1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
//! Opt-in yield points for improved cooperative scheduling. //! //! A single call to [`poll`] on a top-level task may potentially do a lot of work before it //! returns `Poll::Pending`. If a task runs for a long period of time without yielding back to the //! executor, it can starve other tasks waiting on that executor to execute them, or drive //! underlying resources. Since Rust does not have a runtime, it is difficult to forcibly preempt a //! long-running task. Instead, this module provides an opt-in mechanism for futures to collaborate //! with the executor to avoid starvation. //! //! Consider a future like this one: //! //! ``` //! # use tokio::stream::{Stream, StreamExt}; //! async fn drop_all<I: Stream + Unpin>(mut input: I) { //! while let Some(_) = input.next().await {} //! } //! ``` //! //! It may look harmless, but consider what happens under heavy load if the input stream is //! _always_ ready. If we spawn `drop_all`, the task will never yield, and will starve other tasks //! and resources on the same executor. With opt-in yield points, this problem is alleviated: //! //! ```ignore //! # use tokio::stream::{Stream, StreamExt}; //! async fn drop_all<I: Stream + Unpin>(mut input: I) { //! while let Some(_) = input.next().await { //! tokio::coop::proceed().await; //! } //! } //! ``` //! //! The `proceed` future will coordinate with the executor to make sure that every so often control //! is yielded back to the executor so it can run other tasks. //! //! # Placing yield points //! //! Voluntary yield points should be placed _after_ at least some work has been done. If they are //! not, a future sufficiently deep in the task hierarchy may end up _never_ getting to run because //! of the number of yield points that inevitably appear before it is reached. In general, you will //! want yield points to only appear in "leaf" futures -- those that do not themselves poll other //! futures. By doing this, you avoid double-counting each iteration of the outer future against //! the cooperating budget. //! //! [`poll`]: https://doc.rust-lang.org/std/future/trait.Future.html#tymethod.poll // NOTE: The doctests in this module are ignored since the whole module is (currently) private. use std::cell::Cell; use std::future::Future; use std::pin::Pin; use std::task::{Context, Poll}; /// Constant used to determine how much "work" a task is allowed to do without yielding. /// /// The value itself is chosen somewhat arbitrarily. It needs to be high enough to amortize wakeup /// and scheduling costs, but low enough that we do not starve other tasks for too long. The value /// also needs to be high enough that particularly deep tasks are able to do at least some useful /// work at all. /// /// Note that as more yield points are added in the ecosystem, this value will probably also have /// to be raised. const BUDGET: usize = 128; /// Constant used to determine if budgeting has been disabled. const UNCONSTRAINED: usize = usize::max_value(); thread_local! { static HITS: Cell<usize> = Cell::new(UNCONSTRAINED); } /// Run the given closure with a cooperative task budget. /// /// Enabling budgeting when it is already enabled is a no-op. #[inline(always)] pub(crate) fn budget<F, R>(f: F) -> R where F: FnOnce() -> R, { HITS.with(move |hits| { if hits.get() != UNCONSTRAINED { // We are already being budgeted. // // Arguably this should be an error, but it can happen "correctly" // such as with block_on + LocalSet, so we make it a no-op. return f(); } struct Guard<'a>(&'a Cell<usize>); impl<'a> Drop for Guard<'a> { fn drop(&mut self) { self.0.set(UNCONSTRAINED); } } hits.set(BUDGET); let _guard = Guard(hits); f() }) } cfg_rt_threaded! { #[inline(always)] pub(crate) fn has_budget_remaining() -> bool { HITS.with(|hits| hits.get() > 0) } } cfg_blocking_impl! { /// Forcibly remove the budgeting constraints early. pub(crate) fn stop() { HITS.with(|hits| { hits.set(UNCONSTRAINED); }); } } /// Invoke `f` with a subset of the remaining budget. /// /// This is useful if you have sub-futures that you need to poll, but that you want to restrict /// from using up your entire budget. For example, imagine the following future: /// /// ```rust /// # use std::{future::Future, pin::Pin, task::{Context, Poll}}; /// use futures::stream::FuturesUnordered; /// struct MyFuture<F1, F2> { /// big: FuturesUnordered<F1>, /// small: F2, /// } /// /// use tokio::stream::Stream; /// impl<F1, F2> Future for MyFuture<F1, F2> /// where F1: Future, F2: Future /// # , F1: Unpin, F2: Unpin /// { /// type Output = F2::Output; /// /// // fn poll(...) /// # fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<F2::Output> { /// # let this = &mut *self; /// let mut big = // something to pin self.big /// # Pin::new(&mut this.big); /// let small = // something to pin self.small /// # Pin::new(&mut this.small); /// /// // see if any of the big futures have finished /// while let Some(e) = futures::ready!(big.as_mut().poll_next(cx)) { /// // do something with e /// # let _ = e; /// } /// /// // see if the small future has finished /// small.poll(cx) /// } /// # } /// ``` /// /// It could be that every time `poll` gets called, `big` ends up spending the entire budget, and /// `small` never gets polled. That would be sad. If you want to stick up for the little future, /// that's what `limit` is for. It lets you portion out a smaller part of the yield budget to a /// particular segment of your code. In the code above, you would write /// /// ```rust,ignore /// # use std::{future::Future, pin::Pin, task::{Context, Poll}}; /// # use futures::stream::FuturesUnordered; /// # struct MyFuture<F1, F2> { /// # big: FuturesUnordered<F1>, /// # small: F2, /// # } /// # /// # use tokio::stream::Stream; /// # impl<F1, F2> Future for MyFuture<F1, F2> /// # where F1: Future, F2: Future /// # , F1: Unpin, F2: Unpin /// # { /// # type Output = F2::Output; /// # fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<F2::Output> { /// # let this = &mut *self; /// # let mut big = Pin::new(&mut this.big); /// # let small = Pin::new(&mut this.small); /// # /// // see if any of the big futures have finished /// while let Some(e) = futures::ready!(tokio::coop::limit(64, || big.as_mut().poll_next(cx))) { /// # // do something with e /// # let _ = e; /// # } /// # small.poll(cx) /// # } /// # } /// ``` /// /// Now, even if `big` spends its entire budget, `small` will likely be left with some budget left /// to also do useful work. In particular, if the remaining budget was `N` at the start of `poll`, /// `small` will have at least a budget of `N - 64`. It may be more if `big` did not spend its /// entire budget. /// /// Note that you cannot _increase_ your budget by calling `limit`. The budget provided to the code /// inside the buget is the _minimum_ of the _current_ budget and the bound. /// #[allow(unreachable_pub, dead_code)] pub fn limit<R>(bound: usize, f: impl FnOnce() -> R) -> R { HITS.with(|hits| { let budget = hits.get(); // with_bound cannot _increase_ the remaining budget let bound = std::cmp::min(budget, bound); // When f() exits, how much should we add to what is left? let floor = budget.saturating_sub(bound); // Make sure we restore the remaining budget even on panic struct RestoreBudget<'a>(&'a Cell<usize>, usize); impl<'a> Drop for RestoreBudget<'a> { fn drop(&mut self) { let left = self.0.get(); self.0.set(self.1 + left); } } // Time to restrict! hits.set(bound); let _restore = RestoreBudget(&hits, floor); f() }) } /// Returns `Poll::Pending` if the current task has exceeded its budget and should yield. #[allow(unreachable_pub, dead_code)] #[inline] pub fn poll_proceed(cx: &mut Context<'_>) -> Poll<()> { HITS.with(|hits| { let n = hits.get(); if n == UNCONSTRAINED { // opted out of budgeting Poll::Ready(()) } else if n == 0 { cx.waker().wake_by_ref(); Poll::Pending } else { hits.set(n.saturating_sub(1)); Poll::Ready(()) } }) } /// Resolves immediately unless the current task has already exceeded its budget. /// /// This should be placed after at least some work has been done. Otherwise a future sufficiently /// deep in the task hierarchy may end up never getting to run because of the number of yield /// points that inevitably appear before it is even reached. For example: /// /// ```ignore /// # use tokio::stream::{Stream, StreamExt}; /// async fn drop_all<I: Stream + Unpin>(mut input: I) { /// while let Some(_) = input.next().await { /// tokio::coop::proceed().await; /// } /// } /// ``` #[allow(unreachable_pub, dead_code)] #[inline] pub async fn proceed() { use crate::future::poll_fn; poll_fn(|cx| poll_proceed(cx)).await; } pin_project_lite::pin_project! { /// A future that cooperatively yields to the task scheduler when polling, /// if the task's budget is exhausted. /// /// Internally, this is simply a future combinator which calls /// [`poll_proceed`] in its `poll` implementation before polling the wrapped /// future. /// /// # Examples /// /// ```rust,ignore /// # #[tokio::main] /// # async fn main() { /// use tokio::coop::CoopFutureExt; /// /// async { /* ... */ } /// .cooperate() /// .await; /// # } /// ``` /// /// [`poll_proceed`]: fn.poll_proceed.html #[derive(Debug)] #[allow(unreachable_pub, dead_code)] pub struct CoopFuture<F> { #[pin] future: F, } } impl<F: Future> Future for CoopFuture<F> { type Output = F::Output; fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { ready!(poll_proceed(cx)); self.project().future.poll(cx) } } impl<F: Future> CoopFuture<F> { /// Returns a new `CoopFuture` wrapping the given future. /// #[allow(unreachable_pub, dead_code)] pub fn new(future: F) -> Self { Self { future } } } // Currently only used by `tokio::sync`; and if we make this combinator public, // it should probably be on the `FutureExt` trait instead. cfg_sync! { /// Extension trait providing `Future::cooperate` extension method. /// /// Note: if/when the co-op API becomes public, this method should probably be /// provided by `FutureExt`, instead. pub(crate) trait CoopFutureExt: Future { /// Wrap `self` to cooperatively yield to the scheduler when polling, if the /// task's budget is exhausted. fn cooperate(self) -> CoopFuture<Self> where Self: Sized, { CoopFuture::new(self) } } impl<F> CoopFutureExt for F where F: Future {} } #[cfg(all(test, not(loom)))] mod test { use super::*; fn get() -> usize { HITS.with(|hits| hits.get()) } #[test] fn bugeting() { use tokio_test::*; assert_eq!(get(), UNCONSTRAINED); assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx))); assert_eq!(get(), UNCONSTRAINED); budget(|| { assert_eq!(get(), BUDGET); assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx))); assert_eq!(get(), BUDGET - 1); assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx))); assert_eq!(get(), BUDGET - 2); }); assert_eq!(get(), UNCONSTRAINED); budget(|| { limit(3, || { assert_eq!(get(), 3); assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx))); assert_eq!(get(), 2); limit(4, || { assert_eq!(get(), 2); assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx))); assert_eq!(get(), 1); }); assert_eq!(get(), 1); assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx))); assert_eq!(get(), 0); assert_pending!(task::spawn(()).enter(|cx, _| poll_proceed(cx))); assert_eq!(get(), 0); assert_pending!(task::spawn(()).enter(|cx, _| poll_proceed(cx))); assert_eq!(get(), 0); }); assert_eq!(get(), BUDGET - 3); assert_ready!(task::spawn(()).enter(|cx, _| poll_proceed(cx))); assert_eq!(get(), BUDGET - 4); assert_ready!(task::spawn(proceed()).poll()); assert_eq!(get(), BUDGET - 5); }); } }