derive_deftly_macros/approx_equal.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
//! Implementation of `${approx_equal ..}`, and support functions
//
// # Note on error handling
//
// Many functions here take `cmp_loc: ErrorLoc` and return `syn::Result`.
// `cmp_loc` is the comparison operator (`kw_span` in `boolean.rs`,
// referring to the `approx_equal` keyword.
//
// When generating errors, we include this in our list of ErrorLocs.
//
// An alternative would be to return a bespoke error type,
// consisting of the pieces to make the error from.
// I experimented with this, but it's definitely worse.
// Also this has trouble handling a `syn::Error` from other code we call.
use super::prelude::*;
use proc_macro2::Group;
use Equality::*;
/// Return value of a (perhaps approximate) equality comparison
///
/// (Avoids use of `bool`)
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum Equality {
Equal,
Different,
}
impl Equality {
/// Compare `a` and `b`
///
/// (Name is short but avoids clash with `Ord::cmp`)
pub fn cmpeq<T: Eq>(a: &T, b: &T) -> Self {
if a == b {
Equal
} else {
Different
}
}
}
/// Compare, and return early if different
///
/// * **`cmpeq!(d: Equality)`**:
/// If `d` is `Different`, returns `Ok(d)`.
/// (The containing scope should return `Result<Equality,>`.)
///
/// * **`cmpeq!<T: Eq>(a: T, b: T);`**:
/// compares `a` and `b` using `Equality::cmpeq`,
/// and returns immediately if `a != b`,
/// or the comparison failed.
macro_rules! cmpeq {
{ $a:expr, $b:expr } => {
cmpeq!(Equality::cmpeq(&$a, &$b));
};
{ $r:expr } => {
if let d @ Different = $r {
return Ok(d);
}
};
}
/// Return the input, but with `None`-delimited `Group`s flattened away
///
/// Loses some span information.
pub fn flatten_none_groups(ts: TokenStream) -> TokenStream {
fn recurse(out: &mut TokenStream, input: TokenStream) {
for tt in input {
match tt {
TT::Group(g) if g.delimiter() == Delimiter::None => {
recurse(out, g.stream());
}
TT::Group(g) => {
let span = g.span();
let mut g = Group::new(
g.delimiter(),
flatten_none_groups(g.stream()),
);
// We lose some span information here.
g.set_span(span);
out.extend([TT::Group(g)]);
}
_ => out.extend([tt]),
}
}
}
let mut out = TokenStream::new();
recurse(&mut out, ts);
out
}
trait LitComparable {
fn lc_compare(
a: &Self,
b: &Self,
cmp_loc: &ErrorLoc<'_>,
) -> syn::Result<Equality>;
}
trait LitConvertible {
type V: Eq;
fn lc_convert(&self, cmp_loc: &ErrorLoc<'_>) -> syn::Result<Self::V>;
}
fn str_check_suffix(
suffix: &str,
span: Span,
cmp_loc: &ErrorLoc<'_>,
) -> syn::Result<()> {
if suffix.is_empty() {
Ok(())
} else {
Err([(span, "literal"), *cmp_loc].error(
"comparison of string/byte/character literals with suffixes is not supported"
))
}
}
macro_rules! impl_LitComparable_str { { $lit:ty, $val:ty } => {
impl LitConvertible for $lit {
type V = $val;
fn lc_convert(&self, cmp_loc: &ErrorLoc<'_>) -> syn::Result<Self::V> {
str_check_suffix(self.suffix(), self.span(), cmp_loc)?;
Ok(self.value())
}
}
} }
impl_LitComparable_str!(syn::LitStr, String);
impl_LitComparable_str!(syn::LitByteStr, Vec<u8>);
impl_LitComparable_str!(syn::LitByte, u8);
impl_LitComparable_str!(syn::LitChar, char);
impl<T: LitConvertible> LitComparable for T {
fn lc_compare(
a: &Self,
b: &Self,
cmp_loc: &ErrorLoc<'_>,
) -> syn::Result<Equality> {
Ok(Equality::cmpeq(
//
&a.lc_convert(cmp_loc)?,
&b.lc_convert(cmp_loc)?,
))
}
}
impl LitConvertible for syn::LitBool {
type V = ();
fn lc_convert(&self, _cmp_loc: &ErrorLoc<'_>) -> syn::Result<Self::V> {
Err(self.error(
"internal error - TokenTree::Literal parsed as syn::Lit::Bool",
))
}
}
impl LitConvertible for syn::LitFloat {
type V = String;
fn lc_convert(&self, _cmp_loc: &ErrorLoc<'_>) -> syn::Result<Self::V> {
Ok(self.token().to_string())
}
}
impl LitComparable for syn::LitInt {
fn lc_compare(
a: &Self,
b: &Self,
cmp_loc: &ErrorLoc<'_>,
) -> syn::Result<Equality> {
match (
a.base10_parse::<u64>(),
b.base10_parse::<u64>(),
) {
(Ok(a), Ok(b)) => Ok(Equality::cmpeq(&a, &b)),
(Err(ae), Err(be)) => Err(
[(a.span(), &*format!("left: {}", ae)),
(b.span(), &*format!("right: {}", be)),
*cmp_loc,
].error(
"integer literal comparison with both values >u64 is not supported"
)),
(Err(_), Ok(_)) | (Ok(_), Err(_)) => Ok(Different),
}
}
}
fn lit_cmpeq(
a: &TokenTree,
b: &TokenTree,
cmp_loc: &ErrorLoc<'_>,
) -> syn::Result<Equality> {
let mk_lit = |tt: &TokenTree| -> syn::Result<syn::Lit> {
syn::parse2(tt.clone().into())
};
let a = mk_lit(a)?;
let b = mk_lit(b)?;
syn_lit_cmpeq_approx(a, b, cmp_loc)
}
/// Compare two literals the way `approx_equal` does
///
/// `pub` just so that the tests in `directly.rs` can call it
pub fn syn_lit_cmpeq_approx(
a: syn::Lit,
b: syn::Lit,
cmp_loc: &ErrorLoc<'_>,
) -> syn::Result<Equality> {
macro_rules! match_lits { { $( $V:ident )* } => {
let mut error_locs = vec![];
for (lit, lr) in [(&a, "left"), (&b, "right")] {
match lit {
$(
syn::Lit::$V(_) => {}
)*
_ => error_locs.push((lit.span(), lr)),
}
}
if !error_locs.is_empty() {
return Err(error_locs.error(
"unsupported literal(s) in approx_equal comparison"
));
}
match (&a, &b) {
$(
(syn::Lit::$V(a), syn::Lit::$V(b))
=> LitComparable::lc_compare(a, b, cmp_loc),
)*
_ => Ok(Different),
}
} }
// We do not support comparison of `CStr`.
// c"..." literals are recognised only by Rust 1.77,
// and we would need syn 2.0.59 to parse them.
// So this would require
// - bumping our syn dependency to 2.0.59 globally,
// or somehow making that feature-conditional,
// or messing about parsing the lockfile in build.rs.
// - Adding an MSRV-influencing feature,
// or testing the rustc version in build.rs.
// I hoping we can put this off.
match_lits! {
Str
ByteStr
Byte
Char
Bool
Int
Float
}
}
fn tt_cmpeq(
a: TokenTree,
b: TokenTree,
cmp_loc: &ErrorLoc<'_>,
) -> syn::Result<Equality> {
let discrim = |tt: &_| match tt {
TT::Punct(_) => 0,
TT::Literal(_) => 1,
TT::Ident(_) => 2,
TT::Group(_) => 3,
};
cmpeq!(discrim(&a), discrim(&b));
match (a, b) {
(TT::Group(a), TT::Group(b)) => group_cmpeq(a, b, cmp_loc),
(a @ TT::Literal(_), b @ TT::Literal(_)) => lit_cmpeq(&a, &b, cmp_loc),
(a, b) => Ok(Equality::cmpeq(&a.to_string(), &b.to_string())),
}
}
fn group_cmpeq(
a: Group,
b: Group,
cmp_loc: &ErrorLoc<'_>,
) -> syn::Result<Equality> {
let delim =
|g: &Group| Group::new(g.delimiter(), TokenStream::new()).to_string();
cmpeq!(delim(&a), delim(&b));
ts_cmpeq(a.stream(), b.stream(), cmp_loc)
}
/// Internal, recursive, comparison of flattened `TokenStream`s
fn ts_cmpeq(
a: TokenStream,
b: TokenStream,
cmp_loc: &ErrorLoc<'_>,
) -> syn::Result<Equality> {
for ab in a.into_iter().zip_longest(b) {
let (a, b) = match ab {
EitherOrBoth::Both(a, b) => (a, b),
EitherOrBoth::Left(_) => return Ok(Different),
EitherOrBoth::Right(_) => return Ok(Different),
};
match tt_cmpeq(a, b, cmp_loc)? {
Equal => {}
neq => return Ok(neq),
}
}
return Ok(Equal);
}
/// Compares two `TokenStream`s for "equivalence"
///
/// We intend that two `TokenStream`s count as "equivalent"
/// if they mean the same thing to the compiler,
/// modulo any differences in spans.
///
/// We also disregard spacing. This is not 100% justifiable but
/// I think there are no token sequences differing only in spacing
/// which are *both* valid and which differ in meaning.
///
/// ### Why ?!
///
/// `< <` and `<<` demonstrate that it is not possible to provide
/// a fully correct and coherent equality function on Rust tokens,
/// without knowing the parsing context:
///
/// In places where `<<` is a shift operator, `< <` is not legal.
/// But in places where `<<` introduces two lots of generics,
/// `<<` means the same.
///
/// I think a function which treats `< <` and `<<` as equal is more useful
/// than one that doesn't, because it will DTRT for types.
///
/// ### `None`-delimited `Group`s
///
/// We flatten these
///
/// This is necessary, because otherwise
/// apparently-identical pieces of code count as different.
///
/// This does mean that two things which are `approx_equal`
/// can be expressions with different values!
///
/// But, the Rust grammar for types doesn't permit ambiguity,
/// so the type equality guarantee of `approx_equal` is preserved.
//
// Comparing for equality has to be done by steam.
// And a lot of stringification.
pub fn tokens_cmpeq(
a: TokenStream,
b: TokenStream,
cmp_span: Span,
) -> syn::Result<Equality> {
let a = flatten_none_groups(a);
let b = flatten_none_groups(b);
ts_cmpeq(a, b, &(cmp_span, "comparison"))
}