Rust

The most exciting new programming language for years

(what, really?)

Ian Jackson GNU/Citrix/Xen/Debian GHM Madrid
September 2019

Whoam1?
curmudgeon and pessimist

Perl, C, Tcl, Python, bash

some C++, Haskell, Ocaml, asm, JS, Lisp, Java...

Copyright Citrix / Ian Jackson 2019
Some examples taken from the Rust Book etc, Apache 2.0 / MIT CC-BY-SA 4.0+

Manual
memory
management

Unsafe

C
C++
Assembler

new
malloc

free
delete

GC
Safe
Python JS

Perl Java

Ocaml Lisp
Haskell

new
Cl ass()

implicit allocation

freed after last
referent goes away

Manual
memory
management

Unsafe

C
C++
Assembler

new
malloc

free
delete

Ownership

(borrow
checker)

Safe

Rust

new
(etc)

lifetime

sufficiency
checked

GC
Safe

Python JS
Perl Java

Ocaml Lisp
Haskell

new
Cl ass()

implicit allocation

freed after last
referent goes away

Fn mal n() {
let mut s = String::from"hello");
change(&mut s);
printin!'("{}", s);

}

fn change(sone _string: &mut String) {
sone_string. push str(", world");
t

Fn main() 4
|l et reference to nothing = dangle();
}

fn dangle() -> &String
let s = String::from "hello");
&S

}

error| EO106]: mssing litetime specitier
--> main.rs:5:16

5] fn dangle() -> &String {
N expected lifetine paraneter

= help: this function’s return type contains a borrowed
val ue, but there is no value for it to be borrowed fron
hel p: consider giving it a 'static lifetine

Fn main() {
let s = String::from "hello");
change(&s) ;
printinl("{}", s),;

fn change(sone_string: &String) {
sonme_string. push str(", world");
}

error| E0O596]: cannot borrow I nmut abl e borrowed cont ent
‘“*sone_string' as nutable
--> error.rs:8:5

7 fn change(sone_string: &String) {

------- use ‘&mut String‘ here
to make nut abl e

8 sone_string.push_str(", world");

ANNNNNANNNN cgnnot borrow as nut abl e

Other properties of Rust — illustrated

Syntax Type system Safety
inference unsafe
. escape
polymorphlsm hatch
("'generics'’)
Sstruct Pol nt<I> {
X: T,
y: T,
}
Fn mai n() {
let 1 = Point { x: 5, vy
let f = Point { x: 1.0,

t

FF1

talking
to C etc.

Other properties of Rust — illustrated

Syntax Type system Safety FFI1
inference unsafe talking
polymorphism escape to C etc.

" .« 1 hatch
("'generics'’)
st ruct Pol nt <T> { — definition of a struct type
x: T, definition of the members and their types
y: T > defi f typ
} construction of struct values
_ by specifying values of the members
fFn mai n() { \
let 1 = Point \{ x: 5, y: 10 },;
Ietszoint{x:lO y: 4.0 };

Other properties of Rust — illustrated

Syntax Type system Safety FFI1
inference unsafe talking
: escape to C etc.
po'l'ymor[?hl's'm hatch
("'generics'’)

struct type is polymorphic
Str UCt Poi nt <T> { there’s Point<T> for any T

X. > members are of type T
Y. T whatever T is

} types of 1 and f not specified by programmer

F N nmAal n() { compiler infers, eg, Point<f64>
:e’: }%Pmnt { x: 5, y: 10 };
e

Poi nt { Xx: 10 y: 4.0 };

Other properties of Rust — illustrated

Syntax Type system Safety FFI1
inference unsafe talking
. escape to C etc.
po'l'ymorphl's'm hatch
("'generics'’)

struct | nsnBytecode { programmer documenting

/] unsafety: unsafe code’s assumptions
// the 1 nstruction executor assunes that:
[/ c is a valid regnum

c . BytecodeVal ue,

required to surround any use of unsafe
unsaf e { language features or library functions
*regs.offset(c as 1size) =r,;
} . raw pointer offset calculation
bypasses array bounds check

Other properties of Rust — illustrated

#] 11 nk(name="gl ue") |
extern "C
pub fn cxx _chrobak payne(
nvertices . size t,
edge data : *const [size t; 2],
n_edge data :\si ze_t, array of 2 size_t

. raw pointer type

let ok = unsafe {— calls out of Rust are not §

cxX_chrobak payne(nverti ces,

edges.as _ptr (),
lypescvli:lelcl,kbeecﬁedges l en(),

Rust

FF1

talking
to C etc.

extern "C' {

| nt cxx_chrobak _payne(const size t nvertices,
const size t edge data[][2]
const size t n_edge data,

C++

Community attitude — Programmer mistakes

5} LLVM Project Blog: What | X | + C .
compiler/

@ e ; (@ blogllvm.org/2011/05/what-every-c-programm: E| standards
community

What Every C Programmer Should Know About

Undefined Behavior #3/3 . L.
Victim
In Part 1 of the series. we took a look at undefined behavior in C and showed blaming

I3 How Rust Helps You Preve X | 4+

Lo > | (D & httpsi/pobfloyd.net/postihow-rust-h El & see | M | Q search
Rust How Rust Helps You Prevent Bugs
if yau have eVer written a pragram of any scale before, yol may have run it bugs. Tify
Compiler

My personal stance is that a programming language and its implementation should strive to
Should help catch as much mistakes made by the programmer as possible, thus allow them to build

hattar anmd FRara carnira onffaara Althanak otstic homina Fealacs s lamansas Fmars Faranl o

Community attitude — stability

o) (@ d@ https:/blog.rust-lang.org/2014/10/20/Stabil E | +o« & rust language stab = = {g}

@ R_u St Blog Bust Install Learn Tools Governance Commiunity

Stability as a Deliverable

Aaron Turon and MNiko Matsakis
2014

The upcoming Rust 1.0 release means a lot, but most fundamentally it is a
commitment to stability, alongside our long-running commitment to safety.

Starting with 1.0, we will move to a 6-week release cycle and a menu of release
"channels". The stable release channel will provide pain-free upgrades, and the

nightly channel will give early adopters access to unfinished features as we work
on them.

Community attitude — error messages

tn main() {
let s = String::from "hello");
change(&s) ;
printin! ("{}", s),;

fn change(sone_string: &String) {
sone_string. push str(", world");
'

error| EO596]: cannot borrow | nmut abl e borrowed content
‘“*sone_string' as nutable
--> error.rs:8:5

7 fn change(sone_string: &String) {

------- use ‘&ut String' here
to make nut abl e

8 sone_string. push_str(", world");

AAAARAAAAAN cannot borrow as mut abl e

Community attitude This is the first thing

you see if you clzck
on "community"

Documentation Install Community Contribute

The Rust Community

The Rust programming language has many qualities, but Rust’'s greatest strength is the community of
people who come together to make working in Rust a rewarding experience,

We are committed to providing a friendly, safe and welcoming environment for all, regardless of gender,

sexual orientation, disability, ethnicity, religion, or similar personal characteristic, Our code of conduct
sets the standards for behavior in all official Rust forums.,

If you feel vou have been or are being harassed or made uncomfortable by a community member, please
contact any of the Rust Moderation Team immediately. Whether you are a regular contributor or a
newcomer, we care about making the community a safe space for you.

(GattinAa Startad

Borrow checker

fn longest(x: &str, y. &str) —> &str {
If Xx.len() >y.len() {x}else{y}

}

| fn longest(x: &str, y: &str) -> &str {
| N expected lifetine paraneter
|

= help: this function's return type contains a borrowed val ue, but the
si gnat ure does not say whether it is borrowed from* x‘ or ‘y*

function
parameterised

by lifetime lifetime annotations

fn longest<’ a str @ a str) Q
> &’a Str

if x.len() > y.len() { x } else {y }

use serde::{Seriallze, Deseriallze}; Macros
_ N _ Not a built in Rust feature.
#[derive(Serialize, Deserialize, Debug)]

struct Point { xi 132, y: 132, You can do this 1n a library!
Only Common Lisp can beat this

fn main()
let point = Point { x: 1, y: 2 };

[/ Convert the Point to a JSON string.
let | = serde_json::to_string(&point).unwap();

!
[/ Parse the JSON string as a Point. Awesome!
|l et p2: Point = serde json::fromstr(&).unwap();

macro rul es! debug { example from a personal project of mine
(59:?Xpr, $($rhs:tt)*) => {

i f debugp! ($g9) { eprint! ($($rhs)*); }

} What a syntax for something simple!
} (and this macro doesn’t even always work quite right)

cargo

Proposal: Command-line config
m ehuss opened this issue Feb 25, 2019 - 5 comments :_(
How to use a local unpublished crate? < stackoverflow
7 Is there a way to use a local crate myself (for development) while leaving Cargo.toml referring to
crates.io so others can also build my code? - David Roundy Jun 19 '17 at 22:21

1 Mot possible by default at the moment. You can however work on a local branch, replace
Cargo.toml with local dependency references (or mixed references), and before you merge or
during, revert to or keep the main Cargo.toml file. - brokenthorn Sep 17 18 at 14:38

o) (i) @ https://wiki.debian.org E] s0% e D

Package build process

Package builds must not allow Cargo to access the network when building. In
particular, they must not download or check out any sources at build time. Instead,
builds must use the packaged versions of crate sources, via the corresponding library

crate packages, which provide a Cargo directory registry

Package builds must set §CARGO_HOME to a directory within the package build directory,
to avoid writing to the building user's home directory ocutside the package build

Airartarme

From |redacted]
To: rust-1lang/cargo <cargo@oreply.github.conp

Cc: lan Jackson
Subject: Re: [rust-lang/cargo] Want way to specify alternative

| eaf nane to replace Cargo.tom (#6715)
etc.

Abért fromthat, this filenane is intentionally non-configurable

Registered Targets:

microcontrollers).

X86-64

NO dynamic linking yet aarché64 - AArch64 (little endian)
aarch64_be - AArch64 (big endian)
arm - ARM
arme4 - ARM64 (little endian)

o armeb - ARM (big endian)
Architecture support nexagon - Hexagon
difficulties eg mips - Mips |
mips64 - Mips64 [experimental]
https://docs.rust—embedded.org mips64el - Mipsé4el [experimental]
mipse - Mipse
[faq.html ipsel ipsel
msp430 - MSP430 [experimental]
nvptx - NVIDIA PTX 32-bit
If your device architecture is not nvptx64 - NVIDIA PTX 64-bit
there that means rustc doesn't ppc32 - PowerPC 32
devi ldb ppc64 - PowerPC 64
support your device. It cou e opceale _ PowerPC 64 LE
that LLVM doesn't support the riscv32 - 32-bit RISC-V
architecture (e.g. Xtensa, ESP8266's riscvé4 - 64-bit RISC-V
. sparc - Sparc
architecture) or that LLVM's g ’
sparcel - Sparc LE
support for the architecture is not sparcv9 -~ Sparc V9
considered stable enough and has systemz - SystemZ
b bled i t thumb - Thumb
not been enabled in rustc (e.g. chumbeb _ Thumb (big endian)
AVR, the architecture most wasm32 - WebAssembly 32-bit
commonly found in Arduino wasme4 - WebAssembly 64-bit
X86 - 32-bit X86: Pentium-Pro and above

64-bit X86: EM64T and AMD64

Rust

The most exciting new programming language for years

https://doc.rust—lang.org/

Ian Jackson GNU/Citrix/Xen/Debian September 2019
ljackson@chiark.greenend.org.uk

C/C++? Use Rust instead if dynamic linking not needed.
Perl, Python, Haskell, Ocaml? Consider Rust.

Tcl? Do your extensions in Rust.

asm? Do the rest in Rust.

JavaScript, Java? Wish you could use Rust.

Common Lisp? OK, stick with that.

Copyright Ian Jackson / Citrix 2019
Some examples taken from the Rust Book etc, Apache 2.0 / MIT CC-BY-SA 4.0+

