454-2970 FAX 009-799-5720 DHID Rodnesster, 716-425-4101 Bachwood, 216-454-2970 Sol A, repative RL, Star 270 22000 Ontagen DwL, Sta 600 Balthwood, 216-454-2970 Dyton, 513-452-1600 Sol E, Angatho RL, Star 270 22000 Ontagen DwL, Sta 600 Balthwood, 216-454-2970 Dyton, 513-452-1600 Sol E, Angatho RL, Star 270 22000 Ontagen DwL, Sta 600 Balthwood, 516-452-411 Dyton, 513-452-1600 Sol E, Angatho RL, Star 270 22000 Ontagen DwL, Sta 600 Balthwood, 503-45-2641 CHL 016-0200 Sol E, Angatho RL, Star 270 216-520-4223 Balthwood, 503-45-2641 Totag, 918-522-6000 Sol E, Angatho RL, Star 271-500 UTAM CHEGODN CHEGODN	Housen, 3403-91234
FAX 000 - 7929-5720 OHID Roothester, 716-425-4101 OHID FAX 000 - 7929-5720 OHID Roothester, 716-425-4101 Destination, 216-454-5270 TEXTAD 4 Commerce Park 5g GREE OLN Destination, 216-454-5270 SSD E. Angesho RL, Stal 2770 22020 Dragen Divid, Stal 56 OHL ANGESA Relationson, 717, 75001 Developed on 41122 Beamton, 503-445-2641 Total, 918-622-6000 21-621-6718 216-520-6225 UTAM OHEGON OHEGON	SWEDEN AND N
TEXAD Office Operating of the second of the	TRACO AB
Store Ansamo R4_Star 270 22200 Chapter Bvd, Store 000 LDED0 SALES ORL ANCORA Relations, TX 2001 Carterian, CAR 2002 Determina, 503-645-2641 Total, D18-622-6000 21-623-6715 216-523-6225 UTAM ORELATION ORECON	Fertta, 8-930000
Ratartico, TX 75031 Cevetand, CH 44122 Besvetton, 503 445-2241 CH.Larkitoka 21-421 4716 12 14 21 4716 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14	SOUTH AMERICA
214-231-6716 216-232-6225 UTAH CREGON	INTERNATIONAL TR DEVELOPMENT
FAY 216-464-2620 LUCON CHEGON	Pato Alto, 415-656-6
	SPAIN AND POR
WASHINGTON OREGON SET LET CAY, 601-503-1035	SEMICOLOUCTORE
GO TICH Ave. SE, SIS 300 10000 S.W. Greenburg Rd., Sta. 355 WASHINGTON	Barcelona, 3-217-23
104-431-441 (10-421-441-0500) 104-441-0500	SWITZERLAND
RAY 201-453 4220 EAY 501 245 4278 BERTIN 205-431-0008 PRODUCTS 412-963-6504	FAERINEEK AG
FRANCE TEXAS ON ELECTRONICS TEXAS	
2 Alte des Gatays 9500 Grant Hits Trat. Sta. 150W Tel an Austra 512-339-0028	Zurich, 1-2 5129 29
91124 Persets Ceses Austin, TX 78759	Zurich, 1-2 5129 29 TARWAN
JIZ SUBJUT SIZE DYLANIC SYSTEMS PTE, LTD WAS MINOTON	Zurich, 1-2 5129 29 TANWAN PRUNCETON TECH C
TELEX visitr coo 759 F Singapore, 011-65-742-1985 ALMAC ELECTRODITICS CORP.	Zurich, 1-2 5129 29 TARWAN
FAX 1-5447.04.50 Brc3rue, 205-643-9992	Zurich, 1-2 5129 29 TANWAN PRUNCETON TECH C
Spokana, 503-924-9500	Zurich, 1-2 5129 29 TANWAN PRUNCETON TECH C

na, 61-7-378-2955 TRIA SISTOR GmbH NUM AND LUXEMBURG rocia ut. 41-674208 MARK ELKO unde, 3-140700 E AND U.K. KE COMPONENTS ry-on-Thames, 1-9797799 NDON ELECTRONICS 332-32651 AND NDAX 11, 0-670277 (CE 14 pay-10-Bretorineus, 1-3043.82.33 HANY MODUL G:===H AL-ELECTRONIC KG G KONG MA INTERNATIONAL, LTD tatsul, 852-3-7351738 -REP S.P.A. 11-2165901 GLASS CO. LTD 81-3-218-5854 EL COMPARY, LTD 81-3-481-5311 DELECTRON LTD 81-423-33-2009 EA I VLSI DESIGN CENTER 82-2-553-2108 **RN ELECTRONICS** 82-2-464-0399 IERLANDS , 3403-91234 DEN AND NORWAY AB 8-030000 MAMERICA - BRAZIL NATIONAL TRADE OPHIERT 415-656-6688 N AND PORTUGAL orus, 3-217-23 40 ZERLAND LEX AG 1-2 5129 29 AN ETCH TECH CORP. 658-2-717-1439

11/69

9

The information contained in this document has been case-by checked and is believed to be refide. However, VL31 rechnology, her, (VL3) makes no guirantee or warrang concerning the accuracy of asid information and shall not be imponible for any loss or drampe of whatever nature imponible for any loss or drampe of whatever nature institute from the use of, or reflemes upon, k. VLSI does not Citaratee that the use of any liferimation contained herein VL3n on this the use of any liferimation contained herein VL3n of intringe upon the patient or other rights of that

10

parties, and no patent or other loanse is implied hereby.

This document does not in any way extend VLSTs warranty on any product beyond that set forth in its standard terms and conditions of sets. VLST inchnology, inc., near-set the right to make changes in the products or specifications, or both, presented in the publication at any time and without notice.

WISCONSIN tiew Bertin 414-784-9020

LIFE SUPPORT APPLICATIONS LPE SUPPORT APPLICATIONS VL31 Technology, the, products are not insended for use as critical components in the support appCances, devices, or systems in which the failure of a VL31 Technology product to perform could reasonably be expected to oreach in per-sonal hybry. Please contact VL31 for the latest information consering this product. dt050-45530-003 o 1990 VL31 Technology, Inc. Printed in U.S.A.